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ABSTRACT 

A formula is given for the permanent of a general Cauchy matrix ((xi - yi)- ‘). In 
a special case, where the xi and the yi are the distinct nth roots of 1 and -1 

respectively, a formula for the permanent, conjectured by R. F. Scott, is proved by 
computing the eigenvalues of related circulants. 

1. INTRODUCTION . 

An n-square complex matrix A = (apq) is called a Cauchy matrix if 

p, 9 = I, * *. , n, for some 2n numbers x1,. . .,x,,, yl,. . . , yn. 
Nearly a century ago R. F. Scott [7] gave, without proof, the following 

formula for the permanent of an n x n Cauchy matrix A in which x1,. . . ,x,, 

and yl,. . . , y,, are the distinct roots of X” = 1 and y” = - 1, respectively. He 
asserted that 

pew = n[lx3x5x*.. x(n-2)12/2” ifnisodd, 
(I) 

0 if n is even. 

(See Conjecture 7 in [5].) 
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In this paper I prove that Scott’s equality is essentially correct (except for 
a sign). This is accomplished by actually evaluating the eigenvalues of two 
circulants related to the matrix A, computing their determinants, and using a 
theorem of Rorchardt [l] to obtain the permanent of A. Clearly the value of 
the permanent of A is invariant under any permutation of the xP and of the 
y4. On the other hand, the determinant of A and the eigenvalues of the two 
related circulants depend on the order of the xp and of the ys. We shall 
assume, therefore, that the subscripts are arranged in increasing order of the 
amplitudes of the xr and the y,, in the interval [0,2rr); that is, 

p=l ,...,n, and 

q=l ,. . .,n, where 8= 8”“. The n x n Cauchy matrix whose ( p,q) entry is 

1 
02p-2_ 029-l 

is called the Nan Scott matrix. We shall prove Scott’s formula for this 
matrix (Theorem 4). 

The paper also contains a formula for the permanent of a general Cauchy 
matrix (Theorem 1). 

2. RESULTS 

Let ‘2k.n be the set of sequences of 2k distinct integers (wr.. . . ,a& 
satisfying 

l<w,<7%, t=1,...,2k; 

%- 1 < uzt, t=l,...,k; 

%-l<Wzt+l> t=l,...,k-1. 

THEOREM 1. Let A = (( X~ - yi) - ‘) be an n X n Cuuchy 

per(A) = (- 1)“(“-‘)/2 

mutrix. Then 

k=l UEP~~,, 
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where 

hi= 2 1 - $ A-- i=i,...,n, 
i = 1 xi - xi j=l %-fji 
j#i 

w denotes the sequence (ml,. . .,wzk), and (w;,. . . ,co;_~~) is the sequence 
complementary to win (l,...,n). 

Let A,, be the nxn Scott matrix, and let D=diag(l,82,84,...,02”-2), 
where 8 = e ‘n/n. Then C,, = DA,, is the circulant with the first row 

[ 

1 1 1 1 - - - . . . 
1-e l-e3 l-e5 

I 
I_e2n-1 ’ 

Clearly 

det(C,,) = (- l)“-‘det(A,). 

The eigenvalues of C, are 

t=l ,,. .,n (see, e.g., [4, s. 4.91). 

THEOREM 2. Let C, be the n x n circulant whose first row is 

i 

1 1 1 1 - - - .., 
l-e l-e3 i-85 

I 
l_e2n-l ’ 

8=ei+. Let A l,...,A,, be the g ei envalues of C,, ordered as in (3). Then 

and 

(3) 

t=2,...,n. 
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COROLLARY 1. Zf A,, i.s the n X n Scott matrix, then 

Let B c2) denote the Hadamard product of matrix B = (b ) with itself- 
that is, the matrix whose ( p,q) entry is b2 . We shall relate 
A,, to the determinant of C, via the eterminant of the circulant Cf) = 8 

tF e permanent of 

D2Ac2) Note that n . 

det( Ci2)) =det(Af)). 

The first row of C(‘) is n 

I (1 le )2 
1 1 1 

(l_eS)” (l-05)2 “’ (l_8292 ’ 1 
and therefore the eigenvalues of CL2) are 

~~= i /p(t--l)(k-l) , 

kEl (I-@k-l)2 

t=l,...,n. 

THEOREM 3. Let Cf) be the circulant whose first TOW is 

I 

1 1 1 1 

(1-e)” (1_e3)2 (l_e5)2 *** (l_e2n-1)2 ’ 
i 

0 = ein/n, and let j+,..., p+, be its eigenvalues o&red as in (4). Then 

pL1= -fn(n-2) 

and 

t=2,...,n. 

et-l&= -;n(n--2t+4), 

(4 
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COROLLARY 2. If C,‘2) is the matrix in Theorem 3, then 

l-9 = 6%7 

and 

et-++ = - en-t+3k_t+4, 

t=4,...,n. 

145 

COROLLARY 3. If CL’) is the matrix in Theorem 3, then 

det(Cfjj= gnnf1[lX3X5X.-* X(n-2)12/4” 

r 

if n is odd, 

if n is even. 

We conclude with the main result of the paper, the amended version of 
Scott’s formula (1). 

THEOREM 4. Zf A,, is the n X n Scott matrix, then 

per(A,) = 
(_ qW)P n[lX3X5X.-* X(n-2)]‘/2” if n is odd, 

0 if n is even. 

(5) 

3. PROOFS 

The main tool in proving both Theorem 1 and Theorem 4 is the following 
classical result of Borchardt [l]. 

BORCHARDT'S THEOREM. If A is a Cauchy matrix, then 

per(A)det(A) =det(A”), (6) 

where A(‘) denotes the matrix whose entries are the squares of the corre- 
sponding entries in A. 

For a proof of Borchardt’s theorem see [5, Sec. 1.31. 
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We shall also use the following formula 
determinant of an 71 x n Cauchy matrix A: 

due to Cauchy [2], for the 

TT, 
11 ~xi-x~)z~i(Yi~Yj) 

de@) = (_ 1)“b-‘)/2 i<f 

ff(‘i-Yj) ’ 
(7) 

The proof of (7) is straightforward. Note that if the xi and the yi are distinct, 
then det(A) # 0. 

Proof of Theowm 1. We prove the theorem using Borchardt’s theorem. 
The determinant of A@) is evaluated by a method suggested by Borchardt 

PI: 

det(Ac2)) = ( - 1)” ax ax’n . ax det(A). 
1 2” ” 

(8) 

The formula (8) is obvious. We apply it to the expression in (7). We prove by 
induction that if 

and 

where xi,. . . ,x,,, yr,. . . , y,, are variables, then for any t, 1~ t < n, 

at F F 
ax,.. -=c .dxt G 

t-2k 

jil hi + ‘2’ 
fl h, 

x i=l 

k=l GJEP~~,~ 

ii (%pi-, - GJ2 
i=l 

(9) 
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If t=l, then 

aF 1 --=- 
ax, G G2 

GaF-ac 
ax, ax, 

=+ G&L 

[( j=2 x1-xi 
-FGt 1 

i=l Xl - Yj 
1 
1 

which is (9) with t= 1. In fact, 

3 F 
Fh --=- 

ax, G G ’ 

for any s, 1 <s <n. Now assume that t > 2 and 
that . 

that (9) holds for t- 1, i.e., 

(j-1 F F 
ax,. -7 ..axt_l G 

Then 

r t-2k-1 1 

t-1 [(t--1)/21 

at F a at-l F 
- 

ax,.-ar,G= ax, ax,***ax+,c 
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which clearly equals the right-hand side of (9). We now set t= n in (9), 
obtaining, via (8), a formula for det(Ac2)), which we use together with (7) in 
Borchardt’s theorem to obtain (2). n 

Theorem 4 can be derived, in principle, from Theorem 1 by specifying 

and 

yt,Q2t-’ 3 

t=1,..., n, where 0 = einin. Unfortunately this method is not practicable, 
due to the complexity of the resulting expression. We proceed, therefore, as 
follows. We first obtain the eigenvalues of C, (Theorem 2) and of Ci2) 
(Theorem 3); we then compute the determinants of A,, (Corollary 1) and of 
A:) (Corollary 3), and use Borchardt’s theorem to deduce Theorem 4. 

We require the following key auxiliary result. 

LEMMA. Let t and n be integers, 0 < t <n. Then 

n cos[ (2k- l)ti/n] 

kZ1 l-cos[(2k-1)7r/n] =‘n(n-2t)* (10) 

Proof of the lemma. Use induction on n. If t =O, the left-hand side of 
(10) is 

n 

$, 1-cos[(2:--l)n/n] = f kZicsc 
2 (2k- 1)~ 

2n 

(For the last equality see [3, Series Nos. 441 and 4421.) If t= 1, the series is 

n cos[ (2k- l)m/n] 

kz, l-cos[(2k-l)r/n] =-n+k$i I-cos[(2:-l)n/n] 

= -n+Ln2 2 

=$n(n-2). 
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Now assume that t > 2. Then for any (p, 
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cos trp = 2cos(t-l)gxosg,-cos(t-2)(p 
l-cosp, l-co?+ 

_ 2cosW)cp 2cos(t-l)Ql- 
cos(t-2)qJ 

l-coscp l-coscp . (11) 

If we set 9, = (2k - l)~/n, we get 

5 cos[(2k-l)t+q =2 5 cos[(2k-1).(t-l)a/n] 

k=l l-cos[(2k-1)57/n] k=l l-cos[(2k-1)77/n] 

But (see [3, Series No. 4201) 

2 i: cos( 2k-1)(t-1)~ =sin2n(t-1)~csc (t-l)77 

k=l 
n 

n rv 

= 0. 

Hence, using the induction hypothesis, 

cos[(2k-l)t77/n] 

c l-cos[(2k-1)77/n] 
=2X+n(n-2t+2)-+n(n-2t+4) 

= fn(n-2t). n 

Proof of Th@orem 2. The eigenvalues of the circulant C, are [4, s. 491 

&= k$l “;;‘lm’;;:: > 

t=l , . . . , n, where 8 = e iT/“. Hence 

,,_l~= i  e(t-W-1) 

,+l 1-e2k-’ ’ 
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t=l,...,n. But Ozkml and 02n-2k+1 are conjugate for every k, and it follows 
that 

” cos[(t-l)cpk](l-cosqk)-sin[(t-l)qk]sincpk 

= k?, 2(1-co?+) 
, 

where 93, = (2k - 1)7/n. Therefore, 

ii,=;, 

and for t > 2, 

et-l&,= i cos[(t-1)~]-cos[(t-2)(p,] 

k=l 2(1 -coscp,) 

n = -- 
2’ 

by the lemma. 

Theorem 2 implies that 

det( CJ = fi A, 
t=1 

=e-n(n-1)/2 fJ et-l& 

t=1 

=(_q-‘;( _ ;)“-l 

=jn-1 
n n ( > -E * 

This proves Corollary 1, since det(A,,) = (- l)“-‘det(C,,). 
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Proof of Theorem 3. We have 

et_1k= 2 em--W--l) 

k=l (I-@k-1)2 

= i Re 
/pk-l)(f--1) 

k=l (l_@zk-1)2 

{cos[(t-l)~J-cos[(t-l)~Jcoscp, 

-2sin[(t-l)qk]sinqk-cos[(t-l)pk](l+cosg+)} 

4(1-co& 

where, as before, R = (2k - l)n/n. Hence by the lemma, 

n cos[ -(2k-l)a/n] 

I%= - f nzl l-cos[(2k-1)7r/n] 

= - $(n-2), 

and for t>2, 

n cos[(t-2)(2k-l)a/n] 

et-X=-f kz:, 1-c0s[(2k-1)77/n] 

= - $n(n-2t+4). n 
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Corollary 2 is an immediate consequence of Theorem 3. To prove 
Corokuy 3 we note that if n is odd, then by Corollary 2, 

= (_ q(“-w 

[n(n-2)]zn2('ni;;z[n(n-2t+4)]2) 
t=4 

4" 

=( _ q(~-w n "+'((n-2)(n-4)X*+* X3X1)2 

4" 

Hence if n is odd, 

det( CA2)) = fi H 
t=1 

_pn(n-1)/2 5 et-%, 

t=1 

= 
nn+‘[1X3X5X... X(n-2)12 

4” 7 

since 0 -n(n-1)/2=( - 1)(“-‘)/2 for an odd n. 
If n is even, then by Theorem 3, 

&n+4)/2=@ 

and therefore 

det( Ck2)) =O. 

This concludes the proof of Corollary 3. 

Proofof Theorem 4. Recall that 

det(AJ = (- I)“-‘det(C,) 
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and 

det(Ap)) = det( CA2)). 

Hence by Borchardt’s theorem, 

PerCAn) = 
det(Af)) 

det (A, ) 

=(- ‘I”- 
1 det( CA2)) 

det(C ) * 

n 

If fl is even, then (12) with Corollary 3 gives 

per(A) =O. 

If n is odd, then (12) with Corollaries 1 and 3 yields 

per(A)= “)“-++“;fyy;; e412/4” 
a nn n 

(12) 
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