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The plethysms of the Weyl characters associated to a classical Lie
group by the symmetric functions stabilize in large rank. In the
case of a power sum plethysm, we prove that the coefficients of
the decomposition of this stabilized form on the basis of Weyl
characters are branching coefficients which can be determined by
a simple algorithm. This generalizes in particular some classical
results by Littlewood on the power sum plethysms of Schur
functions. We also establish explicit formulas for the outer multi-
plicities appearing in the decomposition of the tensor square of
any irreducible finite-dimensional module into its symmetric and
antisymmetric parts. These multiplicities can notably be expressed
in terms of the Littlewood–Richardson coefficients.
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1. Introduction

This paper is concerned with the plethysms of the Weyl characters associated to complex clas-
sical Lie groups GLn(C), SO2n+1(C), Sp2n(C) or SO2n(C) by the symmetric functions. Let G be one
of the previous complex classical Lie groups. We write g for the Lie algebra of G . Since we con-
sider only Lie groups and Lie algebras over C in the sequel, we drop the symbol C in G and g and
simply write G = GLn, SO2n+1, Sp2n, SO2n and g = gln, so2n+1, sp2n, so2n . Given λ a partition, we de-
note by sg

λ the Weyl character of the g-module V g(λ). The modules V g(λ) almost coincide with the
finite-dimensional g-modules but there are some exceptions (see Section 2). Consider f a symmet-
ric function of degree d and suppose n � dl(λ) where l(λ) is the number of non-zero parts of λ.
Write Pn for the set of partitions with at most n parts. It follows from results by Littlewood [9] that
the plethysm f ◦ sg

λ of the Weyl character sg

λ by f decomposes on the basis {sg
μ | μ ∈ Pn} with co-

efficients which do not depend on n. When f = p� is the power sum of degree �, we establish that
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the coefficients so obtained are branching coefficients corresponding to the restriction to certain Levi
subgroups (Theorem 4.5.1). Suppose n � �l(λ) and set

p� ◦ sg

λ =
∑
μ

a�,g
λ,μsg

μ.

For g = gln , it is well known, by an algorithm due to Littlewood [7], that the coefficients a
gln,�

λ,μ can,
up to a sign, be expressed as a sum of products of Littlewood–Richardson coefficients. They are then
obtained from the �-quotient of the partition μ. We give a similar algorithm for computing the
coefficients a�,g

λ,μ when g = so2n+1, sp2n or so2n . This algorithm was originally introduced in [6] to

decompose the plethysms p� ◦ s
so2n+1
λ on the basis of Weyl characters for any integers n � 2 and

� � 1 (that is, with no restrictive conditions on the rank n). Although similar procedures also exist for
g = sp2n or so2n when � is odd, our method failed for the even power sum plethysms on the Weyl
characters of type Cn or Dn . In the present paper, we show that this difficulty can be overcome by
considering stabilized power sum plethysms, i.e. by assuming that n � �l(λ). Under this hypothesis,
one has indeed a

�,so2n+1
λ,μ = a�,so2n

λ,μ and a
�,sp2n
λ,μ = (−1)|λ|(−1)�−1a

�,so2n+1
λ′,μ′ . So it suffices to consider the

coefficients a
�,so2n+1
λ,μ for which there exists an algorithm in both cases � even and � odd. As a conse-

quence, we obtain that the coefficients a�,g
λ,μ can be expressed as branching coefficients.

In Proposition 5.2.1, we use our expression of the coefficients a2,g
λ,μ as branching coefficients,

to derive explicit formulas giving the decompositions of the symmetric and antisymmetric parts
of V g(λ)⊗2 in their irreducible components when n � 2l(λ). The corresponding multiplicities can then
be expressed in terms of the Littlewood–Richardson coefficients and give an alternative to analogous
formulas introduced without a complete proof by Littlewood in [9].

The paper is organized as follows. In Section 2, we recall some basics on the representation theory
of the classical Lie groups. Section 3 is concerned with plethysms f ◦ sg

λ and their stabilization in
large rank. Most of the material of this section can be found in [7–10]. In Section 4, we describe the
algorithm of [6] which permits to compute the plethysms p� ◦ s

so2n+1
λ for any positive integer �. We

then state Theorem 4.5.1 which gives the promised expression of the coefficients a�,g
λ,μ as branching

coefficients corresponding to the restrictions to Levi subgroups. Finally, in Section 5, we express the
multiplicities ag,2

λ,μ in terms of the Littlewood–Richardson coefficients.

2. Background on classical Lie groups

2.1. Root systems and Weyl groups

In the sequel G is one of the complex Lie groups Sp2n , SO2n+1 or SO2n and g is its Lie algebra. We
follow the convention of [5] to realize G as a subgroup of GLN and g as a subalgebra of glN where

N =

⎧⎪⎨⎪⎩
n when G = GLn,

2n when G = Sp2n,

2n + 1 when G = SO2n+1,

2n when G = SO2n.

Let dN be the linear subspace of glN consisting of the diagonal matrices. For any i ∈ In = {1, . . . ,n},
write εi for the linear map εi : dN → C such that εi(D) = δn−i+1 for any diagonal matrix D whose
(i, i)-coefficient is δi . Then (ε1, . . . , εn) is an orthonormal basis of the Euclidean space h∗

R
(the real

part of h∗). Let (·,·) be the corresponding nondegenerate symmetric bilinear form defined on h∗
R

.
Write R for the root system associated to G . For any α ∈ R we set α∨ = α

(α,α)
. The Lie algebra g

admits the diagonal decomposition g = h ⊕α∈R gα . We take for the set of positive roots:⎧⎪⎨⎪⎩
R+ = {ε j − εi with 1 � i < j � n} for the root system An−1,

R+ = {ε j − εi, ε j + εi with 1 � i < j � n} ∪ {εi with 1 � i � n} for the root system Bn,

R+ = {ε j − εi, ε j + εi with 1 � i < j � n} ∪ {2εi with 1 � i � n} for the root system Cn,

R+ = {ε − ε , ε + ε with 1 � i < j � n} for the root system D .
j i j i n
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For any i ∈ In , we write i = i and |i| = |i| = i. The Weyl group W of the Lie group G is the subgroup
of the permutation group of the set Jn = {n, . . . ,2,1,1,2, . . . ,n} generated by the permutations{

si = (i, i + 1)(i, i + 1), i = 1, . . . ,n − 1 and s0 = (1,1) for the root systems Bn and Cn,

si = (i, i + 1)(i, i + 1), i = 1, . . . ,n − 1 and s′
0 = (1,2)(2, 1) for the root system Dn

where for a �= b, (a,b) is the simple transposition which switches a and b. We identify the subgroup
of W generated by si = (i, i + 1)(i, i + 1), i = 1, . . . ,n − 1, with the symmetric group Sn . We de-
note by l the length function corresponding to the above set of generators. For any w ∈ W , we set
ε(w) = (−1)l(w) . The action of w ∈ W on β = (β1, . . . , βn) ∈ h∗

R
is defined by

w · (β1, . . . , βn) = (
βw−1

1 , . . . , βw−1

n

)
where βw

i = βw(i) if w(i) ∈ {1, . . . ,n} and βw
i = −βw(i) otherwise. We denote by ρ the half sum of

the positive roots of R+ . For any x ∈ Jn , we set x = x and |x| = x if x is unbarred, |x| = x otherwise.
A partition of length m is a finite weakly increasing sequence of nonnegative integers. The terms

of the sequence are called the parts of the partition. Customarily, we identify two such sequences if
they only differ in the number of zero occurring as parts. However, there are situations where we
distinguish such sequences (see Proposition 3.2.2 and Section 4.4). We hope the context makes clear
what we mean. The length of the partition λ is the number of non-zero parts in λ and is denoted
by l(λ). Denote by Pm the set of partitions with length at most m. By way of the identification
mentioned above, we have Pm ⊂ Pn if m � n; set P = ⋃

m�0 Pm . For λ ∈ P , write λ′ for the conjugate
partition of λ.

For G = Sp2n or SO2n+1 and λ ∈ Pn , denote by V g(λ) the irreducible finite-dimensional repre-
sentation of G of highest weight λ. For G = SO2n , we define V so2n (λ) similarly when λ1 = 0 and
we write V so2n (λ) for the direct sum of the two irreducible representations of highest weights
λ = (λ1, λ2, . . . , λn) and λ = (−λ1, λ2, . . . , λn) when λ1 �= 0. This means that V so2n (λ) is in fact the
irreducible representation of O 2n associated to the partition λ restricted to SO2n .

We shall also need the irreducible rational representations of GLn . They are indexed by the n-tuples(
γ −, γ +) = (−γ −

q , . . . ,−γ −
1 , γ +

1 , γ +
2 , . . . , γ +

p

)
(1)

where γ + = (γ +
1 , γ +

2 , . . . , γ +
p ) and γ − = (γ −

1 , . . . , γ −
q ) are partitions of length at most p and q,

respectively and such that p + q = n. Write P̃n for the set of such n-tuples and denote also
by V gln (γ ) the irreducible rational representation of gln of highest weight γ = (γ −, γ +) ∈ P̃n . For
any γ = (γ −, γ +) ∈ P̃n , we set |γ | = ∑

γ −
i + ∑

γ +
i .

Write s
gln
λ for the Weyl character (Schur function) of the finite-dimensional gln-module V gln (λ)

of highest weight λ ∈ Pn . The character ring of the polynomial representations of GLn is Λn =
Z[x1, . . . , xn]sym the ring of symmetric functions in n variables. Here, each variable xi , i = 1, . . . ,n,
can be identified with the formal exponential eεi .

For any λ ∈ Pn , we denote by sg

λ the Weyl character of V g(λ). Let Rg be the Z-algebra with basis
{sg

λ | λ ∈ Pn}. For g = so2n+1, sp2n or so2n , we have sg

λ ∈ Z[x±1
1 , . . . , x±1

n ]Hn where Hn is the Weyl
group of type Bn acting on the Laurent polynomials as the permutation of variables and exchanging xi
in x−1

i . These Weyl characters form a basis of Z[x±1
1 , . . . , x±1

n ]Hn , thus Rg 
 Z[x±1
1 , . . . , x±1

n ]Hn .
Consider P a parabolic subgroup of G and L its Levi subgroup. Write l for the Levi algebra associ-

ated to L. We denote by P+
L the set of dominant weights corresponding to L. For any partition λ ∈ Pn

and γ ∈ P+
L , write [V g(λ) : V l(γ )] for the branching coefficient giving the multiplicity of V l(γ ) (the

irreducible representation of L of highest weight γ ) in the restriction of V g(λ) to L.

2.2. Universal characters

For each Lie algebra g = soN or spN and any partition ν ∈ PN , we denote by V glN (ν)↓glN
g the

restriction of V glN (ν) to g. Set

V glN (ν)↓glN
soN =

⊕
λ∈P

V soN (λ)
⊕b

soN
ν,λ and V gl2n (ν)↓gl2n

sp2n
=

⊕
λ∈P

V sp2n (λ)
⊕b

sp2n
ν,λ .
n n
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This makes in particular appear the branching coefficients bsoN
ν,λ and b

sp2n
ν,λ . The restriction map rg is

defined by setting

rg :
{

Z[x1, . . . , xN ]sym → Rg,

s
glN
ν �→ char(V glN (ν)↓glN

g ).

We have then

rg
(
sglN
ν

) =
{

s
glN
ν (x1, . . . , xn, x−1

n , . . . , x−1
1 ) when N = 2n,

sglN
ν (x1, . . . , xn,1, x−1

n , . . . , x−1
1 ) when N = 2n + 1.

Let P (2)
n and P (1,1)

n be the subsets of Pn containing the partitions with even length rows and the
partitions with even length columns, respectively. When ν ∈ Pn we have the following formulas for
the branching coefficients bsoN

ν,λ and b
sp2n
ν,λ :

Proposition 2.2.1. (See [8, Appendix, p. 295].) Consider λ,ν ∈ Pn. Then:

1. b
so2n+1
ν,λ = bso2n

ν,λ = ∑
γ ∈P (2)

n
cν
λ,γ ,

2. b
sp2n
ν,λ = ∑

γ ∈P (1,1)
n

cν
λ,γ ,

where cν
γ ,λ is the n-independent multiplicity of s

gln
ν in the Schur functions product s

gln
λ s

gln
γ .

Remarks. (i) Note that the equality b
so2n+1
ν,λ = bso2n

ν,λ becomes false in general when ν /∈ Pn .
(ii) By the above proposition we have for any ν ∈ Pm with m � n

rsp2n
(
s
gl2n
ν

) =
∑

λ∈Pm

∑
γ ∈P (1,1)

m

cν
λ,γ s

sp2n
λ and rsoN

(
sglN
ν

) =
∑

λ∈Pm

∑
γ ∈P (2)

m

cν
λ,γ ssoN

λ . (2)

By Proposition 1.5.3 in [4], one has also for any λ ∈ Pm

s
sp2n
λ =

∑
ν∈Pm, ν⊂λ, |ν|≡|λ| (mod 2)

(−1)
|ν|−|λ|

2
∑

α=(α1>···>αs>0)

cλ
ν,Γ (α)r

sp2n
(
s
gl2n
ν

)
,

ssoN
λ =

∑
ν∈Pm, ν⊂λ, |ν|≡|λ| (mod 2)

(−1)
|ν|−|λ|

2
∑

α=(α1>···>αs>0)

cλ
ν,Γ ′(α)r

soN
(
sglN
ν

)
(3)

where Γ (α) = (α1 − 1, . . . ,αs − 1 | α1, . . . ,αs) in the Frobenius notation for the partitions. Observe
that the coefficients appearing in the decompositions (2) and (3) do not depend on the rank n con-
sidered. Moreover they coincide for the orthogonal types Bn and Dn .

As suggested by the above decompositions, the manipulation of the Weyl characters is simpli-
fied by working with infinitely many variables. In [4], Koike and Terada have introduced a universal
character ring for the classical Lie groups. This ring is the ring Λ = Z[x1, . . . , xn, . . .]sym of symmetric
functions in countably many variables. It is equipped with three natural Z-bases indexed by partitions,
namely

Bgl = {
sgl

λ

∣∣ λ ∈ P
}
, Bsp = {

ssp

λ

∣∣ λ ∈ P
}

and Bso = {
sso

λ

∣∣ λ ∈ P
}
. (4)

We have then

sgl
ν =

∑
λ∈P

∑
γ ∈P (2)

cν
λ,γ s

so
λ and sgl

ν =
∑
λ∈P

∑
γ ∈P (1,1)

cν
λ,γ s

sp

λ , (5)

ssp

λ =
∑

ν∈P , ν⊂λ, |ν|≡|λ| (mod 2)

(−1)
|ν|−|λ|

2
∑

α=(α1>···>αs>0)

cλ
ν,Γ (α)s

gl
ν , (6)

sso
λ =

∑
ν∈P , ν⊂λ, |ν|≡|λ| (mod 2)

(−1)
|ν|−|λ|

2
∑

α=(α >···>α >0)

cλ
ν,Γ ′(α)s

gl
ν . (7)
1 s
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In the sequel we will write for short

bso
ν,λ =

∑
γ ∈P (2)

cν
λ,γ , bsp

ν,λ =
∑

γ ∈P (1,1)

cν
λ,γ , rso

λ,ν =
∑
α

cλ
ν,Γ ′(α) and rsp

λ,ν =
∑
α

cλ
ν,Γ (α). (8)

We denote by ω the linear involution defined on Λ by ω(sgl

λ ) = sgl

λ′ . Then we have by Theorem 2.3.2
of [4]

ω
(
sso

λ

) = ssp

λ′ . (9)

Write πn : Z[x1, . . . , xn, . . .]sym → Z[x1, . . . , xn]sym for the ring homomorphism obtained by specializ-
ing each variable xi , i > n, at 0. Then πn(sgl

λ ) = s
gln
λ if λ ∈ Pn . Let πsp2n and πsoN be the specialization

homomorphisms defined by setting πsp2n = rsp2n ◦π2n and πsoN = rsoN ◦πN . For any partition λ ∈ Pn

one has s
sp2n
λ = πsp2n (ssp

λ ) and ssoN
λ = πsoN (ss0

λ ). We shall also need the following proposition
(see [3] and [4]).

Proposition 2.2.2. Consider a Lie algebra g of type Xn ∈ {Bn, Cn, Dn}. Let λ ∈ Pr and μ ∈ Ps . Suppose
n � r + s and set

V g(λ) ⊗ V g(μ) =
⊕
ν∈Pn

V g(ν)
⊕dν

λ,μ .

Then the coefficients dν
λ,μ neither depend on the rank n of g nor on its type B, C or D. Moreover we have

dν
λ,μ =

∑
ξ,σ ,τ

cλ
ξ,σ cμ

ξ,τ cν
σ ,τ .

Remarks. (i) The previous proposition implies the decompositions ssp

λ × ssp
μ = ∑

ν∈P dν
λ,μs

sp
ν and

sso
λ × sso

μ = ∑
ν∈P dν

λ,μs
so
ν for any λ,μ ∈ P , in the ring Λ.

(ii) The analogous result for g = gln is well known: the outer multiplicities cν
λ,μ appearing in the

decomposition of V gln (λ) ⊗ V gln (μ) do not depend on n provided n � r + s.

3. Plethysms and stabilized plethysms

3.1. Plethysms on the Weyl characters

Consider f ∈ Λ and sg

λ the Weyl character for g associated to λ ∈ Pn . Set sg

λ = ∑
β∈Zn aβ xβ . As

in the case of ordinary plethysms on symmetric functions (see [10, p. 135]), one defines the set of
variables yi such that∏

i

(1 + tyi) =
∏
β

(
1 + txβ

)aβ
.

Then the plethysm of the Weyl character sg

λ by the symmetric function f is defined by f ◦ sg

λ =
f (y1, y2, . . .). In the sequel, we will focus on the power sum plethysms ψ� where � is a positive inte-
ger. They are defined from the identity ψ�(sg

λ) = p� ◦ sg

λ = sg

λ(x�
1, . . . , x�

n). In particular, the map ψ� is
linear on Rg . The characters of the symmetric and antisymmetric parts of V g(λ)⊗2 can be expressed
as plethysms by the complete and elementary symmetric functions h2 and e2. More precisely we have

h2 ◦ sg

λ = char
(

S2(V g(λ)
))

and e2 ◦ sg

λ = char
(
Λ2(V g(λ)

))
.

From the identities h2 = 1
2 (p2

1 + p2) and e2 = 1
2 (p2

1 − p2), we derive the relations

h2 ◦ sg

λ = 1

2

((
sg

λ

)2 + ψ2
(
sg

λ

))
and e2 ◦ sg

λ = 1

2

((
sg

λ

)2 − ψ2
(
sg

λ

))
. (10)
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3.2. Stabilized plethysms on the Schur functions

Given (μ(0), . . . ,μ(�−1)) an �-tuple of partitions, we write cλ
(μ(0),...,μ(�−1))

for coefficient of s
gln
λ in

the product s
gln

μ(0) · · · s
gln

μ(�−1) which is independent of n if n is sufficiently large. For any partition λ ∈ Pn ,

the plethysm ψ�(s
gln
λ ) decomposes on the basis of Schur functions on the form

ψ�

(
s
gln
λ

) =
∑

|μ|=�|λ|
ε(μ)cλ

(μ(0),...,μ(�−1))
s
gln
μ . (11)

Here ε(μ) ∈ {−1,0,1} and μ/� = (μ(0), . . . ,μ(�−1)) are respectively the �-sign and the �-quotient of
the partition μ. We now briefly recall the algorithm which permits to obtain the sign ε(μ) and the
�-tuple of partitions μ/�. Our description slightly differs from that which can be usually found in the
literature (see [10, Example 8, p. 12]). This is because we have made our notation consistent with
Section 4.

We now regard μ as an n-terms sequence by supplying an appropriate number of zeroes. Set
ρn = (1,2, . . . ,n) and In = {1,2, . . . ,n}. For any k ∈ {0, . . . , � − 1} consider the ordered sequences in
the increasing order

I(k) = (i ∈ In | μi + i ≡ k mod �) and J (k) = (i ∈ In | i ≡ k mod �).

Set rk = card(I(k)) and write I(k) = (i(k)
1 , . . . , i(k)

rk
).

1. If there exists k ∈ {0, . . . , � − 1} such that card(I(k)) �= card( J (k)) (i.e. the �-core of μ is nontrivial)
then ε(μ) = 0.

2. Otherwise (i.e. the �-core of μ is trivial), let σ0 ∈ Sn be the permutation mapping I(k) to J (k) for
any k = 0, . . . , � − 1. Then we have ε(μ) = ε(σ0) and μ/� = (μ(0), . . . ,μ(�−1)) where

μ(0) =
(

μi + i

�

∣∣∣ i ∈ I(0)

)
− (1,2, . . . , r0) ∈ Z

r0

and for any k ∈ {1, . . . , � − 1}

μ(k) =
(

μi + i + � − k

�

∣∣∣ i ∈ I(k)

)
− (1,2, . . . , rk) ∈ Z

rk . (12)

Remarks. (i) Even in the case where μ has a nontrivial �-core κ , the �-quotient μ/� =
(μ(0), . . . ,μ(�−1)) of μ can also be obtained by the formula in step 2. However, in this case, one
has |μ| − �

∑�−1
k=0 |μ(k)| = |κ | > 0, so that, under the condition |μ| = �|λ| for the summation in (11),

one also has cλ
(μ(0),...,μ(�−1))

= 0.

(ii) Set n = q� + r where q and r are respectively the quotient and the remainder of the divi-
sion of n by �. Then we have card( J (k)) = q + 1 for any k ∈ {1, . . . , r} and card( J (k)) = q for any
k ∈ {0, r + 1, . . . , � − 1}. Hence in (12), we have rk = q + 1 for any k ∈ {1, . . . , r} and rk = q for any
k ∈ {0, r + 1, . . . , � − 1}.

Example 3.2.1. Consider μ = (1,2,3,4,4,4,6,6) and take � = 3. We have μ + ρ8 = (2,4,6,8,9,

10,13,14). Thus I(0) = (3,5), I(1) = (2,6,7), I(2) = (1,4,8) and J (0) = (3,6), J (1) = (1,4,7),
J (2) = (2,5,8). Then μ(0) = (1,1), μ(1) = (1,2,2) and μ(2) = (0,1,2). Moreover

σ0 =
(

1 2 3 4 5 6 7 8
2 1 3 5 6 4 7 8

)
.

Hence ε(μ) = −1.

Proposition 3.2.2. Consider μ ∈ Pn such that ε(μ) �= 0 and set μ/� = (μ(0), . . . ,μ(�−1)). Let ν ∈ Pn+1 be
the partition obtained by adding in μ a part 0. Then ε(ν) = ε(μ) and we have ν/� = (ν(0), . . . , ν(�−1)) where
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ν(0) = μ(�−1) , ν(k) = μ(k−1) for any k ∈ {2, . . . , � − 1} and ν(1) = (0,μ(0)) is obtained by adding a part 0
in μ(0) . On the other hand, if μ ∈ Pn is such that ε(μ) = 0, then we have ε(ν) = 0 where ν = (0,μ).

Proof. Let us slightly abuse the notation and write I(k)(μ), J (k)(μ), I(k)(ν), J (k)(ν), k = 0, . . . , � − 1,
for the sequences defined from μ and ν by applying the previous procedure. Then, we have{

I(1)(ν) = {1} ∪ (
I(0)(μ) + 1

)
, I(0)(ν) = (

I(�−1)(μ) + 1
)
,

I(k)(ν) = (
I(k−1)(μ) + 1

)
for k = 2, . . . , � − 1.

(13)

Here by (I(k−1)(μ)+ 1), we mean the sequence obtained by adding 1 to the integers of I(k−1)(μ). We
have also In+1 = {1} ∪ (In + 1). This gives{

J (1)(ν) = {1} ∪ (
J (0)(μ) + 1

)
, J (0)(ν) = (

J (�−1)(μ) + 1
)
,

J (k)(ν) = (
J (k−1)(μ) + 1

)
for k = 2, . . . , � − 1.

(14)

Set n = q�+ r as in the previous remark. We will assume that r �= �−1 so that q and r +1 are respec-
tively the quotient and the remainder of the division of n + 1 by �. The case r = � − 1 is similar. We
have then card( J (k)(μ)) = card(I(k)(μ)) = q + 1 for k ∈ {1, . . . , r} and card( J (k)(μ)) = card(I(k)(μ)) = q
for k ∈ {0, r + 1, . . . , � − 1}. By (13) and (14), this implies that card( J (k)(ν)) = card(I(k)(ν)) = q + 1
for k ∈ {1, . . . , r + 1} and card( J (k)(ν)) = card(I(k)(ν)) = q for k ∈ {0, r + 2, . . . , � − 1}. Thus ε(ν) �= 0.
Let us write σ0(μ) and σ0(ν) for the elements of Sn and Sn+1 described in the algorithm above
such that ε(μ) = ε(σ0(μ)) and ε(ν) = ε(σ0(ν)), respectively. We have σ0(ν)(1) = 1 and for any
k = 2, . . . ,n+1, σ0(ν)(k) = σ0(μ)(k −1)+1. Thus ε(μ) = ε(ν). We then easily deduce ν(0), . . . , ν(�−1)

from (12) and (13). �
Remarks. (i) The decomposition (11) does not depend on the rank n considered provided n � �l(λ).
In fact, we have a�,gl

λ,μ = a
�,gln
λ,μ for such an n. Indeed, it follows easily from Proposition 3.2.2 that

a
�,gln
λ,μ = ε(μ)cλ

(μ(0),...,μ(�−1))
does not depend on n so long as n � max{l(μ), l(λ)}: if n � l(λ), Propo-

sition 3.2.2 implies that ε(μ) is not modified when parts equal to 0 are added to μ; moreover if
ε(μ) �= 0, the partitions μ(k) , k ∈ {0, . . . , �−1}, are also not modified up to a cyclic shift of the indices
and an adjustment of the number of parts equal to 0. Thus it suffices to show that, under the as-
sumption n � �l(λ), the inequality n � max{l(μ), l(λ)} holds for all μ appearing in (11) with non-zero
coefficients ε(μ)cλ

(μ(0),...,μ(�−1))
. When ε(μ) �= 0 in (11), we must have by classical properties of the

coefficients cλ
(μ(0),...,μ(�−1))

, l(μ(k)) � l(λ) for k = 0, . . . , � − 1. By the previous algorithm, there is an

integer k ∈ {0, . . . , �− 1} such that l(μ) � � · l(μ(k)). Thus l(μ) � � · l(λ) and the assumption n � � · l(λ)

suffices to guarantee that n � max{l(μ), l(λ)}.
(ii) When n � �l(λ), we write for short a�,gl

λ,μ = ε(μ)cλ
(μ(0),...,μ(�−1))

. Then a�,gl

λ,μ �= 0 only if

l(μ) � �l(λ).

Proposition 3.2.3. Consider f ∈ Λ with degree d and λ ∈ Pn. Then the coefficients of the expansion of f ◦ s
gln
λ

on the basis of Schur functions do not depend on n provided n � dl(λ).

Proof. The subspace Λd of polynomials in Λ with degree d is generated by the Newton polynomials
pβ = pβ1 · · · pβk , such that βi ∈ N and β1 + · · · + βk = d. So it suffices to prove the proposition for

f = pβ . Since, the map g �→ g ◦ s
gln
λ is a ring homomorphism from Λ to Λn , we have pβ ◦ s

gln
λ =

pβ1 ◦ s
gln
λ × · · · × pβk ◦ s

gln
λ . By Remark (i) above, the expansion of pβi ◦ s

gln
λ stabilizes for n � βil(λ)

and makes appear Schur functions indexed by partitions with no more than βil(λ) non-zero parts.
Using classical properties of the Littlewood–Richardson coefficients, we obtain that the decomposition
of pβ ◦ s

gln
λ involves Schur functions associated to partitions with at most

∑k
i=1 βil(λ) = dl(λ) non-zero

parts and stabilizes for n � dl(λ). �
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3.3. Stabilized plethysms on the Weyl characters

Lemma 3.3.1. Consider λ a partition, � a positive integer and g an orthogonal or symplectic Lie algebra with
rank n.

• The coefficients of the expansion of the plethysm p� ◦ sg

λ on the basis of Weyl characters do not depend
on n provided n � �l(λ).

• In this case, these coefficients coincide for g = so2n+1 and g = so2n.
• For any n � �l(λ), set

p� ◦ ssoN
λ =

∑
μ∈Pn

a�,so

λ,μ ssoN
μ and p� ◦ s

sp2n
λ =

∑
μ∈Pn

a�,sp

λ,μ s
sp2n
μ .

We have

a�,so

λ,μ =
∑

ν∈Pm, |ν|�|λ|
(−1)

|λ|−|ν|
2

∑
δ∈P , |δ|=�|ν|

rso
λ,νa�,gl

ν,δ bso
δ,μ,

a�,sp

λ,μ =
∑

ν∈Pm, |ν|�|λ|
(−1)

|λ|−|ν|
2

∑
δ∈P , |δ|=�|ν|

rsp

λ,νa�,gl

ν,δ bsp

δ,μ.

Proof. We have n � �l(λ). Hence, the decomposition ssoN
λ = ∑

ν∈Pm, |ν|�|λ|(−1)
|λ|−|ν|

2 rso
λ,νrsoN (sglN

ν )

holds. Since ψ� and rsoN commute, this gives

p� ◦ ssoN
λ =

∑
ν∈Pm, |ν|�|λ|

(−1)
|λ|−|ν|

2
∑

δ∈P , |δ|=�|ν|
rso
λ,νa�,gl

ν,δ rsoN
(
sglN
δ

)
=

∑
μ∈Pn

∑
ν∈Pm, |ν|�|λ|

(−1)
|λ|−|ν|

2
∑

δ∈P , |δ|=�|ν|
rso
λ,νa�,gl

ν,δ bso
δ,μssoN

μ .

Indeed, we have l(δ) � �l(ν) � �l(λ) � n, thus rsoN (sglN
δ ) = ∑

u bso
δ,μssoN

μ . This yields the desired ex-

pression for the coefficients a�,so

λ,μ . In particular they do not depend on n and coincide for g = so2n+1

and g = so2n . The proof is similar for g = sp2n . �
Proposition 3.3.2. Consider f ∈ Λ with degree d and λ ∈ Pn. Then the coefficients of the expansion of f ◦ sg

λ

on the basis of Weyl characters do not depend on n provided n � dl(λ). In this case, these coefficients coincide
for g = so2n+1 and g = so2n.

Proof. The proposition follows from Lemma 3.3.1 by similar arguments to those of Proposi-
tion 3.2.3. �

Observe that we have

rg ◦ ψ� = ψ� ◦ rg

for g = so2n+1, sp2n and so2n where ψ� is an operator on Λ in the left-hand side whereas ψ� is an
operator on Rg on the right-hand side. According to the previous lemma, we have then the decom-
positions

p� ◦ sgl

λ =
∑
μ

a�,gl

λ,μs
gl
μ , p� ◦ ssp

λ =
∑
μ

a�,sp

λ,μ ssp
μ and p� ◦ sso

λ =
∑
μ

a�,so

λ,μ sso
μ .

We shall need in Section 4.5 the following lemma:
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Lemma 3.3.3. Consider f ∈ Λ and λ ∈ P . Then

• ω( f ◦ sg

λ) = f ◦ ω(sg

λ) if |λ| is even,

• ω( f ◦ sg

λ) = ω( f ) ◦ ω(sg

λ) if |λ| is odd.

Proof. From Example 1 of [10, p. 136] we have for any positive integer �, ω(p� ◦ g) = p� ◦ ω(g)

if g is homogeneous of even degree and ω(p� ◦ g) = ω(p�) ◦ω(g) if g is homogeneous of odd degree.
Since ψ� is linear, this shows that ω(p� ◦sg

λ) = p� ◦ω(sg

λ) if |λ| is even and ω(p� ◦sg

λ) = ω(p�)◦ω(sg

λ)

if |λ| is odd. Indeed, according to (6), sg

λ is a sum of homogeneous functions of degrees equal to |λ|
modulo 2. The lemma then follows since the maps ω and f �→ f ◦ sg

λ are ring homomorphisms
of Λ. �
Remarks. (i) Since ω(p�) = (−1)�−1 p� , one has by the previous lemma a�,sp

λ,μ = a�,so

λ′,μ′ if |λ| is even

and a�,sp

λ,μ = (−1)�−1a�,so

λ′,μ′ otherwise. This can also be verified by using the explicit formulas of
Lemma 3.3.1.

(ii) The coefficients a�,so

λ,μ are rather complicated to compute by using formulas of Lemma 3.3.1. We
are going to see in the following section that they coincide with branching coefficients corresponding
to restriction to certain Levi subgroups.

4. Power sum plethysms for Weyl characters of type Bn

4.1. Statement of the theorem

In Theorem 3.2.8 of [6], we have described an algorithm for computing the plethysms p� ◦ s
so2n+1
λ

for any positive integer � and any rank n. It notably permits to show that the decomposition of
p� ◦ s

so2n+1
λ on the basis of Weyl characters makes appear branching coefficients corresponding to the

restriction to a Levi subgroup of so2n+1. Surprisingly, similar algorithms for sp2n and so2n only exist
when � is odd. In particular, the coefficients of the decomposition of p� ◦ s

sp2n
λ and p� ◦ sso2n

λ on the
basis of Weyl characters are not branching coefficients in general when � is even. As we are going to
see, this is nevertheless the case for the stabilized forms of these plethysms.

Theorems 3.2.8 and 3.2.10 of [6] can be reformulated as follows:

Theorem 4.1.1. For any partition λ ∈ Pn and any positive integer � we have

p� ◦ s
so2n+1
λ =

∑
μ∈Pn

ε(μ)
[
V so2n+1(λ) : V g�,μ (γ�,μ)

]
s
so2n+1
μ (15)

where

• ε(μ) ∈ {−1,0,1},
• g�,μ is the Lie algebra of a Levi subgroup G�,μ of SO2n+1 ,
• γ�,μ is a dominant weight for G�,μ .

Moreover, ε(μ), G�,μ and γ�,μ are determined from μ and � by an algorithm which can be regarded as an
analogue in type Bn of the computation of the �-quotient μ/�.

We now recall the algorithm which permits to determinate ε(μ), G�,μ and γ�,μ in the above
theorem. Set

Jn = {n, . . . ,1,1, . . . ,n} and Ln = {n − 1, . . . ,1,0,1, . . . ,n}.
Let η be the bijection from Jn to Ln defined by η(x) = x + 1 if x < 0 and η(x) = x otherwise. For
each element w ∈ W (the Weyl group of so2n+1), denote by w̃ the bijection from Jn to Ln defined by
w̃ = η ◦ w . This means that w̃(x) = w(x) if w(x) > 0 and w̃(x) = w(x) + 1 if w(x) < 0. In particular
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w is determined by w̃ . For any x ∈ Ln , set x∗ = x + 1. The map x �→ x∗ is involutive from Ln to itself.
Since w(x) = w(x), we have also

w̃(x) = w̃(x)∗. (16)

Hence, w̃ is determined by the images of any subset Un ⊂ Jn such that card(Un) = n and x ∈ Un

implies x /∈ Un .
For any k = 1, . . . , � set

I(k) = (i ∈ In | μi + i ≡ k mod �) and J (k) = (x ∈ Ln | x ≡ k mod �). (17)

Note that ( J (k))∗ = J (l−k+1) . We also we keep the notation In = {1,2, . . . ,n} and ρn = (1, . . . ,n) from
Section 3.2.3.

Remark. Set n = q� + r where q and r are respectively the quotient and the remainder of the division
of n by �. Then we have

card
(

J (k)
) =

{
2q for r + 1 � k � � − r
2q + 1 otherwise

when r <
�

2
,

card
(

J (k)
) =

{
2q + 2 for � − r + 1 � k � r
2q + 1 otherwise

when r >
�

2
,

card
(

J (k)
) = 2q + 1 for any k ∈ {1, . . . , �} when r = �

2
. (18)

4.2. The even case � = 2p

For any k = 1, . . . , p, set sk = card(I(k)), rk = card(I(k)) + card(I(�−k+1)) and define X (k) as the
increasing reordering of I(k) ∪ I(�−k+1) . Set

X (k) = (
i(k)
1 , . . . , i(k)

rk

)
. (19)

1. If there exists k ∈ {1, . . . , p} such that card(X (k)) �= card( J (k)) then ε(μ) = 0.
2. Otherwise we have card( J (�−k+1)) = card( J (k)) = rk since ( J (k))∗ = J (l−k+1) . Let w0 be the

unique element of W such that w̃0 maps X (k) to J (l−k+1) for any k = 1, . . . , p. Define αk =
1
�
(max J (k) − k). For any k = 1, . . . , p, consider μ(k) ∈ P̃rk defined by

μ(k) =
(

sign(i)
μ|i| + |i| + sign(i)k − 1+sign(i)

2

�

∣∣∣ i ∈ X (k)

)
− (1, . . . , rk) + (αk + 1, . . . ,αk + 1). (20)

Remark. With q and r as in (18), we can write for any k = 1, . . . , p

αk =
{

q − 1 for r + 1 � k � p
q for k � r

when r <
�

2
,

αk = q for any k ∈ {1, . . . , p} when r � �

2
.

Note also that in step 2, rk ∈ {2q,2q + 1,2q + 2} according to (18).
We have then with the above notation:

ε(μ) = ε(w0), G�,μ = GLr1 × · · · × GLrp and γ�,μ = (
μ(1), . . . ,μ(p)

) ∈ P+
G�,μ

.

Example 4.2.1. Put n = 6, � = 2 (thus p = 1) and consider μ = (2,5,5,6,7,9). Then ρ6 =
(1,2,3,4,5,6) and μ + ρ6 = (3,7,8,10,12,15). Hence I(2) = (3,4,5) and I(1) = (1,2,6). Moreover
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J (1) = (5,3,1,1,3,5) and J (2) = (4,2,0,2,4,6). Then w̃0 sends X (1) = (6,2,1,3,4,5) on J (2) . This
gives

w̃0 =
(

6 5 4 3 2 1 1 2 3 4 5 6
4 5 3 1 2 0 1 3 2 4 6 5

)
by using (16). Hence

w0 =
(

6 5 4 3 2 1 1 2 3 4 5 6
5 6 4 2 3 1 1 3 2 4 6 5

)
.

We have ε(μ) = 1, α1 = 2 and γ�,μ = (μ(1)) where

μ(1) = (−7,−3,−1,4,5,6) − (1,2,3,4,5,6) + (3,3,3,3,3,3) = (−5,−2,−1,3,3,3).

Observe that G�,μ 
 GL6.

4.3. The odd case � = 2p + 1

In addition to the sets X (k) , k = 1, . . . , p, defined in (19), we have also to consider I(p+1) . Set
rp+1 = card(I(p+1)) and write I(p+1) = (i(p+1)

1 , . . . , i(p+1)
rp+1 ). Observe that ( J (p+1))∗ = J (p+1) . Let X (p+1)

be the increasing reordering of I(p+1) ∪ I(p+1) .

1. If card(I(p+1)) �= 1
2 card( J (p+1)) or if there exists k ∈ {1, . . . , p} such that card(X (k)) �= card( J (k))

then ε(μ) = 0.
2. Otherwise, we have card( J (p+1)) = 2 card(I(p+1)) = 2rp+1. Let w0 be the unique element of W

mapping X (k) to J (l−k+1) for any k = 1, . . . , p and X (p+1) to J (p+1) . Define

μ(p+1) =
(

μi + i + p

�

∣∣∣ i ∈ I(p+1)

)
− (1, . . . , rp+1) ∈ Prp+1

and for any k = 1, . . . , p, μ(k) as in the even case. Set I = {I(p+1), X (1), . . . , X (p)}. We have then
with the above notation

ε(μ) = ε(w0), G�,μ = GLr1 × · · · × GLrp × SO2rp+1+1 and

γ�,μ = (
μ(p+1),μ(1), . . . ,μ(p)

) ∈ P+
G�,μ

.

Remark. With q and r as in (18), we have when ε(μ) �= 0 is satisfied rp+1 = 1
2 card( J (p+1)) = q if

r � p and rp+1 = q + 1 when r � p + 1.

Example 4.3.1. Put n = 6, � = 3 (thus p = 1) and consider μ = (1,5,5,6,7,9). We have μ + ρ6 =
(2,7,8,10,12,15). Thus I(1) = (2,4), I(2) = (1,3), I3 = (5,6). This gives X (1) = (4,2,5,6) and X (2) =
(3,1,1,3). Moreover, J (1) = (5,2,1,4), J (2) = (4,1,2,5) and J (3) = (3,0,3,6). In particular α1 = 1.
Then

μ(1) =
(

−10 − 1

3
− 1 + 2,−7 − 1

3
− 2 + 2,

12

3
− 3 + 2,

15

3
− 4 + 2

)
= (−2,−2,3,3)

and μ(2) = ( 2+1
3 − 1, 8+1

3 − 2) = (0,1). By using (16), one obtains

w̃0 =
(

6 5 4 3 2 1 1 2 3 4 5 6
5 2 3 4 0 1 2 1 5 4 3 6

)
.

Hence

w0 =
(

6 5 4 3 2 1 1 2 3 4 5 6
6 3 4 5 1 2 2 1 5 4 3 6

)
and ε(μ) = 1. We have G�,μ 
 GL4 × SO5.
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4.4. The stabilization phenomenon

We begin this paragraph with further remarks:

Remarks. (i) Suppose ε(μ) �= 0. In the even case, we have G�,μ = GLr1 × · · · × GLrp . In n is odd and
n � p + 1, G�,μ is not a direct product of linear groups since G�,μ = · · · × SO2rp+1+1 due to remark in
Section 4.3.

(ii) When � = 2, we have always card(X (1)) = n = card( J (2)). Hence ε(μ) �= 0 for all partitions μ.
Observe that it does not mean that the expansion (15) is infinite. In fact all but a finite number
of the branching coefficients [V so2n+1(λ) : V g�,μ (γ�,μ)] vanishes in this situation. Indeed, we have
G�,μ 
 GLn in this case. Thus the coefficient of s

so2n+1
μ is not equal to zero if and only if V gln (γ�,μ) is

isomorphic to an irreducible component of the restriction of V so2n+1(λ) to GLn . Since the number of
such components is finite and the map μ �→ γ�,μ is injective, the expansion (15) is finite.

(iii) We have seen that the non-zero parts of the �-quotient μ/� does not depend on the number
of zero parts in μ (see Proposition 3.2.2). This notably implies the stability of the coefficients a�,gl

λ,μ .

The situation is more subtle for the coefficients a�,so

λ,μ . Indeed, the dominant weights γ�,μ given by the
previous algorithm do not stabilize in general when the number of zero parts in μ increases. Let us
consider for example μ = (1,5,5,6,9) and � = 2. By adding parts 0 to μ, we obtain successively for
the dominant weights

(−1,2,4,4,5), (−5,−4,−4,−2,−2,1), (−1,2,2,2,4,4,5), etc. (21)

This is not incompatible with Proposition 3.3.2 which asserts that ψ�(s
so2n+1
μ ) stabilizes in large rank.

In fact, this only means that, when no assumption is made on the size of n, there can exist non-zero
coefficients a

�,so2n+1
λ,μ in the decomposition

ψ�

(
s
so2n+1
λ

) =
∑

μ∈Pn

a
�,so2n+1
λ,μ s

so2n+1
μ

such that a�,so

λ,μ = 0. In the rest of this paragraph, we are going to see that the dominant weights μ for

which γ�,μ do not stabilize are such that a�,so

λ,μ = 0, that is their contribution to ψ�(s
so2n+1
λ ) vanishes

in large rank. Moreover, we are going to characterize precisely these weights.

Suppose first � = 2p is even. Consider μ ∈ Pm such that ε(μ) �= 0. Set γ�,μ = (μ(1), . . . ,μ(p)).
Write ν for the partition of Pm+� obtained by adding � parts 0 in μ. For any k ∈ {1, . . . , p}, set μ(k) =
(μ

(k)
− ,μ

(k)
+ ) where μ

(k)
− (respectively μ

(k)
+ ) is the sequence formed by the sk leftmost (respectively

rk − sk rightmost) components of μ(k) (see Section 4.2 for the notation).

Lemma 4.4.1. We have ε(ν) = ε(μ). Moreover if we set γ�,ν = (ν(1), . . . , ν(p)), we obtain

ν(k) = (
μ

(k)
− ,αk + 1 − sk,αk + 1 − sk,μ

(k)
+

)
for any k ∈ {1, . . . , p}, that is ν(k) is obtained by inserting in μ(k) two components equal to αk + 1 − sk. In
particular

|γ�,ν | = |γ�,μ| + 2
p∑

k=1

|αk + 1 − sk|. (22)

Proof. Let us slightly abuse the notation by writing I(k)(μ), J (k)(μ), I(k)(ν), J (k)(ν), k = 1, . . . , �, and
X (k)(μ), X (k)(ν), k = 1, . . . , p, for the sequences defined from μ and ν by applying the procedure of
Section 4.2. We define αk(μ) and αk(ν), k = 1, . . . , p, similarly. We have I(k)(ν) = {k} ∪ (I(k)(μ) + �)

for k = 1, . . . , �. We have also for k = 1, . . . , � − 1, J (k)(ν) = {k} ∪ {k − �} ∪ t J (k)(ν) where t J (k)(ν) is
obtained by adding � to the positive integers of J (k)(ν) and −� to the integers less or equal to 0.
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Similarly, J (�)(ν) = {�} ∪ {0} ∪ t J (�)(ν). In all cases, this implies that card( J (k)(ν)) = card( J (k)(μ)) + 2
and αk(ν) = αk(μ) + 1 for any k ∈ {1, . . . , �}. Thus card(X (k)(ν)) = card( J (k)(ν)) for any k ∈ {1, . . . , p}
and we have ε(ν) = ε(μ). So it makes sense to consider γ�,ν = (ν(1), . . . , ν(p)). It then follows by
a direct application of the formulas (20) that

ν(k) = (
μ

(k)
− ,αk + 1 − sk,αk + 1 − sk,μ

(k)
+

)
and thus |γ�,ν | = |γ�,μ| + 2

∑p
k=1 |αk + 1 − sk|. �

When � = 2p + 1 is odd and γ�,μ = (μ(1), . . . ,μ(p),μ(p+1), we can define ν similarly. Then, one
proves that ε(ν) = ε(μ). We have γ�,ν = (ν(1), . . . , ν(p), ν(p+1)) with

ν(k) = (
μ

(k)
− ,αk + 1 − sk,αk + 1 − sk,μ

(k)
+

)
for any k = 1, . . . , p (23)

and ν(p+1) = (0,μ(p+1)). Hence (22) still holds. With the notation of Sections 4.2 and 4.3, we obtain
the following stabilization theorem:

Theorem 4.4.2. Consider μ a partition such that ε(μ) �= 0. Let � be a positive integer. Then for any partition λ

1. a�,so

λ,μ �= 0 only if sk = αk + 1 for any k = 1, . . . , p.

2. In this case we have a�,so

λ,μ = ε(μ)[V so2n+1(λ) : V g�,μ (γ�,μ)] and this coefficient does not depend on the
number of parts 0 in λ and μ.

Proof. Suppose there exists k ∈ {1, . . . , p} such that sk �= αk + 1. Write μ(a) for the partition obtained
by adding a� components 0 to μ. By (22), we have then |γ�,μ(a)| � |γ�,μ| + 2a. Thus, for a suffi-
ciently large, one has |γ�,μ(a)| > |λ|. For such a, we will obtain [V so2n+1(λ) : V g�,μ (γ�,μ)] = 0. Hence

ε(μ)[V so2n+1 (λ) : V g�,μ (γ�,μ)] does not coincide with a non-zero coefficient a�,so

λ,μ . When sk = αk + 1

for any k = 1, . . . , p, we obtain from (23) that a�,so

λ,μ = a�,so

(0�,λ),(0�,μ)
. Since the coefficients a�,so

λ,μ must

stabilize by Lemma 3.3.1, this implies that a�,so

λ,μ = a�,so

(0a,λ),(0a,μ) for any nonnegative integer a. �
Remarks. (i) There exist efficient recursive procedures to compute the branching coefficients
[V so2n+1 (λ) : V g�,μ (γ�,μ)] (see [2]). By the previous theorem, they permit to derive the coeffi-

cients a�,so

λ,μ .
(ii) One can check that condition 1 of Theorem 4.4.2 is satisfied in Example 4.2.1 but fails in (21)

where s1 = 1 and α1 = 2.
(iii) Assume that αk + 1 = sk for all k and put μ(k) = (

μi+i+(�−k)
�

| i ∈ I(k)) − (1, . . . , sk). We have
then for 1 � k � p, μ(k) = [μ(k),μ(�−k+1)] in the notation [γ −, γ +] of (1) and μ(p+1) = μ(p+1) if � is
odd. The effect of enlarging n by one and considering ν = (0,μ) will be ν(1) = (0,μ(�)), ν(k) = μ(k−1)

for 2 � k � � as in the type A case in terms of the μ(k) , but in terms of the μ(k) . This gives

γ�,μ = ([
μ(1),μ(�)

]
,
[
μ(2),μ(�−1)

]
, . . . ,

[
μ(p),μ(�−p+1)

]
,μ(p+1)

)
,

γ�,ν = ([(
0,μ(�)

)
,μ(�−1)

]
,
[
μ(1),μ(�−2)

]
, . . . ,

[
μ(p−1),μ(�−p)

]
,μ(p)

)
where the rightmost component appears only when � is odd. By using the decomposition of the
branching coefficients γ�,μ = [V so2n+1(λ) : V g�,μ (γ�,μ)] and γ�,ν = [V so2n+1(λ) : V g�,ν (γ�,ν)] in terms
of the Littlewood–Richardson coefficients obtained in Theorems A1 (1) and (3) of [5], one can then
prove the equality γ�,μ = γ�,ν . This notably means that the use of Lemma 3.3.1 in the proof of The-
orem 4.4.2 is not properly needed. The stabilization phenomenon emerges in fact naturally from the
algorithms of Sections 4.2 and 4.3.
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4.5. Coefficients a�
λ,μ and restriction to Levi subgroups

By combining the results of Sections 3 and 4 we derive the following theorem which ex-
presses a�,so

λ,μ and a�,sp

λ,μ as branching coefficients corresponding to restrictions to Levi subgroups.

Theorem 4.5.1. Consider λ ∈ Pm and � a positive integer. Let g be a symplectic or orthogonal Lie algebra with
rank n. Then we have:

1. a�,so

λ,μ = ε(μ)[V so2n+1(λ) : V g�,μ (γ�,μ)] for any n � �l(λ) where ε(μ), g�,μ and γ�,μ are determined by
the algorithms of Section 4,

2. a�,sp

λ,μ = ε(μ′)[V so2n+1(λ′) : V g�,μ′ (γ�,μ′ )] for any n � �l(λ′) if |λ| is even, and

3. a�,sp

λ,μ = (−1)�−1ε(μ′)[V so2n+1(λ′) : V g�,μ′ (γ�,μ′ )] for any n � �l(λ′) if |λ| is odd.

Proof. Assertion 1 follows from Proposition 3.3.2 and Theorem 4.1.1. By remark following Lemma 3.3.3,
one has a�,sp

λ,μ = a�,so

λ′,μ′ if |λ| is even and a�,sp

λ,μ = (−1)�−1a�,so

λ′,μ′ otherwise which proves assertion 2. �
In the sequel, we will assume for simplicity � � 2 and n � max(�l(λ), �l(λ′)).

5. Splitting V g(λ)⊗2 into its symmetric and antisymmetric parts

5.1. Decomposition of the plethysms p2 ◦ sg

λ

Consider a partition λ ∈ Pm . According to Theorem 4.5.1, we have with the notation of Sections 3.2
and 3.3

p2 ◦ s
gln
λ =

∑
μ∈Pn

ε(μ)cλ
(μ(0),μ(1))

s
gln
μ ,

p2 ◦ sso
λ =

∑
μ∈Pn

ε(μ)
[
V so2n+1 (λ) : V gln (γμ)

]
sso
μ and p2 ◦ ssp

λ = (−1)|λ| p2 ◦ sso
λ′ (24)

for any n � 2|λ|. Here we have written for short γμ for γ2,μ and V gln (γμ) instead of V g2,μ (γμ) (see
Remark (ii) of Section 4.4). Since n � m and γμ = (γ −, γ +) belongs to P̃n we have the following
decomposition (see [2]):[

V so2n+1(λ) : V gln (γμ)
] =

∑
δ,ξ∈Pn

cλ
δ,ξ cξ

γ −,γ + . (25)

5.2. Symmetric and antisymmetric parts of V g(λ)⊗2

Consider λ ∈ Pm . By Propositions 3.2.3 and 3.3.2, for any rank n � 2|λ| the plethysms h2 ◦ sg

λ and
e2 ◦ sg

λ stabilize. Set

h2 ◦ sg

λ =
∑

μ∈Pn

mG,+
λ,μ sg

μ and e2 ◦ sg

λ =
∑

μ∈Pn

mG,−
λ,μ sg

μ

where G = gl, so or sp respectively when g = gln, soN or sp2n . Recall that h2 ◦ sg

λ and e2 ◦ sg

λ are the
characters of S2(V g(λ)) and Λ2(V g(λ)). By using (10) and Theorem 4.5.1, we obtain for any rank
n � 2|λ|

mgl,±
λ,μ = 1

2

(
cμ
λ,λ,±ε(μ)cλ

(μ(0),μ(1))

)
,

mso,±
λ,μ = 1

2

(
dμ

λ,λ,±ε(μ)
[
V so2n+1 (λ) : V gln (γμ)

])
,

msp,±
λ,μ = 1 (

dμ′
λ′,λ′ ,±(−1)|λ|ε(μ′)

[
V so2n+1(λ′) : V gln (γμ′ )

])

2
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where the coefficients dμ
λ,λ are the multiplicities appearing in Proposition 2.2.2. Observe that the val-

ues of ε(μ) appearing in (10) and Theorem 4.5.1 may not coincide. Now these multiplicities can be
expressed in terms of the Littlewood coefficients [1]. Namely we have dμ

λ,λ = ∑
δ,ξ,η cμ

δ,ξ cλ
δ,ηcλ

ξ,η . In

particular we recover the equality dμ′
λ′,λ′ = dμ

λ,λ since cγ
δ,η = cγ ′

δ′,η′ for any partitions δ, η and γ . By
using (25), this thus permits to express the multiplicities appearing in the symmetric and antisym-
metric parts of V g(λ)⊗2 in terms of the Littlewood–Richardson coefficients. Note that formulas for
computing the plethysms h2 ◦ sg

λ and e2 ◦ sg

λ were introduced without a complete proof by Littlewood
in [9].

Proposition 5.2.1. With the above notation we have for any rank n � 2|λ|

mgl,±
λ,μ = 1

2

(
cμ
λ,λ ± ε(μ)cλ

(μ(0),μ(1))

)
,

mso,±
λ,μ = 1

2

( ∑
δ,ξ,η∈Pn

cμ
δ,ξ cλ

δ,ηcλ
ξ,η ± ε(μ)

∑
δ,ξ∈Pn

cλ
δ,ξ cξ

γ −,γ +

)
,

msp,±
λ,μ = 1

2

( ∑
δ,ξ,η∈Pn

cμ
δ,ξ cλ

δ,ηcλ
ξ,η ± (−1)|λ|ε(μ′)

∑
δ,ξ∈Pn

cλ′
δ,ξ cξ

κ−,κ+

)
where γμ = (γ −, γ +) and γμ′ = (κ−, κ+).
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