On a Conjecture of R. F. Scott (1881)

Henryk Minc*
Department of Mathematics
and Institute for Algebra and Combinatorics
University of California
Santa Barbara, California 93106

To Alston S. Householder on his seventy-fifth birthday.

Submitted by Emeric Deutsch

ABSTRACT

A formula is given for the permanent of a general Cauchy matrix $\left(\left(x_{i}-y_{i}\right)^{-1}\right)$. In a special case, where the x_{i} and the y_{j} are the distinct nth roots of 1 and -1 respectively, a formula for the permanent, conjectured by R. F. Scott, is proved by computing the eigenvalues of related circulants.

1. INTRODUCTION

An n-square complex matrix $A=\left(a_{p q}\right)$ is called a Cauchy matrix if

$$
a_{p q}=\frac{1}{x_{p}-y_{q}}
$$

$p, q=1, \ldots, n$, for some $2 n$ numbers $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$.
Nearly a century ago R. F. Scott [7] gave, without proof, the following formula for the permanent of an $n \times n$ Cauchy matrix A in which x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} are the distinct roots of $x^{n}=1$ and $y^{n}=-1$, respectively. He asserted that

$$
\operatorname{per}(A)= \begin{cases}n[1 \times 3 \times 5 \times \cdots \times(n-2)]^{2} / 2^{n} & \text { if } n \text { is odd } \tag{1}\\ 0 & \text { if } n \text { is even }\end{cases}
$$

(See Conjecture 7 in [5].)

[^0]In this paper I prove that Scott's equality is essentially correct (except for a sign). This is accomplished by actually evaluating the eigenvalues of two circulants related to the matrix A, computing their determinants, and using a theorem of Borchardt [1] to obtain the permanent of A. Clearly the value of the permanent of A is invariant under any permutation of the x_{p} and of the y_{q}. On the other hand, the determinant of A and the eigenvalues of the two related circulants depend on the order of the x_{p} and of the y_{q}. We shall assume, therefore, that the subscripts are arranged in increasing order of the amplitudes of the x_{p} and the y_{q}, in the interval $[0,2 \pi)$; that is,

$$
x_{p}=\theta^{2 p-2}
$$

$p=1, \ldots, n$, and

$$
y_{q}=\theta^{2 q-1}
$$

$q=1, \ldots, n$, where $\theta=e^{i \pi / n}$. The $n \times n$ Cauchy matrix whose (p, q) entry is

$$
\frac{1}{\theta^{2 p-2}-\theta^{2 q-1}}
$$

is called the $n \times n$ Scott matrix. We shall prove Scott's formula for this matrix (Theorem 4).

The paper also contains a formula for the permanent of a general Cauchy matrix (Theorem 1).

2. RESULTS

Let $P_{2 k, n}$ be the set of sequences of $2 k$ distinct integers $\left(\omega_{1}, \ldots, \omega_{2 k}\right)$ satisfying

$$
\begin{array}{ll}
1 \leqslant \omega_{t} \leqslant n, & t=1, \ldots, 2 k \\
\omega_{2 t-1}<\omega_{2 t}, & t=1, \ldots, k \\
\omega_{2 t-1}<\omega_{2 t+1}, & t=1, \ldots, k-1
\end{array}
$$

Theorem 1. I.et $A=\left(\left(x_{i}-y_{i}\right)^{-1}\right)$ be an $n \times n$ Cauchy matrix. Then
$\operatorname{per}(A)=(-1)^{n(n-1) / 2}$

$$
\begin{equation*}
\cdot\left[\prod_{i=1}^{n} h_{i}+\sum_{k=1}^{[n / 2]} \sum_{\omega \in P_{2 k, n}} \frac{h_{\omega_{1}^{\prime}} h_{\omega_{2}^{\prime}} \cdots h_{\omega_{n}^{\prime}-2 k}}{\left(x_{\omega_{1}}-x_{\omega_{2}}\right)^{2}\left(x_{\omega_{3}}-x_{\omega_{1}}\right)^{2} \cdots\left(x_{\omega_{2 k-1}}-x_{\omega_{2 k}}\right)^{2}}\right] \tag{2}
\end{equation*}
$$

where

$$
h_{i}=\sum_{\substack{i=1 \\ i \neq i}}^{n} \frac{1}{x_{i}-x_{j}}-\sum_{i=1}^{n} \frac{1}{x_{i}-y_{i}}, \quad i=i, \ldots, n
$$

ω denotes the sequence $\left(\omega_{1}, \ldots, \omega_{2 k}\right)$, and $\left(\omega_{1}^{\prime}, \ldots, \omega_{n-2 k}^{\prime}\right)$ is the sequence complementary to ω in $(1, \ldots, n)$.

Let A_{n} be the $n \times n$ Scott matrix, and let $D=\operatorname{diag}\left(1, \theta^{2}, \theta^{4}, \ldots, \theta^{2 n-2}\right)$, where $\theta=e^{i \pi / n}$. Then $C_{n}=D A_{n}$ is the circulant with the first row

$$
\left[\begin{array}{ccccc}
\frac{1}{1-\theta} & \frac{1}{1-\theta^{3}} & \frac{1}{1-\theta^{5}} & \cdots & \frac{1}{1-\theta^{2 n-1}}
\end{array}\right]
$$

Clearly

$$
\operatorname{det}\left(C_{n}\right)=(-1)^{n-1} \operatorname{det}\left(A_{n}\right)
$$

The eigenvalues of C_{n} are

$$
\begin{equation*}
\lambda_{t}=\sum_{k=1}^{n} \frac{\theta^{2(t-1)(k-1)}}{1-\theta^{2 k-1}} \tag{3}
\end{equation*}
$$

$t=1, \ldots, n$ (see, e.g., [4, s. 4.9]).
Theorem 2. Let C_{n} be the $n \times n$ circulant whose first row is

$$
\left[\begin{array}{cccc}
\frac{1}{1-\theta} & \frac{1}{1-\theta^{3}} & \frac{1}{1-\theta^{5}} & \cdots
\end{array} \frac{1}{1-\theta^{2 n-1}}\right]
$$

$\theta=e^{i \pi / n}$. Let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of C_{n} ordered as in (3). Then

$$
\lambda_{1}=\frac{n}{2},
$$

and

$$
\theta^{t-1} \lambda_{t}=-\frac{n}{2}
$$

$t=2, \ldots, n$.

Corollary 1. If A_{n} is the $n \times n$ Scott matrix, then

$$
\operatorname{det}\left(A_{n}\right)=(-i)^{n-1}\left(\frac{n}{2}\right)^{n}
$$

Let $B^{(2)}$ denote the Hadamard product of matrix $B=\left(b_{p q}\right)$ with itselfthat is, the matrix whose (p, q) entry is $b_{p q}^{2}$. We shall relate the permanent of A_{n} to the determinant of C_{n} via the determinant of the circulant $C_{n}^{(2)}=$ $D^{2} A_{n}^{(2)}$. Note that

$$
\operatorname{det}\left(C_{n}^{(2)}\right)=\operatorname{det}\left(A_{n}^{(2)}\right)
$$

The first row of $C_{n}^{(2)}$ is

$$
\left[\begin{array}{cccc}
\frac{1}{(1-\theta)^{2}} & \frac{1}{\left(1-\theta^{3}\right)^{2}} & \frac{1}{\left(1-\theta^{5}\right)^{2}} & \cdots
\end{array} \frac{1}{\left(1-\theta^{2 n-1}\right)^{2}}\right]
$$

and therefore the eigenvalues of $C_{n}^{(2)}$ are

$$
\begin{equation*}
\mu_{t}=\sum_{k=1}^{n} \frac{\theta^{2(t-1)(k-1)}}{\left(1-\theta^{2 k-1}\right)^{2}}, \tag{4}
\end{equation*}
$$

$t=1, \ldots, n$.

Theorem 3. Let $C_{n}^{(2)}$ be the circulant whose first row is

$$
\left[\begin{array}{ccccc}
\frac{1}{(1-\theta)^{2}} & \frac{1}{\left(1-\theta^{3}\right)^{2}} & \frac{1}{\left(1-\theta^{5}\right)^{2}} & \cdots & \frac{1}{\left(1-\theta^{2 n-1}\right)^{2}}
\end{array}\right]
$$

$\theta=e^{i \pi / n}$, and let μ_{1}, \ldots, μ_{n} be its eigenvalues ordered as in (4). Then

$$
\mu_{1}=-\frac{1}{4} n(n-2)
$$

and

$$
\theta^{t-1} \mu_{t}=-\frac{1}{4} n(n-2 t+4)
$$

$t=2, \ldots, n$.

Corollary 2. If $C_{n}^{(2)}$ is the matrix in Theorem 3, then

$$
\mu_{1}=\theta^{2} \mu_{3}
$$

and

$$
\theta^{t-1} \mu_{t}=-\theta^{n-t+3} \mu_{n-t+4}
$$

$t=4, \ldots, n$.

Corollary 3. If $C_{n}^{(2)}$ is the matrix in Theorem 3, then

$$
\operatorname{det}\left(C_{n}^{(2)}\right)= \begin{cases}n^{n+1}[1 \times 3 \times 5 \times \cdots \times(n-2)]^{2} / 4^{n} & \text { if } n \text { is odd } \\ 0 & \text { if } n \text { is even }\end{cases}
$$

We conclude with the main result of the paper, the amended version of Scott's formula (1).

Theorem 4. If A_{n} is the $n \times n$ Scott matrix, then

$$
\operatorname{per}\left(A_{n}\right)= \begin{cases}(-1)^{(n-1) / 2} n[1 \times 3 \times 5 \times \cdots \times(n-2)]^{2} / 2^{n} & \text { if } n \text { is odd } \tag{5}\\ 0 & \text { if } n \text { is even } .\end{cases}
$$

3. PROOFS

The main tool in proving both Theorem 1 and Theorem 4 is the following classical result of Borchardt [1].

Borchardt's Theorem. If A is a Cauchy matrix, then

$$
\begin{equation*}
\operatorname{per}(A) \operatorname{det}(A)=\operatorname{det}\left(A^{(2)}\right) \tag{6}
\end{equation*}
$$

where $A^{(2)}$ denotes the matrix whose entries are the squares of the corresponding entries in A.

For a proof of Borchardt's theorem see [5, Sec. 1.3].

We shall also use the following formula due to Cauchy [2], for the determinant of an $n \times n$ Cauchy matrix A :

$$
\begin{equation*}
\operatorname{det}(A)=(-1)^{n(n-1) / 2} \frac{\prod_{i<i}\left(x_{i}-x_{i}\right) \prod_{i<j}\left(y_{i}-y_{i}\right)}{\prod_{i, i}\left(x_{i}-y_{i}\right)} \tag{7}
\end{equation*}
$$

The proof of (7) is straightforward. Note that if the x_{i} and the y_{i} are distinct, then $\operatorname{det}(A) \neq 0$.

Proof of Theorem 1. We prove the theorem using Borchardt's theorem. The determinant of $A^{(2)}$ is evaluated by a method suggested by Borchardt [1]:

$$
\begin{equation*}
\operatorname{det}\left(A^{(2)}\right)=(-1)^{n} \frac{\partial^{n}}{\partial x_{1} \partial x_{2} \cdots \partial x_{n}} \operatorname{det}(A) . \tag{8}
\end{equation*}
$$

The formula (8) is obvious. We apply it to the expression in (7). We prove by induction that if

$$
F=\prod_{i<j}\left(x_{i}-x_{i}\right) \prod_{i<j}\left(y_{i}-y_{i}\right)
$$

and

$$
G=\prod_{i, j}\left(x_{i}-y_{j}\right),
$$

where $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$ are variables, then for any $t, 1 \leqslant t \leqslant n$,

$$
\begin{equation*}
\frac{\partial^{t}}{\partial x_{1} \cdots \partial x_{t}} \frac{F}{G}=\frac{F}{G}\left[\prod_{i=1}^{t} h_{i}+\sum_{k=1}^{[t / 2]} \sum_{\omega \in P_{2 k, t}} \frac{\prod_{i=1}^{t-2 k} h_{\omega_{i}}}{\prod_{i=1}^{k}\left(x_{\omega_{2 i-1}}-x_{\omega_{2 i}}\right)^{2}}\right] \tag{9}
\end{equation*}
$$

If $t=1$, then

$$
\begin{aligned}
\frac{\partial}{\partial x_{1}} \frac{F}{G} & =\frac{1}{G^{2}}\left(G \frac{\partial F}{\partial x_{1}}-\frac{\partial G}{\partial x_{1}}\right) \\
& =\frac{1}{G^{2}}\left[\left(G F \sum_{i=2}^{n} \frac{1}{x_{1}-x_{i}}\right)-F G \sum_{i=1}^{n} \frac{1}{x_{1}-y_{i}}\right] \\
& =\frac{F}{G} h_{1}
\end{aligned}
$$

which is (9) with $t=1$. In fact,

$$
\frac{\partial}{\partial x_{s}} \frac{F}{G}=\frac{F}{G} h_{s}
$$

for any $s, 1 \leqslant s \leqslant n$. Now assume that $t \geqslant 2$ and that (9) holds for $t-1$, i.e., that

$$
\frac{\partial^{t-1}}{\partial x_{1} \cdots \partial x_{t-1}} \frac{F}{G}=\frac{F}{G}\left(\prod_{i=1}^{t-1} h_{i}+\sum_{k=1}^{[(t-1) / 2]} \sum_{\omega \in P_{2 k, t-1}} \frac{\prod_{i=1}^{t} h_{\omega_{i}^{\prime}}}{\prod_{i=1}^{k}\left(x_{\omega_{2 i-1}}-x_{\omega_{2 i}}\right)^{2}}\right)
$$

Then

$$
\frac{\partial^{t}}{\partial x_{1} \cdots \partial x_{t}} \frac{F}{G}=\frac{\partial}{\partial x_{t}} \frac{\partial^{t-1}}{\partial x_{1} \cdots \partial x_{t-1}} \frac{F}{G}
$$

$=\frac{F}{G} h_{t}\left(\prod_{i=1}^{t-1} h_{i}+\sum_{k=1}^{[(t-1) / 2]} \sum_{\omega \in P_{2 k, t-1}} \frac{\prod_{i=1}^{t-2 k-1} h_{\omega_{i}^{\prime}}}{\prod_{i=1}^{k}\left(x_{\omega_{2 i-1}}-x_{\omega_{2 i}}\right)^{2}}\right)$
$+\frac{F}{G}\left[\sum_{s=1}^{t-1} \frac{1}{\left(x_{s}-x_{t}\right)^{2}} \prod_{\substack{i=1 \\ i \neq s}}^{t-1} h_{i}+\sum_{k=1}^{[t / 2]-1} \sum_{\omega \in P_{2 k, t-1}} \sum_{s=1}^{t-2 k-1} \frac{1}{\left(x_{\omega_{s}^{\prime}}-x_{t}\right)^{2}} \frac{\prod_{\substack{i=1 \\ i=s}}^{\prod_{i=1}^{k}\left(x_{\omega_{2 i}-1}-x_{\omega_{2 i}}\right)^{2}} h_{\omega_{i}^{\prime}}^{t-2 k-1}}{}\right)$,
which clearly equals the right-hand side of (9). We now set $t=n$ in (9), obtaining, via (8), a formula for $\operatorname{det}\left(A^{(2)}\right)$, which we use together with (7) in Borchardt's theorem to obtain (2).

Theorem 4 can be derived, in principle, from Theorem 1 by specifying

$$
x_{t}=\theta^{2 t-2}
$$

and

$$
y_{t}=\theta^{2 t-1},
$$

$t=1, \ldots, n$, where $\theta=e^{i \pi / n}$. Unfortunately this method is not practicable, due to the complexity of the resulting expression. We proceed, therefore, as follows. We first obtain the eigenvalues of C_{n} (Theorem 2) and of $C_{n}^{(2)}$ (Theorem 3); we then compute the determinants of A_{n} (Corollary 1) and of $A_{n}^{(2)}$ (Corollary 3), and use Borchardt's theorem to deduce Theorem 4.

We require the following key auxiliary result.
Lemma. Let t and n be integers, $0 \leqslant t \leqslant n$. Then

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{\cos [(2 k-1) t \pi / n]}{1-\cos [(2 k-1) \pi / n]}=\frac{1}{2} n(n-2 t) . \tag{10}
\end{equation*}
$$

Proof of the lemma. Use induction on n. If $t=0$, the left-hand side of (10) is

$$
\begin{aligned}
\sum_{k=1}^{n} \frac{1}{1-\cos [(2 k-1) \pi / n]} & =\frac{1}{2} \sum_{k=1}^{n} \csc ^{2} \frac{(2 k-1) \pi}{2 n} \\
& =\frac{1}{2} n^{2} .
\end{aligned}
$$

(For the last equality see [3, Series Nos. 441 and 442].) If $t=1$, the series is

$$
\begin{aligned}
\sum_{k=1}^{n} \frac{\cos [(2 k-1) \pi / n]}{1-\cos [(2 k-1) \pi / n]} & =-n+\sum_{k=1}^{n} \frac{1}{1-\cos [(2 k-1) \pi / n]} \\
& =-n+\frac{1}{2} n^{2} \\
& =\frac{1}{2} n(n-2) .
\end{aligned}
$$

Now assume that $t \geqslant 2$. Then for any φ,

$$
\begin{align*}
\frac{\cos t \varphi}{1-\cos \varphi} & =\frac{2 \cos (t-1) \varphi \cdot \cos \varphi-\cos (t-2) \varphi}{1-\cos \varphi} \\
& =\frac{2 \cos (t-1) \varphi}{1-\cos \varphi}-2 \cos (t-1) \varphi-\frac{\cos (t-2) \varphi}{1-\cos \varphi} \tag{11}
\end{align*}
$$

If we set $\varphi=(2 k-1) \pi / n$, we get

$$
\begin{aligned}
& \sum_{k=1}^{n} \frac{\cos [(2 k-1) t \pi / n]}{1-\cos [(2 k-1) \pi / n]}=2 \sum_{k=1}^{n} \frac{\cos [(2 k-1) \cdot(t-1) \pi / n]}{1-\cos [(2 k-1) \pi / n]} \\
& \quad-2 \sum_{k=1}^{n} \cos [(2 k-1)(t-1) \pi / n]-\sum_{k=1}^{n} \frac{\cos [(2 k-1)(t-2) \pi / n]}{1-\cos [(2 k-1) \pi / n]}
\end{aligned}
$$

But (see [3, Series No. 420])

$$
\begin{aligned}
2 \sum_{k=1}^{n} \cos \frac{(2 k-1)(t-1) \pi}{n} & =\sin \frac{2 n(t-1) \pi}{n} \csc \frac{(t-1) \pi}{n} \\
& =0
\end{aligned}
$$

Hence, using the induction hypothesis,

$$
\begin{aligned}
\sum \frac{\cos [(2 k-1) t \pi / n]}{1-\cos [(2 k-1) \pi / n]} & =2 \times \frac{1}{2} n(n-2 t+2)-\frac{1}{2} n(n-2 t+4) \\
& =\frac{1}{2} n(n-2 t)
\end{aligned}
$$

Proof of Theorem 2. The eigenvalues of the circulant C_{n} are [4, s. 49]

$$
\lambda_{t}=\sum_{k=1}^{n} \frac{\theta^{2(t-1)(k-1)}}{1-\theta^{2 k-1}}
$$

$t=1, \ldots, n$, where $\theta=e^{i \pi / n}$. Hence

$$
\theta^{t-1} \lambda_{t}=\sum_{k=1}^{n} \frac{\theta^{(t-1)(2 k-1)}}{1-\theta^{2 k-1}}
$$

$t=1, \ldots, n$. But $\theta^{2 k-1}$ and $\theta^{2 n-2 k+1}$ are conjugate for every k, and it follows that

$$
\begin{aligned}
\theta^{t-1} \lambda_{t} & =\sum_{k=1}^{n} \operatorname{Re} \frac{\theta^{(t-1)(2 k-1)}}{1-\theta^{2 k-1}} \\
& =\sum_{k=1}^{n} \frac{\cos \left[(t-1) \varphi_{k}\right]\left(1-\cos \varphi_{k}\right)-\sin \left[(t-1) \varphi_{k}\right] \sin \varphi_{k}}{2\left(1-\cos \varphi_{k}\right)}
\end{aligned}
$$

where $\varphi_{k}=(2 k-1) \pi / n$. Therefore,

$$
\lambda_{1}=\frac{n}{2},
$$

and for $t \geqslant 2$,

$$
\begin{aligned}
\theta^{t-1} \lambda_{t} & =\sum_{k=1}^{n} \frac{\cos \left[(t-1) \varphi_{k}\right]-\cos \left[(t-2) \varphi_{k}\right]}{2\left(1-\cos \varphi_{k}\right)} \\
& =\frac{1}{4} n(n-2 t+2)-\frac{1}{4} n(n-2 t+4) \\
& =-\frac{n}{2}
\end{aligned}
$$

by the lemma.
Theorem 2 implies that

$$
\begin{aligned}
\operatorname{det}\left(C_{n}\right) & =\prod_{t=1}^{n} \lambda_{t} \\
& =\theta^{-n(n-1) / 2} \prod_{t=1}^{n} \theta^{t-1} \lambda_{t} \\
& =(-i)^{n-1} \frac{n}{2}\left(-\frac{n}{2}\right)^{n-1} \\
& =i^{n-1}\left(\frac{n}{2}\right)^{n}
\end{aligned}
$$

This proves Corollary I, since $\operatorname{det}\left(A_{n}\right)=(-1)^{n-1} \operatorname{det}\left(C_{n}\right)$.

Proof of Theorem 3. We have

$$
\begin{aligned}
\theta^{t-1} \mu_{t} & =\sum_{k=1}^{n} \frac{\theta^{(2 k-1)(t-1)}}{\left(1-\theta^{2 k-1}\right)^{2}} \\
& =\sum_{k=1}^{n} \operatorname{Re} \frac{\theta^{(2 k-1)(t-1)}}{\left(1-\theta^{2 k-1}\right)^{2}} \\
& =\sum_{k=1}^{n} \operatorname{Re} \frac{\left\{\cos \left[(t-1) \varphi_{k}\right]+i \sin \left[(t-1) \varphi_{k}\right]\right\}\left(1-\cos \varphi_{k}+i \sin \varphi_{k}\right)^{2}}{4\left(1-\cos \varphi_{k}\right)^{2}} \\
& =\sum_{k=1}^{n} \frac{\left\{\cos \left[(t-1) \varphi_{k}\right]-\cos \left[(t-1) \varphi_{k}\right] \cos \varphi_{k}\right.}{\left.-2 \sin \left[(t-1) \varphi_{k}\right] \sin \varphi_{k}-\cos \left[(t-1) \varphi_{k}\right]\left(1+\cos \varphi_{k}\right)\right\}} 4\left(1-\cos \varphi_{k}\right) \\
& =-\sum_{k=1}^{n} \frac{\cos \left[(t-2) \varphi_{k}\right]}{2\left(1-\cos \varphi_{k}\right)},
\end{aligned}
$$

where, as before, $\varphi_{k}=(2 k-1) \pi / n$. Hence by the lemma,

$$
\begin{aligned}
\mu_{1} & =-\frac{1}{2} \sum_{n=1}^{n} \frac{\cos [-(2 k-1) \pi / n]}{1-\cos [(2 k-1) \pi / n]} \\
& =-\frac{1}{4} n(n-2)
\end{aligned}
$$

and for $t \geqslant 2$,

$$
\begin{aligned}
\theta^{t-1} \mu_{t} & =-\frac{1}{2} \sum_{k=1}^{n} \frac{\cos [(t-2)(2 k-1) \pi / n]}{1-\cos [(2 k-1) \pi / n]} \\
& =-\frac{1}{4} n(n-2 t+4)
\end{aligned}
$$

Corollary 2 is an immediate consequence of Theorem 3. To prove Corollary 3 we note that if n is odd, then by Corollary 2,

$$
\begin{aligned}
\prod_{t=1}^{n} \theta^{t-1} \mu_{t} & =\mu_{1}^{2} \cdot \theta \mu_{2} \cdot \prod_{t=4}^{(n+3) / 2}\left[-\left(\theta^{t-1} \mu_{t}\right)^{2}\right] \\
& =(-1)^{(n-1) / 2} \frac{[n(n-2)]^{2} n^{2}\left(\prod_{t=4}^{(n+3) / 2}[n(n-2 t+4)]^{2}\right)}{4^{n}} \\
& =(-1)^{(n-1) / 2} \frac{n^{n+1}((n-2)(n-4) \times \cdots \times 3 \times 1)^{2}}{4^{n}}
\end{aligned}
$$

Hence if n is odd,

$$
\begin{aligned}
\operatorname{det}\left(C_{n}^{(2)}\right) & =\prod_{t=1}^{n} \mu_{t} \\
& =\theta^{-n(n-1) / 2} \prod_{t=1}^{n} \theta^{t-1} \mu_{t} \\
& =\frac{n^{n+1}[1 \times 3 \times 5 \times \cdots \times(n-2)]^{2}}{4^{n}}
\end{aligned}
$$

since $\theta^{-n(n-1) / 2}=(-1)^{(n-1) / 2}$ for an odd n.
If n is even, then by Theorem 3,

$$
\mu_{(n+4) / 2}=0
$$

and therefore

$$
\operatorname{det}\left(C_{n}^{(2)}\right)=0
$$

This concludes the proof of Corollary 3.
Proof of Theorem 4. Recall that

$$
\operatorname{det}\left(A_{n}\right)=(-1)^{n-1} \operatorname{det}\left(C_{n}\right)
$$

and

$$
\operatorname{det}\left(A_{n}^{(2)}\right)=\operatorname{det}\left(C_{n}^{(2)}\right)
$$

Hence by Borchardt's theorem,

$$
\begin{align*}
\operatorname{per}\left(A_{n}\right) & =\frac{\operatorname{det}\left(A_{n}^{(2)}\right)}{\operatorname{det}\left(A_{n}\right)} \\
& =(-1)^{n-1} \frac{\operatorname{det}\left(C_{n}^{(2)}\right)}{\operatorname{det}\left(C_{n}\right)} . \tag{12}
\end{align*}
$$

If n is even, then (12) with Corollary 3 gives

$$
\operatorname{per}(A)=0
$$

If n is odd, then (12) with Corollaries 1 and 3 yields

$$
\begin{aligned}
\operatorname{per}(A) & =\frac{(-1)^{n-1} n^{n+1}[1 \times 3 \times 5 \times \cdots \times(n-2)]^{2} / 4^{n}}{(-i)^{n-1} n^{n} / 2^{n}} \\
& =(-1)^{(n-1) / 2} \frac{n[1 \times 3 \times 5 \cdots \times(n-2)]^{2}}{2^{n}}
\end{aligned}
$$

REFERENCES

1 C. W. Borchardt, Bestimmung der symmetrischen Verbindungen vermittelst ihrer erzeugenden Funktion, Monatsh. Akad. Wiss. Berlin, 1855, pp. 165-171; or Crelle's J. 53:193-198 (1855); or Gesammelte Werke, G. Reimer, Berlin, 1888, pp. 97-105.
2 A. L. Cauchy, Mémoire sur les fonctions alternées et sur les sommes alternées, Exercises d'Analyse et de Phys. Math. 2:151-159 (1841); or Oeuvres Complètes, 2^{e} Sér., XII, Gauthier-Villars, Paris.
3 L. B. W. Jolley, Summation of Series, 2nd ed., Dover Publications New York, 1961.

4 Marvin Marcus and Henryk Minc, A Survey of Matrix Theory and Matrix Inequalities, Allyn and Bacon, Boston, 1964 (Reprinted, Prindle, Weber, \& Schmidt, Boston).
5 Henryk Minc, Permanents, (Encyclopedia of Mathematics and its Applications, Vol. 6) Addison-Wesley, Reading, 1978.
6 Thomas Muir, The Theory of Determinants, Vol. 4, Macmillan and Co., London, 1923 (Reprinted, Dover Publications, New York, 1960).
7 R. F. Scott, Mathematical notes, Messenger of Math. 10:142-149 (1881).
Received 26 September 1978

[^0]: *Research supported by the Air Force Office of Scientific Research under Grant AFOSR F4962078-C-0030.

 LINEAR ALGEBRA AND ITS APPLICATIONS 28:141-153 (1979)

