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We develop an exactly solvable generalization of the Soft Wall holographic model for the vector mesons.
The generalization preserves the ultraviolet and infrared asymptotics of the Soft Wall model and contains
an additional free parameter. This new parameter provides an arbitrary intercept in the Regge like
spectrum of radial excitations and leads to a substantial modification of asymptotic expansion of the
vector correlator at large momentum. The matching to the Operator Product Expansion from QCD allows
to estimate the value of the new parameter which is shown to be in a good agreement with the
phenomenology. In addition, the mass splitting between the vector and axial mesons arises naturally
via the opposite sign of the introduced contribution to the intercept.

© 2013 Elsevier B.V. Open access under CC BY license.
1. Introduction

One of spectacular manifestations of confinement in QCD is the
expected Regge behavior of meson spectrum in the light quark
sector, both in the spin and in the radial directions. Traditionally
the related phenomenology was discussed in terms of the effective
strings or dual amplitudes. The story has taken an interesting turn
with the appearance of the Soft Wall (SW) holographic model for
the strongly coupled QCD [1] which was inspired by the ideas of
the gauge/gravity correspondence in the string theory [2–4]. Since
the SW model provided a seminal theoretical setup for various ap-
plications, many authors proposed different modifications of the
SW model with the aim of improving it or extending its applicabil-
ity. We mention a few of them. The relation of the SW model and
the light-front QCD was studied in Ref. [5]. The revealed mapping
of one approach onto the other leads to interesting consequences
concerning the hadron formfactors and the dependence of hadron
mass spectrum on the orbital quantum number. The authors of
Ref. [6] showed how to incorporate the chiral symmetry break-
ing in the SW model in a way consistent with QCD and with the
known phenomenology. The two versions of the SW model with a
positive and negative dilaton profile for both mesons and baryons
of arbitrary spin were scrutinized in Ref. [7]. The SW model with
the ultraviolet cutoff was analyzed in Ref. [8]. An incomplete list
of the most recent developments is given in Ref. [9].

In the original SW model, the intercept of linear in mass
squared trajectories of radially excited states is fixed. Naive at-
tempts to change it spoil the ultraviolet asymptotics of the model,
as a result the analytical behavior of correlation functions becomes
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strongly inconsistent with QCD. Namely, expanding the two-point
correlators at large Euclidean momentum generically there appear
an infinite number of terms which are absent in the standard Op-
erator Product Expansion (OPE). In the present Letter, we show
how to introduce an arbitrary intercept in a self-consistent way.
The resulting model preserves the ultraviolet and infrared asymp-
totics of the original SW model and the number of unwanted terms
in the OPE is reduced from infinity to one. We do not introduce
any further modifications. Such a SW model with arbitrary inter-
cept is referred to as generalized SW model. The arbitrary intercept
entails some important theoretical and phenomenological conse-
quences which will be analyzed.

The outline of this Letter is as follows. The scheme of the vector
SW model is briefly reminded in Section 2. In Section 3, we derive
our generalization of this model. The two-point correlator and its
high-momentum expansion are calculated in Section 4. Section 5
contains numerical fits and estimations. Section 6 provides further
phenomenological discussions. We conclude in Section 7.

2. Soft Wall model

In this section, we remind the reader the basic aspects of the
SW holographic model [1]. For the sake of simplicity we will con-
sider the simplest Abelian version of this model that is defined by
the 5D action

S =
∫

d4x dz
√

g e−az2
(

− 1

4g2
5

F MN F MN
)

, (1)

where g = |det gMN |, F MN = ∂M V N − ∂N V M , M, N = 0,1,2,3,4, in
the AdS background space whose metrics can be parametrized as

gMN dxM dxN = R2

2

(
ημν dxμ dxν − dz2). (2)
z

https://core.ac.uk/display/82581501?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.physletb.2013.01.055
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
mailto:afonin@hep.phys.spbu.ru
http://dx.doi.org/10.1016/j.physletb.2013.01.055
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


400 S.S. Afonin / Physics Letters B 719 (2013) 399–403
Here ημν = diag(1,−1,−1,−1), R denotes the AdS radius, and
z > 0 is the holographic coordinate having the physical sense
of inverse energy scale. The boundary z = 0 represents the 4D
Minkowski space.

The gauge invariance of the action (1) permits to choose the
axial gauge, V z = 0, in which the equation of motion is simplified.
The spectrum mn of the physical vector mesons emerges from the
Kaluza–Klein decomposition of the field Vμ ,

Vμ(x, z) =
∞∑

n=0

V (n)
μ (x)vn(z). (3)

For calculating the mass spectrum one should find the normaliz-
able solutions of the equation of motion for the 4D Fourier trans-
form V T

μ(q, z) of the transverse components (∂μV T
μ = 0). The nor-

malizable eigenfunctions vn(z) exist only for discrete values of 4D
momentum q2

n = m2
n . The corresponding equation that follows from

the action (1) reads as follows

∂z

(
e−az2

z
∂z vn

)
+ m2

n
e−az2

z
vn = 0. (4)

This is a typical Sturm–Liouville problem. It is convenient to make
the substitution

vn = √
zeaz2/2ψn, (5)

which transforms Eq. (4) into a Schrödinger equation

−ψ ′′
n + V (z)ψn = m2

nψn, (6)

V (z) = a2z2 + 3

4z2
, (7)

where the prime stays for ∂z . The eigenvalues of Eq. (6) yield the
mass spectrum of the model

m2
n = 4|a|(n + 1). (8)

Although the spectrum (8) does not depend on the sign of a, the
choice a < 0 leads to unphysical zero mode [10]. For this reason
we will assume a > 0 in what follows.

In a more general situation (for other spins) the potential (7)
has two additional parameters

V (z) = a2z2 + m2 − 1/4

z2
+ 4ab, (9)

and results in the spectrum

m2
n = 2a(2n + m + 1 + 2b). (10)

3. Generalized Soft Wall model

We wish to derive an exactly solvable generalization of the vec-
tor SW model that has an arbitrary intercept in the mass spectrum,

m2
n = 4a(n + 1 + b). (11)

Our generalization must not spoil neither ultraviolet (UV) nor in-
frared (IR) asymptotics of the original SW model. We are going to
show that this requirement fixes unambiguously the form of the
background in the 5D action.

Let us write the holographic action in the form

S =
∫

d4x dz f 2
(

− 1

4g2
F 2

MN

)
, (12)
5

with the unknown function f (z) to be determined. The conformal
symmetry dictates the following UV asymptotics for this function,

f (z)|z→0 ∼ 1√
z
. (13)

If the condition (13) is satisfied then in the UV limit the action (12)
(written in the covariant form) has a form of the action (1).

The equation for the mass spectrum is

(
f 2 v ′

n

)′ + f 2m2
n vn = 0. (14)

The substitution

vn = ψn

f
(15)

brings Eq. (14) into the form of a Schrödinger equation

−ψ ′′
n + f ′′

f
ψn = m2

nψn. (16)

From (10) it follows that for obtaining a shift in the intercept
the potential f ′′

f must have the form of (9). However, the choice

m2 �= 1 will lead to a wrong UV asymptotics in the vector SW
model. The only possibility is to find the function f from the con-
dition

f ′′

f
= a2z2 + 3

4z2
+ 4ab, (17)

which has the form of Eq. (6) with m2
n replaced by m2

n − 4ab. This
condition ensures the spectrum (11) we are looking for.

Eq. (17) has two solutions – an exponentially decreasing and
an exponentially growing one. To comply with the IR asymp-
totics of the SW model (dictated by the absence of massless mode
and by the correct spectrum for the higher spin mesons [10])
we must select the decreasing solution. Neglecting also the cases
b = −1,−2, . . . (since we do not want to have any massless or
tachyonic modes) the corresponding solution is

f = �(1 + b)
e−az2/2

√
z

U
(
b,0;az2), (18)

where U is the Tricomi confluent hypergeometric function and �

is the Gamma function. We have chosen the normalization f 2

z = 1
at z = 0.

Thus the action of the generalized SW model reads

S =
∫

d4x dz
√

g e−az2
U 2(b,0;az2)(− 1

4g2
5

F MN F MN
)

. (19)

This is our main result. Since U (b,0;0) = �−1(1 + b) = const and
U (b,0;az2) → (az2)−b at z → ∞, the obtained modification of the
5D background does not affect neither UV nor leading IR asymp-
totics. If for some reason one considers the SW model with inverse
dilaton background, a < 0, the argument of the Tricomi function
must be changed to |a|z2 (the function U is complex at negative
argument).

It should be emphasized that the action (19) is purely phe-
nomenological. The obtained background does not necessarily fol-
low from a dynamical solution of Einstein’s equation. The model
can be also regarded as a compact five-dimensional writing of the
planar QCD sum rules in the spirit of Ref. [11].
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4. Vector correlator

The introduction of arbitrary shift in the spectrum brings qual-
itatively new properties to the analytical structure of the correla-
tion functions. Following the standard recipe for the holographic
calculation of the correlators [3,4], first we should find the solu-
tion v(q, z) (q is the 4D momentum) of equation of motion which
is subject to the boundary condition v(q,0) = 1. For the action (19)
the corresponding solution is

v(q, z) = �(1 + b − q̃2)U (b − q̃2,0;az2)

�(1 + b)U (b,0;az2)
, (20)

where the dimensionless momentum has been introduced, q̃2 ≡ q2

4a .
The two-point correlation function of vector currents Jμ ,
∫

d4x eiqx〈 Jμ(x) Jν(0)
〉 = (

qμqν − q2 gμν

)
ΠV

(
q2), (21)

can be expressed via v(q, z) [12,13],

ΠV
(
q2) = R

g2
5

∂z v

q2z

∣∣∣∣
z→0

. (22)

The substitution of (20) to (22) gives the expression

ΠV
(
q2) = R

2g2
5

{
−ψ

(
1 + b − q̃2)

+ b

q̃2

[
ψ

(
1 + b − q̃2) − ψ(1 + b)

]}
, (23)

where ψ denotes the digamma function. Applying the decomposi-
tion

ψ(1 + x) = −
∞∑

n=0

1

x + n + 1
+ const, (24)

we arrive at the spectral representation for the correlator under
consideration,

ΠV
(
q2) = −

∞∑
n=0

F 2
n

q2 − 4a(n + 1 + b)
, (25)

F 2
n = 2aR

g2
5

(
1 − b

n + 1 + b

)
. (26)

The poles of the correlator yield the mass spectrum (11). At b �= 0
the residues (they determine the electromagnetic decay width,
see (34)) acquire a dependence on n. Choosing b < 0 this new fea-
ture allows to mimic a kind of the vector dominance in the case of
the ρ-mesons: The lightest vector state possesses the largest value
of residue. In the next section, we demonstrate that in the vector
sector indeed b < 0.

The expansion of the correlator (23) at large Euclidean momen-
tum Q 2 = −q2 leads to

ΠV |Q 2→∞ = R

2g2
5

{
log

(
4a

Q 2

)
− 4a

Q 2

[
1

2

+ b

(
log

(
4a

Q 2

)
+ 1 − ψ(1 + b)

)]

+ 1

2

(
4a

Q 2

)2(1

6
− b2

)

+ 1
(

4a
2

)3

b

(
b2 − 1

)
+O

(
Q −8)}. (27)
6 Q 2
The expansion (27) can be matched to the Operator Product Ex-
pansion for the vector two-point correlator [14],

Π
(OPE)
V = Nc

24π2
log

(
μ2

ren

Q 2

)
+ αs

24π

〈G2〉
Q 4

− 14παs

9

〈q̄q〉2

Q 6

+O
(

Q −8). (28)

The matching of coefficients in front of the leading logarithm pro-
vides the standard normalization factor,

R

g2
5

= Nc

12π2
. (29)

5. Fits and estimations

In principle, the free parameters of the model – the slope
4a and the (dimensionless) contribution to the intercept b – can
be fixed by matching the O(Q −4) and O(Q −6) terms. For the
typical phenomenological values of the gluon and quark conden-
sates, αs

π 〈G2〉 = (360 MeV)4 and 〈q̄q〉 = −(235 MeV)3, one obtains
4a = (905 MeV)2 and b = 0.046. Taking into account the qualita-
tive character of the model, these estimates look reasonable.

A more conservative point of view on the O(Q −6) term would
be to consider it as non-reliable for numerical fits because of
the asymptotic nature of the expansion. Within the standard SW
model, b = 0, taking a typical phenomenological value for the
slope of meson trajectories [15], 4a ≈ (1.1 GeV)2, the match-
ing of O(Q −4) terms in the expansions (27) and (28) predicts
an unrealistically large value for the gluon condensate, αs

π 〈G2〉 ≈
(440 MeV)4. The parameter b allows to remove this drawback: It
can be fixed from the condition to have a realistic gluon conden-
sate in the expansions (27),

b2 = 1

6
− 2π2 αs

π 〈G2〉
Nc(4a)2

. (30)

Substituting the physical values for the slope and gluon condensate
to the condition (30), we arrive at the estimate

|b| ≈ 0.3. (31)

Below we show that this value is reasonable from the phenomeno-
logical point of view.

To compare the obtained estimate for the intercept parameter
b with the phenomenology we must make a fit of experimental
masses by the linear trajectory. The crucial point here consists
in the choice of data. By construction, the model describes the
isoscalar vector states, i.e. we should consider the ω-mesons in the
vector sector and the f1-mesons in the axial-vector one. Accord-
ing to the Particle Data [16], there are only three well-established
ω-mesons: ω(782), ω(1420), and ω(1650). Taking their masses
from [16] and ascribing them the “radial” quantum numbers n =
0,1,2, we obtain the fit (in GeV2)

m2
ω(n) ≈ 1.1(n + 0.7). (32)

We do not write more accurate numbers because they would ex-
ceed the accuracy of the large-Nc limit – typically about 10%. In
the isoscalar axial-vector sector, there is only one well-established
state f1(1285) (another one, f1(1420), consists mostly of the
strange quarks). The best we can do is to use the non-confirmed
states f1(1970) and f1(2230) [15,16]. We ascribe them the “radial”
quantum numbers n = 2,3 (the state corresponding to n = 1 – the
isoscalar partner of a1(1640) [16] – is not known). This gives the
fit

m2 (n) ≈ 1.1(n + 1.5), (33)
f1
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which should be regarded as a guess. It is quite remarkable that
the slopes in the linear spectra (32) and (33) are approximately
equal.

The spectrum (32) corresponds to b ≈ −0.3 (see (11)) that
perfectly agrees with our estimate (31) from the OPE. The data
on axial-vector mesons seems to predict the opposite sign for b.
A very interesting feature of the generalized SW model is that it
allows the opposite signs of parameter b for the parity partners
provided that the absolute value is the same. In particular, the
value b = 0.3 may be compatible with the future data because it
leads to a spectrum which is (taking into account the experimental
errors) close to the guessed spectrum (33).

An independent estimate for the parameter b comes from the
calculation of electromagnetic decay width of vector mesons,

�V →e+e− = C V
4πα2 F 2

V

3mV
, (34)

where α is the fine structure constant, α = 1
137 , and the quantity

F 2
V is given by (26) combined with (29). The factor C V reflects the

quark content of a given vector meson. Within the quark model,
the amplitude of electromagnetic decay is proportional to the elec-
tric charge in the quark vertex. The quark content of the ρ0-meson

is uū−dd̄√
2

and of the ω-meson is uū+dd̄√
2

. As Q u = 2
3 and Q d = − 1

3

one has �ρ0→e+e− ∼ ( 2
3 + 1

3 )2 = 1 and �ω→e+e− ∼ ( 2
3 − 1

3 )2 = 1
9 .

By definition Cρ = 1, hence Cω = 1
9 . The value of a in (26) follows

from the fit (32), 4a ≈ 1.1 GeV2. Experimentally [16] �ω→e+e− =
0.60 ± 0.02 keV. The electromagnetic decay widths of the excited
ω-mesons (n > 0) and of f1 are not known. Substituting n = 0 and
b = 0 we get �ω→e+e− ≈ 0.4 keV. The observable value is achieved
if b ≈ −0.3 – the same estimate as obtained above.

One can extend the analysis to the isovector case – the ρ
and a1 mesons – by considering the SU(2) Yang–Mills field in
the action (19). If, as usual, the mass spectrum is defined by the
quadratic part of the holographic action, all formulas of the pre-
vious section will be the same. The ensuing numerical fits and
conclusions turn out to be very similar.

6. Discussions

The vector correlator of the SW model contains the O(Q −2)

term in the expansion at large Euclidean momentum. Such a term
is absent in the OPE (28) by virtue of the absence of dim2 lo-
cal gauge-invariant operator in QCD (although there are many
speculations about the phenomenological relevance of dim2 con-
densate [17]). Unfortunately, the generalized SW model cannot
solve this problem because of the logarithm in the numerator of
O(Q −2) term in the expansion (27). More precisely, the prob-
lem can be partly resolved if one eliminates the constant part in
this numerator by fine-tuning the parameter b (this would give

b ≈ −0.24). A possible physical origin of the residual log Q 2

Q 2 term
in the OPE remains however unclear. This problem seems to re-
quire a further modification of the generalized SW model which is
left for future.

The positivity of the O(Q −4) term in the OPE leads to the con-
straint |b| < 1/

√
6 in the expansion (27). In addition, since this

term is universal in the OPE for the vector and axial-vector chan-
nels [14] and depends quadratically on b, one has an intriguing
possibility for a self-consistent mass splitting between the vector
(V ) and axial (A) states: The corresponding spectra have universal
absolute value of b but opposite sign,

m2
V ,A(n) = 4a

(
n + 1 ∓ |b|). (35)
As we have seen in the previous section, this possibility seems to
be indeed realized in Nature with the absolute value |b| ≈ 0.3.

A nonzero value of parameter b generates the O(Q −6) term in
the OPE and this represents a new feature in comparison with the
usual SW model. In the latter, the term O(Q −6) is absent because
the intercept (in units of the slope) is equal to unity. It is well
known [18] that this is one of values of intercept at which the
term O(Q −6) disappears in the OPE of the two-point correlators
saturated by the narrow resonances with linearly rising spectrum.
It is interesting to note that in the model (35), the O(Q −6) term
in the V and A correlators differ by sign only (see Eq. (27)). This
is close to the real OPE where these terms differ by the factor
− 7

11 [14]. In this sense, the opposite sign of b for the V and A

mesons follows from the OPE. The factor − 7
11 can be reproduced

only for different values of b in the V and A sectors. But this
would destroy the universality of O(Q −4) term in the OPE which
is related to the gluon condensate. In view of the asymptotic na-
ture of the OPE, the O(Q −4) term is more reliable than the next
O(Q −6) one. For this reason we prefer to keep the universality
and use the O(Q −6) term for qualitative conclusions at best. In
our generalized SW model, the O(Q −4) term in the OPE fixes the
absolute value of the intercept parameter b and the O(Q −6) term
suggests the opposite sign for the V and A mesons. At the present
stage, we cannot derive the sign for say the V mesons theoreti-
cally. Only the phenomenology tells us that b < 0 for the V mesons
and b > 0 for the A states.

The SW model can be rewritten in an alternative form – re-
defining the vector field V M = eaz2/2 Ṽ M in the action (1) leads
to elimination of exponential background [19] (see also [7]). The
price to pay is the appearance of an effective potential, namely the
z-dependent mass term,

S =
∫

d4x dz
√

g

{
− 1

4g2
5

F̃ MN F̃ MN + a2z4

2R2 g2
5

Ṽ M Ṽ M
}
. (36)

This mass term may be introduced in a gauge-invariant way via
the Higgs mechanism [19]: The action

S =
∫

d4x dz
√

g

{
|DMϕ|2 − m2

ϕϕ2 − 1

4g2
5

F̃ MN F̃ MN
}
, (37)

where DM = ∂M − i Ṽ M and the scalar field ϕ is subjected to the
free equation of motion in the AdS space,

−∂z

(
∂zϕ

z3

)
+ m2

ϕ R2ϕ

z5
= 0, (38)

yields the action (36) if Eq. (38) has the solution ϕ0 ∼ z2, i.e. if
the scalar mass is m2

ϕ R2 = −4. According to the AdS/CFT dictio-

nary [3,4], the scalar mass is given by m2
ϕ R2 = ( − 4), where

 is the canonical dimension of the corresponding scalar operator
in CFT. In the case under consideration, such a scalar field should
be dual to a local QCD operator of dimension two. In the light of
this observation a question appears how the generalized SW model
looks like if we redefine it in a similar way? Making the substitu-
tion V M = eaz2/2U−1(b,0;az2)Ṽ M in the action (19), we obtain

S =
∫

d4x dz
√

g

{
− 1

4g2
5

F̃ MN F̃ MN

+ a2

2R2 g2
5

[
z2 + 2

b

a
− 2U (b − 1,0;az2)

aU (b,0;az2)

]2

Ṽ M Ṽ M
}
. (39)

At b = 0 the action (39) coincides with (36) since U (−1,0;az2) =
az2U (0,0;az2). If we now rewrite (39) in the form of (37), the
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solution for ϕ leads to a z-dependent mass m2
ϕ . The physical inter-

pretation above emerges only in the deep infrared region, z → ∞.
The leading contribution to ϕ0 in this region is ϕ0 ∼ z2 + b that

would correspond to the 5D mass m2
ϕ R2 = − 4z2

z2+b
.

The extension of the SW model to the higher spin (S) mesons
leads to a nice relation m2

n,S = 4a(n + S) [1] which is compat-
ible with other approaches (the Nambu–Goto strings, Veneziano
amplitudes). The background in the action (19) does not lead to
a simple shift in the spectrum for higher S (for the latter pur-
pose one would need a different background for each spin). One
can show that introducing the higher spin states according to the
scheme of Ref. [1], the potential (17) of a Schrödinger equation in
the background (19) becomes

V (z) = a2z2 + 2a(S − 1) + S2 − 1/4

z2

+ 4ab
[
1 + (S − 1)ζ(z)

]
, (40)

where the function ζ(z),

ζ(z) = U (1 + b,1;az2)

U (b,0;az2)
, (41)

behaves as ζ(z → 0) ∼ − log z and ζ(z → ∞) ∼ z−2 in the UV and
IR limits. Consequently the contribution due to nonzero b does not
affect the UV and IR asymptotics of the potential (40). This contri-
bution will cause a slight deviation from linearity of the Regge like
spectrum.

7. Conclusions

We have shown how to introduce an arbitrary intercept to
the linear spectrum of the Soft Wall holographic model in a self-
consistent way. The spectrum of vector states becomes m2

n ∼ n +
1 + b, where n = 0,1,2, . . . and the case b = 0 corresponds to the
usual SW model. The obtained generalization of the SW model re-
mains exactly solvable. The resulting freedom in the choice of the
intercept entails a sizeable modification of the two-point correla-
tor, specifically the residues of meson poles cease to be universal
for all states and a contribution related to the quark condensate
is generated. The latter signifies that the parameter b is related to
the chiral symmetry breaking.

The Operator Product Expansion of two-point vector correlators
dictates the universal value of |b| for the vector and axial-vector
particles but simultaneously indicates that the sign of b must be
different in the vector and axial sectors. This introduces the mass
splitting between the vector and axial particles. The phenomeno-
logical value of the gluon condensate and of the slope of radial
trajectories leads to the estimate |b| ≈ 0.3. We studied the sector
of isoscalar vector states. The value b ≈ −0.3 is in a perfect agree-
ment both with the well-established spectrum of ω-mesons and
with the electromagnetic decay width of the ω(782)-meson. The
value b ≈ 0.3 seems to be compatible with the spectrum of excited
axial f1-mesons which is not yet well-established experimentally.

In view of recent phenomenological applications of the SW
model and attempts to derive it from a more fundamental setup,
its generalization presented in this work may be useful.
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