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This is the second paper on addition sets. A generalization of Hall 's Multi- 
plier Theorem for difference sets is given. Some nonexistence theorems are 
also given. These methods are used to compile a table of addition sets with 
parameter k ~ 10. One unsolved case still remains. 

1. INTRODUCTION 

This is the second paper on addition sets. The first paper [5] introduced 
some basic properties of  addition sets and gave some examples. In this 
paper, we are mainly concerned with a search of addition sets with param- 
eter k ~ 10. Some nonexistence theorems and some construction 
methods are developed to aid the search. 

A (v, k, )~, g)-addition set A = {al ..... ak}, or simply an addition set, is 
a collection of k distinct residues modulo v, such that for any residue 
7 ~ 0 (mod v) the congruence 

ai + gas ~ 7 (mod v) (1.1) 

has exactly h solution pairs (at ,  at) with at and at in A. 
I t  is clear that the well-known difference sets are addition sets with 

g = --1. Other examples are given in [5]. 
To avoid degeneracy, we further require a nontrivial addition set to 

satisfy 
1 < k < v - - 1 .  (1.2) 

A parameter  d is also defined by letting d + h be the number of  ways 
that 0 can be represented as (at + gaj) modulo v with ai and at in the 
addition set A. 

* This research was supported in part by the Army Research Office--Durham. 
t Present address: Computer Science Department, Concordia University, 1455 de 

Maisonneuve Blvd. West, Montreal, Quebec H3G 1M8, Canada. 

177 
Copyright �9 1975 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



178 CLEMENT W. H. LAM 

Some of  the results in [5] are needed in this paper .  We will just  state them 
without  proof .  

THEOREM 1.1. The parameters o f  a nontrivial addition set satisfy 

(i) k z - - d + h v ,  
60 O <~ d + ;~ <~ g, 

(iii) 0 < A < k, and 
(iv) - - k  < d < k .  

Ins tead of  the addit ion set itself, it is often convenient  to deal with its 
Hall-polynomial. Here,  a Hal l -polynomia l  o f  a set A is the polynomia l  

O(x) = x al + . . .  + x %  

where a~ ~ A. The  impor tance  of  the Hal l -polynomial  is due to  the 
following result. 

THEOREM 1.2. A set A o f  k distinct residues modulo v is a (v, k, ~, g)- 
addition set i f  and only i f  its Hall-polynomial satisfies 

O(x) O(xO ~ d + h(1 + x + "'" + X v-l) (mod  x ~ - -  1). 

Furthermore, we have the following two results. 

THEOREM 1.3. I f  A is a nontrivial (v, k, ~, g)-addition set with d ~ O, 
then G C D  ( g, v) ~ 1. 

THEOREM 1.4. I f  A is a nontrivial addition set with v even, then d is 
a square. 

2. MULTIPLIER THEOREMS 

The multiplier  theorems have been very useful in the s tudy of  difference 
sets. Some of  them can be generalized for  addit ion sets. Let  us first give 
some definitions. 

Given a set A ---- {al ..... ak} modu lo  v, then for  any integer s the set 
{al + s ..... ak + s} - -  A + s taken modu lo  v is a shift of  A by  s. I f  t is 
relatively pr ime to v and if the set {tai ..... ta~} :-- tA t aken  modu lo  v is 
some shift A + s o f  the original addit ion set A, then t is called a multiplier 
of  A. I f  t ~ i (mod v), then t is a nontrivial  multiplier.  I f  tA ----- A when 
taken  modu lo  v, then t is a multiplier f ix ing the addit ion set A. 

The following two results f rom [5] established the existence of  multipliers 
for  m a n y  addit ion sets. 
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THEOREM 2.1. Let A be a nontrivial (v, k, ,~, g)-addition set with d C= O. 
Given any integer h prime to v, A is also a (v, k, A, h)-addition set i f  and 
only i f  gh is a multiplier fixing A. 

COROLLARY 2.2. Let A be a nontrivial (v, k, ~, g)-addition set with 
d :/: O. Then g2 is a multiplierfixing A. 

If  g~ ~ 1 (mod v), then Corollary 2.2 gives us a nontrivial multiplier 
for the addition set. 

To take care of some of the remaining cases, we will give a generalization 
of the Multiplier Theorem due to Hall [2]. In some cases, the multipliers 
constructed by this generalization are more suitable for a computer 
search than the ones constructed by Corollary 2.2. A discussion of how 
multipliers are used will be given in Section 4. 

The following facts of algebraic number theory are needed in the 
remainder of this section and part of the next. They are quoted from 
[1, pp. 52-53]. Here, we let Q denote the rational field and we let ~a 
denote a primitive dth root of unity. (p(d) will be the Euler (p-function. 

THEOREM 2.3. The prime ideal decomposition of  the rational prime p 
[that is of  the principal ideal (p)] in Q(~d) is given by 

(p) = (1 --  ~)~ca~ when d = p', (2.1) 

(P) = P1 "" Pg when (d,p) = 1, (2.2) 

where the distinct prime ideals Pi are conjugates. Further, g is (p(d)/f, where f 
is the order of  p modulo d. The fieM automorphism determined by the 
mapping ~a --~ ~a~ fixes each of  these prime ideals Pi . 

(P) = (Pz "" Pg)~") when d = paw, (p, w) = 1, (2.3) 

where g is (p(w)/f and f is the order o f  p modulo w. The ideals P1 ..... Po 
of(2.2), (2.3) can be determined explicitly. For, i f  f (x) denotes the irreducible 
equation satisfied by ~a over the rationals, then, with the f~(x) irreducible 
modulo p, 

f (x) ~-- (fl(x) "" fg(x)) ~c~~ (modp) 

and 
P,  = (p , f , (~ , ) ) .  

As the polynomial 1 -k x + "" q- x ~-z appears quite often in this paper 
it is sometimes denoted by T(x). 

The next lemma is needed to generalize Hall's Multiplier Theorem. 
A proof of the lemma can be found in [1, pp. 55-57]. 
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LEMMA 2.4. Let  g(x) be a polynomial with integral coefficients and let 
f i(x),  i ~ 1, 2, . . ,  m be the irreducible factors o f T ( x )  = 1 + x q- "" q- x ~-1. 
Furthermore, let G C D  (n, v) = 1. Assume that for  each fi(x),  there exists 
a polynomial S~(x) with integral coefficients, such that 

g(x) ~ nSi(x) (modf/(x)).  

Then there exist polynomials R(x)  and A(x),  both with integral coefficients, 
such that 

g(x) = nR(x)  q- A(x)  T(x). 

Now, we are ready to prove the next theorem. 

THEOREM 2.5 (Multiplier Theorem). Let  A be a nontrivial (v, k, )t, g)- 
addition set and let n o be a divisor o f  d, where (no, v) = 1, and n o > )~. 
If, for  every prime p dividing no, there is an integer j~ such that 

pJ~ ~ t (mod v), 

then t is a multiplier for  A. 

Proof. First of all, let us note that when the assumption of the theorem 
is satisfied, d is nonnegative. I f  d is negative, then we have 

n o > A ~ l d l ,  

which is impossible. 
F rom 

O(x) O(xg) ~ d q- A(1 q- x q- "" q- x "-~) 

comes the factorization 

(mod x v - -  1) 

O(x) O(xg) = d = nonl (modf~(x)), (2.4) 

where f~(x) is any one of the distinct irreducible factors of  T(x) = 
1 + x q- "" -t- x ~-1 over the rational field Q. Let ~: = e 2~ij/v be that root 
off,(x) for whichj  is least positive. Congruence (2.4) gives the factorization 

0(~) 0(~g) = non1. (2.5) 

Let us take a rational prime p which divides no. Then p divides 0(~) 0(~g). 
Now if P is any prime ideal divisor of  p, then we also have P dividing the 
ideal generated by 0(~) 0(~g). However, P is fixed by the automorphism 
of the field Q(~) determined by ~ ~ ~ .  Hence P divides 0(~)0(~g~). 
Since p~  ~ t (mod v) by assumption, we have that P divides 0(~) O(~gt). 
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The above observation is true for  any rational prime p which divides no. 
Hence we have no divides 0(~) 0 ( ~ ) .  Tha t  is, 

O(x) O(x g~) ~ noSi(x ) (modf~(x)), 

where Si(x) has rational integral coefficients. There is such a congruence 
for  each irreducible factor  f~(x) o f  T(x). By L e m m a  2.4, there exist poly- 
nomials R(x) and A(x), both  with integral coefficients, such that  

O(x) O(x g~) = noR(x) q- A(x) T(x). (2.6) 

Equat ion (2.6) when taken modulo  x v - -  1 becomes 

O(x) O(x gt) ~ noR(x ) -1- A(1) T(x) (mod x v - -  1). (2.7) 

Let x -~ 1 in the congruence (2.7); then we have 

k s = noR( l )  -k A(1)  v. 

Since k s = d -k av and G C D  (no, v) = 1, we have 

A(1) ~ a (mod no). 

Thus, by  altering R(x) if necessary, we have 

O(x) O(x g') -~ noR(x ) -k AT(x) (mod x ~ - -  1). (2.8) 

N o w  every coefficient on  the left side o f  this congruence is nonnegative 
and since n o > a all the coefficients o f  R(x) are nonnegative also. Further,  
with x ---- 1, this congruence gives k s = n0R(1 ) -kav ;  thus R(1) = nz.  
Substituting xg for  x in (2.8), we have 

O(x g) O(xo'9 ~ noR(x g) q- aT(x g) (mod x vg - -  1). (2.9) 

Congruence (2.9) when taken modulo  x ~ - -  1 becomes 

O(x g) O(x g~') ~ noR(x g) -+ AT(x) (mod x v - -  1). (2.10) 

We still have the relationship 

O(x) O(xg) =- d -k aT(x) ( m o d  x ~ - -  1). ( 2 . 1 1 )  

Substituting x ~ for  x in (2.11) and reducing modulo  x ~ - -  1 we obtain 

O(xg90(xg29 ---- d q- aT(x) (mod x ~ - -  1). (2.12) 
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F r o m  (2.8) and (2.10), we obtain 

O(x) O(xg) O(xg~) O(x~ ~,) 

[noR(x) %- ~T(x)l[noR(x~) %- AT(x)] (mod x ~ - -  1), 

while (2.11) and (2.12) give 

O(x) O(x ~) O(x ~'~) O(x ~ ~ [d %- AT(x)] ~ (mod x ~ - -  1). 

Hence 

no2R(x) R (x  ~) -k 2dhT(x)  + a2vT(x) =_ d ~ %- 2dT(x)  %- )t2vT(x) 

(mod x ~ - -  1), 

which implies that  

R(x)  R(xO) -~ nl ~ (mod x * - -  1). 

This implies [since R(x)  has nonnegative coefficients] that  R(x)  has only 
a single nonzero  term. Hence R(x)  = nl x8 and 

x ~cg+ll ~-- 1 (mod x ~ - -  1). (2.13) 

Putting R(x)  = nix 8 in (2.8), we have 

O(x) O(xg*) =~ dx ~ %- AT(x) (mod x ~ - -  1). 

Multiplying this last congruence by O(x ~) and simplifying yields 

O(x) ~-- xSO(x ~) (mod x ~ - -  1), 

which implies that  t is a multiplier o f  the addit ion set and that  tA = A --  s. 
Hence the p roof  is completed. 

In using a multiplier t in the construct ion o f  an addit ion set, we cannot  
assume that  the set is fixed by the multiplier. For  example, t = --1 is 
the only nontrivial multiplier for the (8, 3, 1, 3)-addition set {0, 1, 2}. 
However,  t = --1 fixes no addit ion set with the same parameters.  Hence, 
(2.13) is o f  some interest. I t  states that  the shift s must  satisfy 

s( g %- 1) -~ 0 (mod v). 

In  particular, when G C D  ( g %- 1, v) = 1, s ~-- 0 (mod v). 
I f  G C D  (t --  1, v) = 1, then the multiplier t fixes a shift o f  the addit ion 

set A. I f  tA ~ A %- s (mod v), then the shift o f  A by - -s( t  - -  1) -1 is fixed 
by the multiplier. 

In  the next section we will develop some nonexistence theorems. 
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3. NONEXISTENCE THEOREMS 

One of  the difficulties with any compute r  search is the number  of  cases 
one has to consider. In  this section, we will t ry to reduce the number  of  
possible pa rame te r  sets tha t  we have to consider in a search for  addit ion 
sets. 

Mos t  o f  the results in this section are on the pa rame te r  g. So far, we 
know that  if the addit ion set is nontrivial  and d v~ 0, then G C D  (g, v) = 1. 
In  [5], we have also seen tha t  we only need to consider those g ' s  in the 
range 0 ~< g ~< v - -  1, and tha t  there is no nontrivial  solution for  g ---- 1. 
To  fur ther  reduce the possible values of  g, we need the following lemma.  

LEM~A 3.1. Let A be a nontrivial (v, k, ~, g)-addition set. Then it is 
also a (v, k, ~, g-~)-addition set. 

Proof Since A is nontrivial,  G C D  (g,  v) : 1 and we can talk abou t  
the inverse of  g. L e t f b e  the order  of  g modulo  v [ f i s  the smallest integer 
such tha t  g l  ~ 1 (rood v)]. Then g-~ is gi-1 (mod v). The Hal l -polynomial  
o f  A satisfies 

O(x) O(xo) ~ d + )~(1 -}- x + ... q- x v-l) (mod x v - -  1). (3.1) 

Substituting x g~-I for  x in (3.l)  gives 

O(x g'-l) O(x) ~ d q- ~(1 + x ~I-1 q- ".. q- x ~-qv-l~) (mod x ~g~-~ - -  1), 

which when reduced modulo  x ~ - -  1 gives 

0(x at-x) O(x) ~ d q- h(1 q- x -t- "'" d- x ~-~) (mod x ~ - -  1). 

Hence  A is also a (v, k, ~, g-~)-addit ion set. 

THEOREM 3.2. Let A be a nontrivial (v, k, 2~, g)-addition set with d v~ 0 
and let the order of g modulo v be f Then f is even and A is also a 
(v, k, ~, g2i+l)-addition set for i = 0, 1 ..... ( f /2)  - -  1. 

Proof We will prove that  A is a (v, k, A, g~+l)-addit ion set by induction 
on i. I t  is clearly true when i = 0. Suppose that  A is a (v, k, A, g~i+l). 

addit ion set. Since A is still a (v, k, A, g)-addi t ion set, Theo rem 2.1 implies 
that  g~i+l~ fixes A. L e m m a  3.1 implies that  A is also a (v, k, A, g-l)_ 
addi t ion set. Applying Theo rem 2.1 again we have tha t  A is a 
(v, k, A, g~i+~)-addition set. 

I f f  is odd, then there exist i such tha t  2i q- 1 ----f In this case, A will 
also be an addit ion set with g : 1. However  in [3], it was proved  tha t  there 
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is no nontrivial  addit ion set with g ~ 1. H e n c e f i s  even, and the theorem 
is proved.  

COROLLARY 3.3. Let A be a nontrivial (v, k, A, g)-addition set and let 
the order o f  g modulo v be f where f : 2~s and s is odd. Then A is also a 
(v, k, A, gS)-addition set. Moreover, the order o f  g8 modulo v is 2 ~. 

Proof  S i n c e f i s  even, r > 0. Hence  s < f ,  and there exist i such that  
2i + 1 : s. Thus the corol lary follows f rom the theorem. 

Corol lary  3.3 means  that  in deciding whether  an addit ion set exists 
for  some given parameters  v, k and h we only need to consider those g ' s  
whose orders modu lo  v are powers  of  2. 

Corol lary  3.3 also implies the following result. Here  ~v(v) stands for  the 
Euler (p-function. 

COROLLARY 3.4. There is no nontrivial (v, k, A, g)-addition set with 
d ~ O, d -k ~ ~ k and 2 strictly dividing q~(v). 

Proof  Since 2 strictly divides v, the only g 's  whose orders modulo  v 
are powers  of  2 are 4-1. But there is no nontrivial  solution for  g = 1, 
and g ~- --1 corresponds to a difference set which contradicts  the con- 
dition d -k )t < k. 

I f  v is a pr ime of  the fo rm 4v § 3, then 2 strictly divides ~0(v) = v - -  1. 
The above corol lary el iminates cases like v, k, A, d = 23, 5, 1, 2 and 
v , k , A , d = 4 7 ,  7 ,1 ,2 .  

The next theorem is a generalization of  a result by M a n n  [6]. Here,  
when w divides v, we define a w-multiplier of  a (v, k, h, g)-addi t ion set to 
be any integer t, pr ime to w, for  which there exists an integer s satisfying 

O(x ~) ~-- xsO(x) (mod x ~ - -  1), 

where O(x) is the Hal l -polynomial  for  the addit ion set. 

THEOREM 3.5. Let w ~ 1 be a divisor o f  v and assume a nontrivial 
(v, k, ~, g)-addition set exists with w-multiplier t ~ 1. Let p be a prime 
divisor o f  d for  which (p,  w) : 1. I f  there exists an integer f ~ 0 such 
that tp ~ :-- g modulo w, then d is strictly divisible by an even power o f  p. 

Proof  Let  P be a pr ime ideal divisor of  p in K(~w) and let P~ strictly 
divide 0(~w). Since t is a w-multiplier, P~ strictly divides O(~J). By 
Theorem 2.3, P is fixed by  the mapp ing  ~,, ~ ~w ~. Hence  P~ strictly 
divides 0 ( ~ ) .  Since tp I ~ g modulo  w, we have pi  strictly dividing 
0(~J) .  Since O(~w) O(~J) : d, p2i strictly divides d, and this implies by  
Theorem 2.3 that  d is strictly divisible by an even power  o fp .  
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Theorem 3.5 is often used with t = 1, the trivial multiplier. For example, 
the case v, k, ,~, d = 33, 8, 2, --2 is eliminated by this theorem. 

The next nonexistence result is a generalization of a result by Turyn [7]. 
Let us first quote a part  of  his proof  as a lemma. 

LEMMA 3.6. Let O(x) w-1 = ~i=0 ai xi be a polynomial with integral 
coefficients. Furthermore, let us assume that the ai's satisfy 0 ~ ai ~ A 
for  some integer A, and that O(~w j) ~ 0 modulo m for 1 ~ j ~ w -- 1. 
I f  GCD (m, w) = 1, then m ~ A. I f  GCD (m, w) > 1, then m <~ 2r-lA, 
where r is the number o f  distinct prime factors o f  G C D  (m, w). 

We still need the following definitions. Let p be a prime and let p~ 
strictly divide the integer w, that is, let w = p~wl with G C D  (p, wa) ----- 1. 
I f  there exists an integer f > 0 such that p l  ~ g (rood w0, then p is said 
to be g-conjugate modulo w. I f  all the prime divisors of  an integer m are 
g-conjugate modulo w, then m is said to be g-conjugate modulo w. Note 
that if m is g-conjugate modulo w, then it is also g-conjugate modulo any 
divisor of  w. 

THEOREM 3.7. Assume a nontrivial (v, k, ~, g)-addition set ex&ts. Let 
m S divide d and suppose that m ~ 1 is g-conjugate modulo w for  some 
divisor w > 1 ofv. I f G C D  (m, w) = I then m ~ (v/w). I f G C D  (m, w) > 1 
then m <~ 2r-l(v/w) where r is the number o f  distinct prime factors o f  
G C D  (m, w). 

Proof. Since G C D  (g, v) ~ 1 and m is g-conjugate modulo w, every 
prime ideal divisor o f m  is fixed in the field Q(~:,o) by the mapping ~:~, -~ ~:w g- 
Let O(x) be the Hall-polynomial of the addition set. Then 0(~:w) 0(~:,o g) = d. 
Hence every prime ideal divisor of m divides both O(~w) and O(~wg), 
which implies that O(s modulo m. Similarly it follows that 
0(~w ~) ~ 0 modulo m for 1 ~< j ~< w --  1. Further, if we let 

w--1 

O(x) ~ ~ aix i (mod x w -  1), 
i=0 

then 0 <~ ai <~ v/w. The theorem then follows from Lemma 3.6. 
For  example, Theorem 3.7 implies that the case v, k, )t, d = 32, 6, 1, 4 

does not exist. Here, we let w ~- 32 and m = 2. I t  is clear that 2 is g-con- 
jugate modulo 32 for any g relatively prime to 32. Since the parameters 
correspond to a nontrivial case, those g's  are all that need to be considered. 
Theorem 3.7 implies that 2 ~< 1, a contradiction. 

The next result is quoted from [4]. Here, the Legendre symbol (--1/p) 
stands for (--1)(~-1)/2, and r(v) is the number of divisors of  v. 
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THEOREM 3.8. 

O(x) 2 ~ d q- ,~(1 q- x q- "" -ff x v) 

The rational polynomial congruence relation 

(mod x ~ - -  1) 

has a solution i f  and only i f  

(3.2) 

(i) d + )W is a rational square, and 

(ii) d is a rational square unless v is a power of  an odd prime p, in 
which case it can also be the product o f  a rational square with (--1/p) p. 
Moreover, i f  a solution exists, then the number o f  different 0(x)'s modulo 
x ~ -- 1 which satisfy (3.2) is 2 s, where f i s  given by 

t 
01 for  d = 0  and d + ) w = 0 ,  

for  d = 0  and d + ) W @ O ,  
f =  r(v) -- 1 for  d @ O and d + )W = O, 

~'(v) for  d @ O  and d q - h v v L O .  

I t  should be noted tha t  all the 2 s solutions can be constructed (see [4]). 
In  the case of  a (v, k, 2t, g)-addi t ion set, its Hai l -polynomial  satisfies 

O(x) O(x g) =_ d q- h(1 + x q- "-" q- x v-l) (mod  x v - -  1). (3.3) 

I f  for  some divisor w of  v, g ~ 1 (rood w), then (3.3) when reduced modu lo  
x w - -  1 becomes 

0(x) 2 ~-- d q- (hv/w)(1 q- x q- "" q- x w-l) (mod x w - -  1). 

Hence Theo rem 3.8 implies the following result. 

(3.4) 

COROLLARY 3.9. Let A be a (v, k, A,g)-addition set where g - ~  1 
(rood w) and w is a divisor o f  v. I f  d is not a square, then w is a power of  an 
odd prime p, and the square free part o f  d is ( - -  1/p) p, where ( - -  1/1)) is the 
Legendre symbol 

For  example,  Corol lary  3.9 can be used to eliminate the case 
v , k , A , d , g  -~ 33,6,  1, 3, 10. 

4. A LIST WITH k ~< 10 

In  this section, we shall discuss briefly the methods  used to obtain  a 
list of  addit ion sets with k ~< 10. There  remains  one unsolved case with 
parameters  v, k, h, d = 95, 10, 1, 5. The var ious tests imply that  to solve 
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this case we only have to consider g = 18 and g ---- 56, both of which are 
computationally too expensive to do by methods discussed in this section. 

Our aim is to determine the parameter  sets v, k and A that correspond 
to nontrivial addition sets. The parameter  d is known once v, k and A are 
given (Theorem 1.1). I t  is easy to see that if A is nontrivial addition set, 
its complement consisting of all the residues modulo v that are not in A 
is again an addition set. Hence we can restrict ourselves to k <~ v/2. 

We first generate all the parameter  sets that satisfy the conditions in 
Theorems 1.1 and 1.4. Those parameter  sets with d----0, 1 and --1 
correspond to the Natural  Central Groupoid type, the Reyser type and 
the Shifted Ryser type, respectively [5]. The parameter  sets with d = k - -  
are parameters for difference sets and we can refer to the table in [1] 
to determine whether they exist. I t  is the ramaining parameter  sets that 
we will consider from here on. 

For  those parameter  sets, we generate a set of  g 's  that need to be 
considered. Corollary 3.3 says that we need only those g 's  whose orders 
modulo v are powers of  2. Besides, we need not consider g 's  that are •  
Some cases are eliminated in this step. 

Next, we apply the tests of  Theorems 3.5 and 3.7 to the remaining cases. 
After these two tests, there are still 13 parameter  sets of  v, k and ?t left. 
Two of the parameters sets correspond to the Negative Quadratic Residue 
type (see [5]). 

A constructive approach is used in the remaining cases. In many case, 
a nontrivial multiplier exists as a result of  either Corollary 2.2 or 
Theorem 2.5, or both. We use the multipliers f rom Theorem 2.5 if possible. 
Multipliers are used to partition the residues modulo v into cycles. Then 
some combinations of  these cycles are tested to determine whether they 
are addition sets. The longer the length of the cycles, the fewer combi- 
nations there are. Multipliers f rom Theorem 2.5 usually give longer cylces, 
and are better suited for computation. However, in all cases where the 
multiplier method applies, it is found that there are no possible addition 
sets. After this step, there are five cases left. 

Next, we use Corollary 3.9 to eliminate two of the cases. The remaining 
three cases are 

v k A d g  

30 8 2 4 7, 11 
60 8 1 4 7 ,11 ,13 ,29 ,41  
95 10 1 5 18, 56 

We now use the construction in Theorem 3.8. I f  a (v, k, A, g)-addition 
set exists where g ~ 1 (mod w) for a divisor w of v, then its Hall-poly- 
nomial O(x) satisfies (3.2). Besides, O(x) when reduced modulo x ~ - -  1 

582a/19/2-5 
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T A B L E  I 

Addi t ion  Sets 

v k ~ d g Class  

4 2 1 0 2 N C G  
*0 1 

5 2 1 - -1  2 S R  = N Q  
*2 3 

7 3 1 2 --1 DS 
*1 2 4 

8 3 1 1 3 R 
*0 1 2 

9 3 1 0 3 N C G  
*0 1 2 

8 4 2 0 4 N C G  
*0 1 2 3 

13 4 1 3 - -1  DS 
*0 1 3 9 

15 4 1 1 4 R 
*0 1 2 3 

16 4 1 0 4 N C G  
*0 1 2 3 

17 4 1 --1 4 S R  
*7 8 9 10 

17 4 1 - -1  2 NB  
*1 4 13 16 

11 5 2 3 - -1  DS 
*1 3 4 5 9 

12 5 2 1 5 R 
*0 1 2 3 4 

13 5 2 - -1  - -5  S R  
*0 1 2 11 12 

21 5 1 4 - -  1 DS 
*3 6 7 12 14 

24 5 1 1 5 R 
*0 1 2 3 4 

Key. N C G  = Na t iona l  Centra l  G r o u p o i d  [5, T h e o r e m  3.1], R = Ryser  
[5, T h e o r e m  3.2], S R  = Shifted Ryser  ]5, T h e o r e m  3.3], N Q  = Negat ive  Quadra t i c  
Res idue  [5, T h e o r e m  3.5], N B  = Negat ive  Biquadra t ic  Res idue  [5, T h e o r e m  3.5], 
D S  = Difference set. 

Table continued 
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v k )t d g Class 

25 5 1 0 5 NCG 
*0 1 2 3 4 

12 6 3 0 6 N C G  
*0 1 2 3 4 5 

13 6 3 --3 2 NQ 
*1 3 4 9 10 12 

18 6 2 0 6 N C G  
*0 1 2 3 4 5 

31 6 1 5 --1 DS 
*1 5 I1 24 25 27 

35 6 1 I 6 R 
*0 1 2 3 4 5 

36 6 1 0 6 NCG 
*0 1 2 3 4 5 

37 6 1 --1 6 SR 
"16 17 18 19 20 21 

15 7 3 4 --1 DS 
*0 1 2 4 5 8 10 

16 7 3 1 7 R 
*0 1 2 3 4 5 6 

24 7 2 1 7 R 
*0 1 2 3 4 5 6 

25 7 2 -- 1 7 SR 
*0 1 2 3 22 23 24 

48 7 1 1 7 R 
*0 I 2 3 4 5 6 

49 7 1 0 7 N C G  
*0 1 2 3 4 5 6 

16 8 4 0 8 N C G  
*0 1 2 3 4 5 6 7 

17 8 4 - -4  3 NQ 
"1 2 4 8 9 13 15 16 

21 8 3 1 8 R 
*0 1 2 3 4 5 6 7 

32 8 2 0 8 NCG  
*0 1 2 3 4 5 6 7 

57 8 1 7 - - I  DS 
"I 6 7 9 19 38 42 49 

Tab~ continued 
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TABLE I (continued) 

v k A d g C1~ss 

63 8 1 1 8 R 
~0 1 2 3 4 5 6 7 

64 8 1 0 8 N C G  
"13 1 2 3 4 5 6 7 

65 8 1 --1 8 SR 
*29 30 31 32 33 34 35 36 

19 9 4 5 --1 DS 
*1 4 5 6 7 9 11 16 17 

20 9 4 1 9 R 
~0 1 2 3 4 5 6 7 8 

27 9 3 0 9 NCG 
~0 1 2 3 4 5 6 7 8 

37 9 2 7 --1 DS 
*1 7 9 10 12 16 26 33 34 

40 9 2 1 9 R 
~0 1 2 3 4 5 6 7 8 

41 9 2 --1 9 SR 
*0 1 2 3 4 37 38 39 40 

73 9 1 8 --1 DS 
*1 2 4 8 16 32 37 55 64 

80 9 1 1 9 R 
*0 1 2 3 4 5 6 7 8 

8t 9 1 0 9 NCG 
*0 1 2 3 4 5 6 7 8 

20 10 5 0 10 N C G  
*0 1 2 3 4 5 6 7 8 9 

25 10 4 0 10 NCG  
*0 1 2 3 4 5 6 7 8 9 

33 10 3 1 10 R 
*0 1 2 3 4 5 6 7 8 9 

50 10 2 0 10 NCG  
*0 1 2 3 4 5 6 7 8 9 

91 10 1 9 --1 DS 
*0 1 3 9 27 49 56 61 77 81 

99 10 1 1 10 R 
*0 1 2 3 4 5 6 7 8 9 

100 10 1 0 10 N C G  
*0 1 2 3 4 5 6 7 8 9 

101 10 1 --1 10 SR 
*46 47 48 49 50 51 52 53 54 55 
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still has nonnegat ive integral coefficients. So we construct  all the possible 
solutions to 

O(x) ~ ~ d q- A(1 4- x 4- "" 4- X w-l) (rood x w - -  1) 

for  an appropriate  w. In  some cases like v, k, A, g = 30, 8, 1, 11, none 
of  the solutions have nonnegative coefficients. The cases now remaining 
are 

v k A d g  

30 8 2 4 7  
60 8 1 4 7 
95 10 1 5 18, 56 

The last step also shows that  the two possible Hall-polynomials reduced 
modulo  x n - -  1 for  bo th  (v, k, A, g) = (30, 8, 2, 7) and (60, 8, 1, 7) are 
3 4 - x q - x  ~ 4 - x  3 4 - x  a 4 - x  5 a n d l  4 - x 4 - x  2 4 - 3 x  3 4 - x  a 4 - x  5 . N e x t , w e  
use the fact that  73 is a multiplier fixing both  addit ion sets. Cycles are 
generated. For  the case (30, 8, 2, 7) there are four  possible sets whose 
Hall-polynomials  when reduced modulo  x n -  1 give the above poly- 
nomials. For  the case (60, 8, 1, 7) there are more  possibilities. Then it is 
a simple matter  o f  testing whether these sets satisfy the definitions o f  an 
addit ion sets. None  of  them do. 

The constructive method of  Theorem 3.8 does not  apply to the case 
(95, 10, 1, 18). Fo r  the case (95, 10, 1, 56), the two possible Hall-poly- 
nomials reduced modulo  x ~ - 1  are 2 4 - x 4 - 3 x  2 4 - 3 x  a 4 - x  4 and 
2 q- 3x 4- x ~ 4- x 3 4- 3x a. 

Table I is a list o f  all known addit ion sets for  which k ~ 10. The 
question o f  the existence o f  multiple inequivalent addit ion sets has not  
been considered. Each addit ion set is identified by v, k, A, d, g and by a 
class indicator which indicates its type. The addit ion set itself is given in 
the following line with an "*  " 
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