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Spacetime with general linear vector distortion is introduced. Thus, the torsion and the nonmetricity 
of the affine connection are assumed to be proportional to a vector field (and not its derivatives). The 
resulting two-parameter family of non-Riemannian geometries generalises the conformal Weyl geometry 
and some other interesting special cases. Taking into account the leading nonlinear correction to the 
Einstein–Hilbert action results uniquely in the one-parameter extension of the Starobinsky inflation 
known as the alpha-attractor. The most general quadratic curvature action introduces, in addition to 
the canonical vector kinetic term, novel ghost-free vector-tensor interactions.
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1. Spacetime degrees of freedom

In Einstein’s General theory of Relativity (GR), gravitation is 
interpreted as curving of spacetime geometry, and can be de-
scribed solely in terms of a metric. In addition to a metric structure 
however, a manifold representing a physical spacetime must also 
be endowed with an affine structure that determines the parallel 
transport. Though they coincide in GR, a priori these structures are 
both mathematically and physically independent [19].

Technically this can be formulated simply as the statement that 
the spacetime connection ∇̂ need not be the Levi–Civita connec-
tion ∇ as GR postulates. The ∇ is determined entirely by the 
metric gμν as given by the Christoffel symbols,

�α
βγ = 1

2
gαλ

(
gβλ,α + gαλ,β − gαβ,γ

)
. (1)

This is the unique connection that is covariantly conserved, 
∇α gμν = 0 and symmetric, �α[βγ ] = 0. The metric has D(D + 1)/2
components in a D-dimensional spacetime, whereas the con-
nection has D3 components which are, in principle, completely 
independent degrees of freedom. Out of the D3 components, 
D2(D − 1)/2 reside in the antisymmetric part

T α
βγ ≡ �̂α[βγ ] , (2)
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which is called torsion. The remaining D2(D +1)/2 degrees of free-
dom are encoded in the non-metricity tensor

Q αμν ≡ ∇̂α gμν . (3)

The distortion �̂α
βγ − �α

βγ of the affine structure is the combined 
effect of the torsion and the nonmetricity,

�̂α
βγ = �α

βγ + K α
βγ + Dα

βγ , (4)

where the contortion and the deflection tensors are defined as

K α
βγ = T α

βγ − Tβγ
α − Tγ β

α , (5)

Dα
βγ = 1

2
gαλ

(
Q λβγ − Q βγ λ − Q γ βλ

)
, (6)

respectively [12].

2. Generalising Weyl geometry

The profound idea of gauge symmetry was brought forth within 
a pioneering non-Riemannian extension of the GR framework due 
to Hermann Weyl [23]. In Weyl’s geometry, the metric compatibil-
ity condition is abandoned (while maintaining a symmetric con-
nection) in such a way that the nonmetricity Q μαβ of the connec-
tion ∇̂ is determined by a vector Aμ as follows:

Q μαβ ≡ ∇̂μgαβ = −2Aμgαβ . (7)
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Table 1
Spacetimes with linear vector distortion. The second column indicates the number 
of free parameters.

Geometry # Constraints

General 2 –
Riemann 0 b1 = b2 = b3 = 0
Dilation (Weyl) 0 2b1 − b2 = b3 = 0
Generalised Weyl 1 2b1 − b2 = b3

No dilation 1 b2 = b3

Pure deflection 0 b2 = b3 = 0
SVN [3] 1 b3 = 0
Polar contortion 0 b1 = b2 = b3

(Axial contortion 0 b1 = b2 = b3 = 0, b4 �= 0)

Thus, a gauge symmetry arises because this relation is invariant 
under the (local) conformal transformation of the metric gμν →
e2�(x) gμν when simultaneously the vector is transformed as Aμ →
Aμ −∂μ�(x). The connection coefficients of ∇̂ derived from (7) are

�̂α
βγ = �α

βγ −
(

Aα gβγ − 2A(βδα
γ )

)
, (8)

where the first term represents again the Christoffel symbols (1)
and the expression inside the brackets is the deflection tensor (6). 
The theory obtained by writing the Einstein–Hilbert action in Weyl 
geometry is a trivial extension as the vector field is non-dynamical, 
and theories defined by nonlinear functions of the Einstein–Hilbert 
term turn out to be equivalent to the Palatini- f (R) models. More 
general (Gauss–Bonnet-type) curvature terms however can gener-
ate new dynamical, ghost-free vector-tensor theories [7], see also 
[11].

In this letter we propose a linear vector distortion that gener-
alises the Weyl geometry (8). That is, we consider the most general 
connection that is determined linearly by a vector field Aμ without 
derivatives. The distortion is then given by 3 independent terms1:

�̂α
βγ = �α

βγ − b1 Aα gβγ + b2δ
α
(β Aγ ) + b3δ

α[β Aγ ] . (9)

We see that the original Weyl connection (8) is recovered for b2 =
2b1 = 2 and b3 = 0. One of the parameters in (9) can actually be 
absorbed into the normalization of the vector field, but we will 
leave the three of them to track the effects of each term in the 
following. The torsion (2) and the non-metricity (3) tensors for the 
vector distortion are, respectively,

Q μαβ = (b3 − b2)Aμgαβ + (2b1 − b2 − b3)A(α gβ)μ , (10)

T α
βγ = b3δ

α[β Aγ ] . (11)

Now b1 and b2 contribute only to deflection, while b3 causes 
also contortion. The torsion-free limit of this geometry, given by 
b3 = 0 but general b1 and b2, has been in fact considered earlier 
in Ref. [3] (for other investigations into the nonmetric sector, see 
e.g. [13,4]). Some other special cases are listed in the Table 1.

Amongst them is, as an example, the Weyl–Cartan spacetime 
that arises from adding torsion to the Weyl connection (8). A re-
markable class of geometries is obtained if we set b3 = 2b1 − b2
in (10) so that we also recover the Weyl non-metricity relation 
given in (7). In detail, given b3 = 2b1 − b2, we have ∇μgαβ =
2(b1 − b2)Aμgαβ , which is invariant under the Weyl transforma-
tion gμν → e2�(x) gμν and Aμ → Aμ + ∂μ�(x)/(b1 − b2). This 
presents a whole family of generalised Weyl geometries where the 
gauge connection of the conformal covariant derivative carries also 

1 The axial contortion term b4ε
α

βγμ Ãμ is excluded because it would require that 
the field Ãμ was a pseudovector. Let us mention that adding such a piece would not 
affect our results as the actions considered in this letter would imply Ãμ = 0.
torsion, as seen from (11). Thus, we can introduce the covariant 
derivative Dμgαβ ≡

[
∂μ − 2(b1 − b2)Aμ

]
gαβ , in terms of which 

the connection can be expressed as

�̂
μ
αβ = 1

2
gμλ

(
Dα gλβ + Dβ gαλ − Dλgαβ

)
+ K μ

αβ , (12)

the first piece respecting the conformal invariance, but the contor-
tion,

K μ
αβ = (b2 − 2b1)

(
Aμgαβ − δα

μ Aβ

)
, (13)

in general breaking it, unless 2b1 − b2 = 0 and, hence, the torsion 
vanishes. The Weyl connection (8) is thus the unique conformally 
invariant connection, but the invariance of the non-metricity re-
lation can be retained in a more general Weyl–Cartan spacetime 
given a fixed b3.

Let us return to generic spacetimes described by the connec-
tion (9). The Riemann curvature it generates is given as

Rμνρ
α ≡ ∂ν�̂α

μρ − ∂μ�̂α
νρ + �̂α

νλ�̂
λ
μρ − �̂α

μλ�̂
ν
νρ , (14)

and the corresponding Ricci curvature is just Rμρ ≡ Rμαρ
α . To 

form the scalar (Ricci) curvature we finally need also the metric, 
R ≡ gμνRμν . We find that two extra terms appear due to the 
nontrivial vector geometry:

R = R − β1 A2 + β2∇ · A , (15)

with (setting D = 4 from now on)

β1 ≡ −3

4

[
4b2

1 − 8b1(b2 + b3) + (b2 + b3)
2
]
, (16)

β2 ≡ −3

2
(2b1 + b2 + b3) . (17)

Because of the projective invariance of the Ricci scalar (or, in gen-
eral, of the symmetric part of the Ricci tensor), b2 and b3 only en-
ter in the combination b2 +b3. This is so because such a symmetry 
implies an invariance under the transformation �̂α

μν → �̂α
μν +δα

μξν , 
for an arbitrary vector ξν . This implies that the terms b2 and b3
will give degenerate effects unless the underlying gravitational the-
ory breaks the projective invariance.

3. f (R) actions

From the result (15), we see that the pure Einstein–Hilbert ac-
tion L = M2

pl

√−gR/2 in a spacetime with the linear vector distor-
tion is equivalent to GR because the last term is a total derivative 
and the field equations for the vector field2 imply Aμ = 0. In order 
to obtain nontrivial non-Riemannian dynamics, one needs to con-
sider a more general than the pure Einstein–Hilbert form of the 
action.

A natural starting point is then to take into account higher or-
der curvature corrections that are expected to become relevant 
at high energies. For this purpose, we will consider prototypical 
extension of the Einstein–Hilbert action by including an arbitrary 
dependence upon the Ricci curvature scalar:

S = M2
pl

2

∫
d4x

√−gL , L = f (R) . (18)

2 The mass of the vector vanishes if β1 = 0, and becomes tachyonic for all param-
eter combinations for which β1 < 0. These conditions generalise the result found in 
the torsion-free case, [3], that in our notation states that the mass is non-tachyonic 
if b1 = 2(2 − √

3)b2 < b1 < 2(2 + √
3)b2 when b3 = 0. These conditions can be rel-

evant if one promotes the vector action into the Proca by obtaining the Maxwell 
term from quadratic curvature invariants as in Ref. [7].
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It turns out that even in the presence of vector distortion, the ac-
tions (18) are equivalent to simple scalar-tensor theories. To show 
this let us first rewrite the lagrangian as

L = f (�) − ϕ
(
� − R + β1 A2 − β2∇ · A

)
. (19)

It is easy to see that by plugging the constraint � = R given by 
varying with respect to the lagrange multiplier ϕ , we recover the 
original form (18). Now let us instead vary with respect to the 
fields � and Aμ . We obtain, respectively, that

f ′(�) = ϕ , and Aμ = − β2

2β1ϕ
∂μϕ . (20)

We see that the vector field is a pure gradient determined by ϕ . 
For this to happen, it is important that the derivatives of the vec-
tor field only enter linearly in the action. Had we considered a 
more general connection non-linearly determined by the vector 
field, its equation of motion would have involved derivatives of 
Aμ and, therefore, the above result would no longer be valid. In 
the present case with can then substitute the above equations into 
the lagrangian (19) and, after dropping total derivative terms, we 
obtain the scalar-tensor theory

L = ϕR + β2
2

4β1ϕ
∂μϕ∂μϕ − [ϕ�(ϕ) − f (�(ϕ))] . (21)

The Brans–Dicke coupling parameter is now identified as ωB D =
−β2

2 /4β1, and in the potential of the scalar the �(ϕ) is solved in 
terms of the field ϕ from (20).

In the Riemannian limit we have ωB D → 0, since (18) reduces 
to the metric f (R) theory. On the other hand, the Palatini-form 
of f (R) gravity corresponds (in D = 4) to ωB D = −3/2. Thus, any 
theory (18) in the vector distorted spacetime is equivalent to met-
ric f (R) theory whenever β2 = 0 and equivalent to Palatini- f (R)

theory when β2
2 = 6β1. Interestingly, our generalised Weyl connec-

tion with a conformally invariant metric (in)compatibility condi-
tion (i.e., with b3 = 2b1 − b2) has β2 = −6b1 and β1 = 6b2

1 so 
that it belongs to the former class (notice that the pure Weyl 
connection is a sub-case of these). On the other hand, for these 
generalised Weyl connections, we can only reach the metric f (R)

case for β2 = 0 for b1 = 0 and b3 = −b2. Finally, the non-dilated 
(or “dual Weyl”) pure deflector geometry b2 = b3 = 0 corresponds 
to ωB D = −3/4.

We can further transform the theories (19) into their Einstein 
frame g̃μν = ϕgμν . In terms of the canonical scalar field

φ̃ =
√

3α

2
Mpl logϕ , where α ≡ 1 − β2

2

6β1
, (22)

the Einstein frame action then reads

S =
∫

d4x
√

−g̃

[
M2

pl

2
R̃ − 1

2
g̃μνφ̃,μφ̃,ν − V (φ̃)

]
, (23)

where the potential is given by

V (φ̃) = M2
pl

2ϕ

[
�(ϕ) − f (�(ϕ))

ϕ

]
, (24)

when ϕ is considered as the shorthand for ϕ ≡ e

√
2

3α φ̃/Mpl . The ac-
tion (23) is valid except for Palatini-like theories with β2 = 0, for 
which the kinetic term of (23) should be erased, the theory then 
reducing in vacuum to GR with a cosmological constant.
4. Cosmological inflation

The new features that arise when the higher curvature terms 
become dynamically important could have an impact on the phe-
nomenology of inflation in the very early universe. To study this, 
let us for simplicity study the model defined by taking into account 
only the leading order quadratic correction to Einstein–Hilbert ac-
tion. We then need to introduce a mass scale M for the corrections 
and can write (18) as3

S = M2
pl

2

∫
d4x

√−gL , L = R+ R2

6M2
. (25)

In the Riemannian context (R → R), this theory is well known to 
generate inflation in the early universe, known as the Starobinsky 
model due to the seminal paper that predicted inflation and non-
singular universes from the leading order curvature corrections to 
gravity [20]. We now immediately obtain, using (25) in (21), that 
in the Jordan frame the theory can be written as

L = ϕR + 3

2
(1 − α)∂μϕ∂μϕ − 3

2
M2 (ϕ − 1)2 , (26)

and using (25) in (23), (24) that the Einstein frame theory is de-
fined by the potential

V (φ̃) = 3

4
M2

pl M
2

(
1 − e

−
√

2
3α

φ̃
M pl

)2

. (27)

This defines a one-parameter generalisation of the original
Starobinsky inflationary potential that one recovers in the limit 
α → 1.

The potential (27) turns out to represent the so called
α-attractor parameterisation [15]. That has been argued to de-
scribe generic classes of supergravity-inspired inflationary poten-
tials (wherein the parameter α is inversely proportional to the 
curvature of the Kähler manifold), and a universal attractor be-
haviour, reducing effectively to standard chaotic inflation, has been 
found for various superconformal models in the limit of small α
[15]. We note also that recently, an “auxiliary vector field modified 
gravity” formulation of the α-attractor model was considered [17], 
defined by postulating (15) with β1 = 1 and β2 > 0: our novel geo-
metric framework now provides theoretical underpinnings for such 
an appearance of a vector field (in a somewhat related approach 
[18], the postulate cannot be accommodated).

The inflationary predictions of the models (27) have thus al-
ready been computed. One obtains for the scalar spectrum, its tilt 
and the tensor-to-scalar ratio, respectively,

P = 2α

128π2

(
M

Mpl

)2
(1 − ϕ)4

ϕ2
, (28)

ns = 1 − 8ϕ2 (1 + ϕ)

3α
(
1 − ϕ2

)2
, (29)

r = 64

3α (1 − ϕ)2
, (30)

where we recall that ϕ = e
√

2/(3α)φ̃/Mpl in terms of the canonical 
inflation φ̃ in the Einstein frame. In the limit α 	 N , where N
is the number of e-folds during inflation, these models share the 
“α-attractor” behaviour:

P 
 N2M2

24π2αM2
pl

, ns 
 1 − 2

N
, r 
 12α

N2
, (31)

3 The factor of 6 is included so that M is the mass of the scalaron.
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generalising the well-known result for Starobinsky inflation with 
α = 1 [16,21]. In Ref. [17], the equivalent predictions were com-
pared with observations using the latest measurements of tem-
perature and polarisation maps of the cosmic microwave back-
ground [1], together with other cosmological data, and the results 
implied that the present data is unable to distinguish models with 
α �= 1. The original Starobinsky model fits the data, even with 
N = 50 still one sigma, but there the data allows models with 
more general α too. The upper limit we can presently put on α
is of the order α � 100 if the number of e-folds is considered a 
free parameter.

5. Quadratic actions

The Riemann curvature tensor Rμνρσ of the distorted connec-
tion �̂, defined in (14), does not have all the symmetries of a 
purely metric-generated curvature Rμνρσ . This causes that, besides 
the usual Ricci tensor Rμν = Rμαν

α , the co-Ricci tensor Pμ
ν =

gαβRμαβ
ν and the homothetic curvature tensor Qμν = Rμνα

α

can be considered independent contractions. The most general 
quadratic action thus contains several new combinations:

Sq =
∫

dD x
√−g

[
R2 +Rαβγ δ

(
d1Rαβγ δ + d2Rγ δαβ

− d3Rαβδγ
)

− 4
(

c1RμνRμν + c2RμνRνμ

+Pμν

(
c3Pμν + c4Pνμ − c5Rμν − c6Rνμ

)
+ c7QμνQμν + c8RμνQμν + c9QμνPμν

)]
. (32)

This action reduces to the (topological) Gauss–Bonnet term in the 
limit of vanishing distortion, if we set

d1 + d2 + d3 = c1 + c2 + c3 + c4 + c5 + c6 = 1 . (33)

In general distorted spacetimes, these constraints are not suffi-
cient to guarantee the absence of ghosts instabilities in the theory: 
rewriting the action in terms of the metric curvature Rαβγ δ and 
the vector field Aμ , we would obtain dangerous coupling terms 
such as (∇μ Aμ)2, Rμν∇μ Aν and A2 R . Generalising the analysis of 
quadratic theories in Weyl geometry performed in [7] to the ex-
tended distorted geometry introduced in this letter, we find that a 
necessary and sufficient condition for the absence of ghosts in the 
action (32) with (33), is b3 = 2b1 − b2. Remarkably, this holds re-
gardless of the coupling parameters ci , di , as it solely fixes the 
distortion to correspond precisely to the special one-parameter 
generalisation of Weyl geometry we have already specified earlier. 
In this geometry, the quadratic action (32) can be reduced to the 
interesting vector-tensor theory

Sq =
∫

dD x
√−g

(
R2 − 4Rμν Rμν + Rμνσρ Rμνσρ

− α

4
F 2 − βGμν Aμ Aν + ξ A2∇ · A − λA4

)
. (34)

The first line is the Gauss–Bonnet invariant, and in the second 
line α is some combination of the parameters ci , di , b1, b2 and 
the spacetime dimension D , while β , ξ and λ only depend on 
b1 and D . This is the vector-tensor theory that was also obtained 
within the pure Weyl geometry in [6]. Generalisations of this type 
of theories were subsequently considered in [22,14,2,5]. The dis-
torted geometry can thus motivate new viable vector-tensor theo-
ries. A detailed study of the physical implications of the theories 
(34) in a cosmological context has been carried out in [6]. Let us 
simply mention that (34) has isotropic and stable de Sitter fixed 
points so that Aμ can be used for dark energy and/or inflation-
ary models (we refer to [6] for further cosmological consequences). 
On the other hand, in [7] it was shown that Aμ can also be an 
ideal dark matter candidate. Moreover, the derivative interactions 
present in (34) can realize a screening mechanism à la Vainshtein 
for the vector field. The coupling of the vector field to the Einstein 
tensor was considered in [8] as a possible mechanism to gener-
ate cosmic magnetic fields and more recently black hole solutions 
have been studied in [9]. We also note that in a recent study [10]
several interesting possible cosmological applications of Einstein-
vector theories belonging to the class (34) were suggested. In all 
these examples however, the coupling was introduced without the 
geometric motivation that was the starting point of this letter. All 
this proves the rich phenomenology existing for theories formu-
lated within our new geometrical framework.

6. Discussion

So far we have discussed exclusively the gravitational sec-
tor, but the fundamental issue of matter couplings needs to be 
addressed in any complete theory of gravitation. In the vector 
distorted geometry, the Riemannian minimal coupling principle 
∂ → ∇ is naturally generalised to ∂ → ∇̂ . Nevertheless, it turns out 
that standard matter fields are insensitive to the distortion. This is 
obvious for standard scalar fields, as they do not couple directly to 
the connection. Neither does a vector field Vμ , if its field strength 
is fundamentally considered as the exterior derivative F = dV. On 
the other hand, for fermionic fields ψ , a connection is required to 
construct the covariant derivative Dμψ = (∂μ − 1

4 σab�̂
ab
μ )ψ , where 

�̂ab
μ is the spin connection and σab = [γa, γb]/2 with γa the gamma 

matrices. However, an important property of the Dirac lagrangian

L = i

2

(
ψ̄γ a Daψ − γ a ¯Daψψ

)
(35)

is that it generates coupling only to the completely antisym-
metric part of the connection. Explicitly, the interaction term 
iεabcd�

abcψ̄γ5γ
dψ picks up just the axial torsion. Hence, in our 

set-up, generically matter fields follow the geodesics of the metric 
Levi–Civita connection and immediate conflicts with the precision 
tests of equivalence principle are avoided.

In conclusion, the rich geometric structure that emerges by al-
lowing linear vector distortion accommodates consistent and viable 
theories that can exhibit novel non-Riemannian dynamics if one 
takes into account higher curvature terms or non-minimal cou-
plings to matter. As the first step we considered curvature-squared 
actions, obtaining the α-attractor generalisation of the Starobinsky 
inflation and a class of completely new ghost-free vector theories. 
These findings encourage further explorations into the physics in 
spacetimes with vector distortion, to the end of experimentally 
testing the possible relevance of such geometry in the description 
of our universe.

Acknowledgements

J.B.J. acknowledges the financial support of A*MIDEX project 
(No. ANR-11-IDEX-0001-02) funded by the “Investissements
d’Avenir” French Government program, managed by the French 
National Research Agency (ANR), MINECO (Spain) projects FIS2011-
23000, FIS2014-52837-P and Consolider-Ingenio MULTIDARK
CSD2009-00064.

References

[1] P.A.R. Ade, et al., Planck 2015 results. XX. Constraints on inflation, 2015, 
preprint, http://arxiv.org/abs/1502.02114.

[2] E. Allys, P. Peter, Y. Rodriguez, Generalized Proca action for an Abelian vector 
field, J. Cosmol. Astropart. Phys. 1602 (02) (2016) 004.

http://arxiv.org/abs/1502.02114
http://refhub.elsevier.com/S0370-2693(16)30018-1/bib416C6C79733A32303135736874s1
http://refhub.elsevier.com/S0370-2693(16)30018-1/bib416C6C79733A32303135736874s1


404 J. Beltrán Jiménez, T.S. Koivisto / Physics Letters B 756 (2016) 400–404
[3] A.K. Aringazin, A.L. Mikhailov, Matter fields in spacetime with vector non-
metricity, Class. Quantum Gravity 8 (9) (1991) 1685, http://stacks.iop.org/
0264-9381/8/i=9/a=004.

[4] P. Baekler, N. Boulanger, F.W. Hehl, Linear connections with propagating spin-3 
field in gravity, Phys. Rev. D 74 (2006) 125009.

[5] J. Beltrán Jiménez, L. Heisenberg, Derivative self-interactions for a massive vec-
tor field, 2016, preprint, http://arxiv.org/abs/1602.03410.

[6] J. Beltrán Jiménez, L. Heisenberg, T.S. Koivisto, Cosmology for quadratic gravity 
in generalized Weyl geometry, 2016, preprint, http://arxiv.org/abs/1602.07287.

[7] J. Beltrán Jiménez, T.S. Koivisto, Extended Gauss–Bonnet gravities in Weyl ge-
ometry, Class. Quantum Gravity 31 (2014) 135002.

[8] J. Beltran Jimenez, A.L. Maroto, Dark energy, non-minimal couplings and the 
origin of cosmic magnetic fields, J. Cosmol. Astropart. Phys. 1012 (2010) 025.

[9] J. Chagoya, G. Niz, G. Tasinato, Black holes and Abelian symmetry breaking, 
2016, preprint, http://arxiv.org/abs/1602.08697.

[10] W.-J. Geng, H. Lu, Einstein-vector gravity, emerging gauge symmetry and de 
Sitter bounce, 2015, http://journals.aps.org/prd/abstract/10.1103/PhysRevD.93.
044035.

[11] Z. Haghani, N. Khosravi, S. Shahidi, The Weyl–Cartan Gauss–Bonnet gravity, 
Class. Quantum Gravity 32 (21) (2015) 215016.

[12] F.W. Hehl, P. von der Heyde, G.D. Kerlick, J.M. Nester, General relativity with 
spin and torsion: foundations and prospects, Rev. Mod. Phys. 48 (Jul. 1976) 
393–416, http://link.aps.org/doi/10.1103/RevModPhys.48.393.
[13] C. Heinicke, P. Baekler, F.W. Hehl, Einstein-aether theory, violation of Lorentz 
invariance, and metric-affine gravity, Phys. Rev. D 72 (2005) 025012.

[14] L. Heisenberg, Generalization of the Proca action, J. Cosmol. Astropart. Phys. 
1405 (2014) 015.

[15] R. Kallosh, A. Linde, D. Roest, Superconformal inflationary α-attractors, J. High 
Energy Phys. 11 (2013) 198.

[16] V.F. Mukhanov, G.V. Chibisov, Quantum fluctuations and a nonsingular uni-
verse, ZhETF Pisma Redaktsiiu 33 (May 1981) 549–553.

[17] M. Ozkan, Y. Pang, S. Tsujikawa, Planck constraints on inflation in auxiliary 
vector modified f (R) theories, Phys. Rev. D 92 (2) (2015) 023530.

[18] M. Ozkan, D. Roest, Universality classes of scale invariant inflation, 2015, 
preprint, http://arxiv.org/abs/1507.03603.

[19] E. Schrödinger, Die Struktur der Raum-Zeit (The Structure of Space–Time), 
Wiss. Buchges, Darmstadt, Germany, 1993.

[20] A.A. Starobinsky, A new type of isotropic cosmological models without singu-
larity, Phys. Lett. B 91 (1980) 99–102.

[21] A.A. Starobinsky, The perturbation spectrum evolving from a nonsingular ini-
tially De-Sitter cosmology and the microwave background anisotropy, Sov. As-
tron. Lett. 9 (1983) 302.

[22] G. Tasinato, Cosmic acceleration from Abelian symmetry breaking, J. High En-
ergy Phys. 04 (2014) 067.

[23] H. Weyl, Raum. Zeit. Materie: Vorlesungen über allgemeine relativitätstheorie, 
J. Springer, 1921, https://books.google.ca/books?id=eiVMAAAAMAAJ.

http://stacks.iop.org/0264-9381/8/i=9/a=004
http://stacks.iop.org/0264-9381/8/i=9/a=004
http://refhub.elsevier.com/S0370-2693(16)30018-1/bib4261656B6C65723A323030367677s1
http://refhub.elsevier.com/S0370-2693(16)30018-1/bib4261656B6C65723A323030367677s1
http://arxiv.org/abs/1602.03410
http://arxiv.org/abs/1602.07287
http://refhub.elsevier.com/S0370-2693(16)30018-1/bib4A696D656E657A3A32303134726E61s1
http://refhub.elsevier.com/S0370-2693(16)30018-1/bib4A696D656E657A3A32303134726E61s1
http://refhub.elsevier.com/S0370-2693(16)30018-1/bib42656C7472616E4A696D656E657A3A323031307568s1
http://refhub.elsevier.com/S0370-2693(16)30018-1/bib42656C7472616E4A696D656E657A3A323031307568s1
http://arxiv.org/abs/1602.08697
http://journals.aps.org/prd/abstract/10.1103/PhysRevD.93.044035
http://journals.aps.org/prd/abstract/10.1103/PhysRevD.93.044035
http://refhub.elsevier.com/S0370-2693(16)30018-1/bib48616768616E693A323031347A7261s1
http://refhub.elsevier.com/S0370-2693(16)30018-1/bib48616768616E693A323031347A7261s1
http://link.aps.org/doi/10.1103/RevModPhys.48.393
http://refhub.elsevier.com/S0370-2693(16)30018-1/bib4865696E69636B653A323030356270s1
http://refhub.elsevier.com/S0370-2693(16)30018-1/bib4865696E69636B653A323030356270s1
http://refhub.elsevier.com/S0370-2693(16)30018-1/bib48656973656E626572673A32303134727461s1
http://refhub.elsevier.com/S0370-2693(16)30018-1/bib48656973656E626572673A32303134727461s1
http://refhub.elsevier.com/S0370-2693(16)30018-1/bib4B616C6C6F73683A32303133796F61s1
http://refhub.elsevier.com/S0370-2693(16)30018-1/bib4B616C6C6F73683A32303133796F61s1
http://refhub.elsevier.com/S0370-2693(16)30018-1/bib313938314Ds1
http://refhub.elsevier.com/S0370-2693(16)30018-1/bib313938314Ds1
http://refhub.elsevier.com/S0370-2693(16)30018-1/bib4F7A6B616E3A32303135697661s1
http://refhub.elsevier.com/S0370-2693(16)30018-1/bib4F7A6B616E3A32303135697661s1
http://arxiv.org/abs/1507.03603
http://refhub.elsevier.com/S0370-2693(16)30018-1/bib536368726F64696E6765723A313939333A53525As1
http://refhub.elsevier.com/S0370-2693(16)30018-1/bib536368726F64696E6765723A313939333A53525As1
http://refhub.elsevier.com/S0370-2693(16)30018-1/bib537461726F62696E736B793A313938307465s1
http://refhub.elsevier.com/S0370-2693(16)30018-1/bib537461726F62696E736B793A313938307465s1
http://refhub.elsevier.com/S0370-2693(16)30018-1/bib537461726F62696E736B793A313938337A7As1
http://refhub.elsevier.com/S0370-2693(16)30018-1/bib537461726F62696E736B793A313938337A7As1
http://refhub.elsevier.com/S0370-2693(16)30018-1/bib537461726F62696E736B793A313938337A7As1
http://refhub.elsevier.com/S0370-2693(16)30018-1/bib546173696E61746F3A32303134656B61s1
http://refhub.elsevier.com/S0370-2693(16)30018-1/bib546173696E61746F3A32303134656B61s1
https://books.google.ca/books?id=eiVMAAAAMAAJ

	Spacetimes with vector distortion: Inﬂation from generalised Weyl geometry
	1 Spacetime degrees of freedom
	2 Generalising Weyl geometry
	3 f(R) actions
	4 Cosmological inﬂation
	5 Quadratic actions
	6 Discussion
	Acknowledgements
	References


