
C. R. Physique 17 (2016) 113–139
Contents lists available at ScienceDirect

Comptes Rendus Physique

www.sciencedirect.com

Iron-based superconductors / Supraconducteurs à base de fer

Charge nematicity and electronic Raman scattering in 

iron-based superconductors

Nématicité de charge et diffusion Raman électronique dans les 

supraconducteurs au fer

Yann Gallais ∗, Indranil Paul ∗

Laboratoire “Matériaux et Phénomènes quantiques”, Université Paris-Diderot–Paris-7 & CNRS, UMR 7162, 75205 Paris, France

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 10 November 2015

Keywords:
Iron-based superconductors
Raman scattering
Nematicity

Mots-clés :
Supraconducteurs au fer
Diffusion Raman
Nématicité

We review the recent developments in electronic Raman scattering measurements of 
charge nematic fluctuations in iron-based superconductors. A simple theoretical framework 
of a d-wave Pomeranchuk transition is proposed in order to capture the salient features of 
the spectra. We discuss the available Raman data in the normal state of 122 iron-based 
systems, particularly Co-doped BaFe2As2, and we show that the low-energy quasi-elastic 
peak, the extracted nematic susceptibility and the scattering rates are consistent with 
an electronic-driven structural phase transition. In the superconducting state with a full 
gap, the quasi-elastic peak transforms into a finite-frequency nematic resonance, evidences 
for which are particularly strong in the electron-doped systems. A crucial feature of the 
analysis is the fact that the electronic Raman signal is unaffected by the acoustic phonons. 
This makes Raman spectroscopy a unique probe of electronic nematicity.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Nous présentons dans cette revue les mesures de fluctuations de charge nématiques par 
diffusion Raman électronique dans les supraconducteurs au fer. A cadre théorique simple 
d’une transition de Pomeranchuk d’onde d est proposé afin comprendre les spectres Raman. 
Nous discutons ensuite des données Raman publiées dans l’état normal des composés 
122, en particulier BaFe2As2 dopé au Co, et nous montrons que le pic quasi-élastique 
observé, la susceptibilité nématique extraite et le taux de diffusion sont en accord avec 
l’idée d’une transition structurale pilotée par les degrés de liberté électroniques. Dans 
l’état supraconducteur et en l’absence de noeuds dans le gap, le pic quasi-élastique se 
transforme en une résonance nématique à fréquence finie. La signature expérimentale 
de cette résonance nématique est particulièrement claire dans le cas des systèmes dopés 
électron. Un aspect crucial de l’analyse est le fait que la diffusion Raman électronique n’est 
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pas affectée par les phonons acoustiques, faisant de cette technique une sonde unique de 
la nématicité électronique.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The study of correlated phases of matter obtained a big boost with the discovery of the iron-based superconductors 
(Fe SC) in 2008 [1]. These systems are interesting not just because they exhibit superconductivity at temperatures as high 
as 55 K, but also because they are a rich playground where the lattice and the electronic charge, spin, and orbital degrees of 
freedom all play important roles. This complex interplay invariably leads to competition between various interesting phases 
that can be stabilized by varying temperature, by doping carriers, and by applying pressure. Understanding this rich physics 
is a considerable challenge, and consequently the topic continues to be an active area of research in condensed matter 
systems [2,3].

Unlike the cuprate high-temperature superconductors where the parent compounds are Mott insulators, the Fe SC sys-
tems are multi-band and multi-orbital metals at all doping values. The undoped and the lightly doped compounds undergo 
a structural transition from a high-temperature (T > TS) tetragonal unit cell to a low-temperature (T < TS) orthorhom-
bic phase (in the case of Fe1+yTe1−xSex the low-T phase is monoclinic for small x), which is followed in close proximity 
in temperature by a magnetic transition at TN, below which the system is antiferromagnetic. These transitions are sup-
pressed with electron or hole doping, and beyond a certain doping value the system becomes superconducting with an 
unusually high transition temperature TC. Initial investigations of the superconductivity and its origin have focused mainly 
on the interplay between a stripe-like antiferromagnetism (where the magnetic ordering wave-vector is (π, 0) or (0, π)

in the 1Fe/cell notation) and superconductivity. While the issue is not entirely settled, it is popularly believed that the
fluctuations associated with the stripe antiferromagnetism give rise to a s± superconducting pairing symmetry [4–6] in 
most, but possibly not all [7], Fe SC families.

Ever since the reports of strongly anisotropic in-plane transport in the 122 systems [8] in the orthorhombic phase, a lot of 
attention has been given to study the property of nematicity in these materials. A nematic phase of matter is one that breaks 
rotational symmetry spontaneously, while preserving translational symmetry. Such phases have been studied extensively 
since the 1970s in classical soft matter systems [9], but relatively less is known about their quantum counterparts in 
electronic systems. However, their existence has been widely postulated for strongly correlated materials such as quantum 
Hall systems, cuprates, bilayer ruthenates [10], and most recently in the Fe SC. In the presence of a crystalline lattice, 
a nematic phase breaks discrete rotational symmetry, and as a consequence the associated order parameter is an Ising 
variable. In the context of the Fe SC, this order parameter is non-zero in the orthorhombic phase where the C4 symmetry 
of the Fe unit cell is broken at the structural transition TS. Note that, in certain systems, the structural and the magnetic 
transition are simultaneous (TS = TN), and, since the magnetic order by itself breaks C4 symmetry, it is not clear whether 
the nematicity is a mere by-product of the magnetic order. Consequently, the issue of nematicity is more sharply posed for 
those systems where the structural transition precedes the magnetic one (TS > TN), leaving a finite temperature interval 
where C4 symmetry is broken while the system remains paramagnetic [11–14]. The extreme example of this trend appears 
to be FeSe where only a structural transition [15,16] is detected and the system remains paramagnetic down to its SC phase 
[17,18], hinting that nematic degrees of freedom may not be necessarily linked to magnetic ones.

The microscopic origin of the nematic order is currently not known with certainty. One scenario is that the structural 
transition is, in fact, an instability driven by the anharmonic lattice potential, in which case the primary order parameter 
is the lattice orthorhombicity, and the electronic degrees of freedom are secondary order parameters that passively follow 
the symmetry breaking induced by the lattice strain. A second scenario is that the C4 symmetry breaking is driven by 
electronic interactions, in which case the primary order parameter is electronic in origin. Within this picture, one possibility 
is the spin-nematic transition whereby the spins of the two Fe sublattices phase-lock, which breaks C4 symmetry, without 
developing a spontaneous magnetization, i.e., without breaking time reversal symmetry [19–27]. A second possibility is 
ferro-orbital ordering [28–32], where either the occupations or the hopping matrix elements (or both) of the dxz and the 
dyz orbitals of Fe become inequivalent. Besides these two scenarios, other possibilities include a d-wave Pomeranchuk 
instability [33], in which the Fermi surfaces undergo symmetry-breaking distortions due to interaction effects, as well as a 
valley density wave [34].

On the experimental side, initial studies have focused on the strong anisotropy of the electronic properties in the 
orthorhombic C4 symmetry-broken phase. Transport [8,35–39], optical conductivity [40–44], ARPES [45,46], and neutron 
scattering [47–49] (reviewed in a separate contribution to this issue [50]) performed on mechanically detwinned crystals all 
reported considerable electronic anisotropies. While it has been argued that the magnitudes of the measured anisotropies 
are too large to be due to the lattice orthorhombicity (which is 0.4 percent at most), such arguments can be at best 
quantitative, and therefore they do not convincingly rule out the lattice-driven scenario. Furthermore, even within the 
electronic-driven scenario, the above experiments cannot uniquely identify whether the primary order parameter is com-
posed of electronic charge, spin or orbital degrees of freedom [51].

http://creativecommons.org/licenses/by-nc-nd/4.0/
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One difficulty in interpreting the above experiments is that, in the symmetry-broken phase, all the above order param-
eters are non-zero, and consequently it is difficult to identify the one which is most relevant. From this point of view, it 
is desirable to set experiments that measure relevant susceptibilities in the C4 symmetric phase, and search for signatures 
of nematic fluctuations that soften upon approaching TS. One obvious possibility is the measurement of the orthorhombic 
elastic constant that measures the force constant associated with the orthorhombic strain of the lattice [23,52–54]. Such 
studies are reviewed in a separate contribution to this issue [55]. However, note that an elastic constant measurement can-
not, by itself, clearly distinguish between a lattice-driven from an electronic-driven scenario of nematicity. This is because 
an elastic constant measurement is a thermodynamic probe, and therefore, once the interaction between electrons with the 
acoustic phonons is taken into account, in both scenarios one would conclude that there is a softening of the relevant elastic 
constant. Next, in the spin-nematic scenario, the fluctuations of the order parameter (which is a two-spin operator) involve 
a four-spin susceptibility. This poses a technical difficulty because, while NMR and neutron scattering can give crucial in-
formation on the evolution of the spin fluctuation spectrum [47,56–61] and the spin susceptibility at the antiferromagnetic 
wave-vector, they cannot easily access the four-spin susceptibility. This means that, at present there is no direct probe to 
test the fluctuations associated with a spin-nematic order parameter. An alternative way to probe the nematic susceptibility 
was pioneered by Chu et al. [62–64], who were able to extract the nematic component of the elasto-resistivity tensor in the 
tetragonal phase. This was achieved by performing strain dependent measurements of the transport anisotropy. Because the 
method allows a direct extraction of the lattice-free electronic nematic susceptibility, the observed divergence is a strong 
evidence for an electronic-driven structural phase transition. A drawback, however, is the difficulty to associate the extracted 
nematic susceptibility with a microscopic nematic order parameter.

On the other hand, in this review we argue that electronic Raman scattering allows a direct access to the fluctuations of 
the charge nematic order parameter, or equivalently the d-wave Pomeranchuk order parameter. This ability of Raman mea-
surements has been somewhat overlooked in the past, although earlier Raman experiments in underdoped cuprates could 
possibly be interpreted along these lines [65]. We show in this review that Raman experiments in Fe SC give compelling ev-
idences of the presence of nearly-critical charge nematic fluctuations in the tetragonal phase. These experiments also allow 
a direct extraction of the associated nematic susceptibility, which contains information about the incipient phase instability 
involving the purely electronic degrees of freedom. This is because the electronic Raman response is a spectroscopic probe, 
and it is “opaque” to the acoustic phonons in the system. In fact, this property of the electronic Raman response function 
provides a qualitative method to distinguish between lattice-driven versus electronically-driven scenarios of nematicity. It can 
be shown that in the former case the extracted nematic susceptibility from the Raman data should not show any signature 
of softening with lowering temperature. The fact that in Fe SC one does see softening proves conclusively that the nematicity is 
electron-driven rather than lattice-driven. This establishes Raman scattering as a key probe of translation symmetry preserving 
Fermi surface distortions that can be used to investigate other correlated electron systems such as the bilayer ruthenates and 
the cuprates where this kind of instability has been proposed, but not yet confirmed unequivocally from an experimental 
point of view.

This review is divided into two main parts, one theoretical and the other experimental. We start with the theory part, 
which aims at giving a simple framework to understand how Raman scattering can be used to probe the charge nematic 
susceptibility and its associated dynamical fluctuations in an electron system. The approach is quite general, and the main 
features are expected to hold for the case of the Fe SC. In Section 2.1, we consider a generic one-band model with a 
charge nematic or Pomeranchuk instability where the Fermi surface breaks the C4 symmetry. In Section 2.2, we provide 
analytical expressions for its critical fluctuations within the random-phase approximation (RPA). In Section 3.1, we show 
that electronic Raman scattering directly couples with the charge nematic fluctuations, provided the appropriate symmetry 
channel is probed. In the case of the Fe SC, this is the B1g channel (which transforms as (x2 − y2) in the 1Fe/cell notation). 
We show in Section 3.2 that the presence of these nematic fluctuations leads to the emergence of a quasi-elastic peak whose 
linewidth tends to vanish at the incipient pure electronic (i.e., one without lattice coupling) nematic phase transition. We 
further show in Section 3.3 that Raman scattering measurements can access the charge nematic susceptibility, but only in 
the dynamical limit as opposed to the static limit which is relevant for the definition of the thermodynamic phase transition 
involving the C4 symmetry breaking. While these two limits are the same for a pure electronic system, the coupling with 
the lattice induces a key difference between the two limits making Raman scattering measurement essentially blind to the 
linear coupling between the electron-nematic variable and the lattice orthorhombic strain. We conclude the theory part by 
discussing in Section 3.4 some of the additional subtleties associated with the multi-band nature of Fe SC. In particular, we 
point out the existence of different flavors of charge nematicity when the orbital quantum number is taken into account. 
However, Raman measurements cannot distinguish between the various charge nematic order parameters that are possible 
in a multi-orbital environment.

In the experimental part, after reviewing briefly the details of the Raman experiments in Section 4, we discuss the 
observation of charge nematic fluctuations in the tetragonal phase of electron-doped Ba(Fe1−xCoxAs)2. In Section 5.1, we 
focus on the behavior of the extracted charge nematic susceptibility as a function of Co electron doping and temperature. We 
then compare in Section 5.2 Raman results with two other complementary probes of nematic fluctuations in the tetragonal 
state, elastoresistivity and elastic constant measurements, and conclude that all three measurement are consistent with an 
electronic-driven structural phase transition. We briefly comment on the role of disorder in Section 5.3 by comparing Ba122 
and Sr122 systems. In Section 6.1, we discuss the finite frequency spectra of the nematic fluctuations and show that it is 
consistent with expectations from a simple mean-field approach of the nematic phase transition (Section 6.2). We then show 
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Fig. 1. Left: B1g symmetry form factor hk of the Pomeranchuk or charge nematic operator in k-space. Right: associated Fermi surface deformation in a 
one-band model. The original spherical Fermi surface is distorted into an elliptical one in the charge nematic phase.

in Section 6.3 that Raman and shear modulus measurements can be consistently reproduced using a simple Landau-type 
mean-field picture with a linear coupling between charge and lattice nematicity. We conclude this review by addressing the 
fate of nematic fluctuations in the superconducting state (Section 7) and show that they can give rise to a novel collective 
mode, a nematic resonance, near to the nematic quantum critical point. Experiments on electron-doped Fe SC (Co–Ba122 
and Co–Na111) appear to support its existence.

2. Theory: charge nematic instability

In this section, we provide a microscopic description of charge nematic instability triggered by a phenomenologically-
introduced electron–electron interaction.

2.1. Model

We consider a system of interacting electrons on a square lattice, simultaneously scattered by point-like impurity de-
scribed by the Hamiltonian

H = H0 +HI + V (1)

In the above

H0 =
∑
k,σ

εkc†
k,σ ck,σ (2)

is the bare Hamiltonian of a band of electrons with dispersion εk , having lattice momentum k and spin σ as quantum 
numbers, and described by usual creation/annihilation operators (c†

k,σ , ck,σ ). Note that, while the Fe-based superconductors 
(Fe SC) are multi-band systems, here, for the sake of simplicity, we restrict ourselves to a one-band model. Our main goal 
is to discuss certain qualitative physics, rather than quantitative ones, involving Raman spectroscopy near a charge nematic 
transition. We expect the main conclusions of this analysis to remain unchanged for a multi-band environment. Of course, in 
a multi-band system there are inter-band transitions that contribute to the Raman response, which are absent in a one-band 
model. However, typically such inter-band transitions are not related to criticality involving charge nematic transition. The 
latter is essentially a Fermi surface instability, and consequently, its critical fluctuations involve only intraband excitations. 
In Section 3.4, we comment about the additional subtleties associated with nematic instabilities in a multi-orbital and 
multi-band environment.

The interaction between the electrons is described by

HI = − g0

2

∑
q

O n(−q)O n(q) (3)

The operator

O n(q) ≡ 1√
N

∑
k,σ

fk,qc†
k+q,σ ck,σ (4)

where fk,q = (hk + hk+q)/2 with the B1g (or equivalently x2 − y2) form factor hk = cos kx − cos ky , is the Fourier transform 
of the charge nematic operator (see Fig. 1)

O n(ri) = 1 [(
c†

i ci−x̂ + c†
i ci+x̂ + h.c.

)
− x̂ → ŷ

]
(5)
4
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ri is the position of the lattice site i, and N is the total number of sites. In the high-temperature C4-symmetric phase, 
〈O n(ri)〉 = 0, while in the symmetry-broken phase, 〈O n(ri)〉 = δ0, ∀i, implying a charge nematic phase that preserves trans-
lation symmetry but not the discrete π/2 rotational symmetry, such that the hopping matrix elements along x̂ and ŷ are 
inequivalent. This is the lattice version of a Pomeranchuk transition [10,66] where a spherical (or circular in two dimen-
sions) Fermi surface becomes ellipsoidal (or elliptical), and indeed in the following we do not distinguish between the 
names “charge nematic” and “Pomeranchuk”. We take the constant g0 > 0, implying that C4 symmetry-breaking distortions 
of the Fermi surface are energetically favored by the interaction term. This is a pre-requisite for a charge nematic instability, 
at least in weak coupling theories involving random phase approximation.

Evidently, there is non-trivial physics involved in transforming the usual short-range repulsion between the electrons 
into an interaction given by Eq. (3), and in the Fe SC this can be a consequence of spin, charge, or orbital fluctuations [51]. 
(The nature of magnetic interactions and their interplay with orbital degrees of freedom in Fe SC is reviewed in a separate 
contribution to this issue [67].) However, an inquiry into the origin of this interaction is related to the question as to what 
triggers the nematic transition. To the best of our knowledge, this issue is not entirely settled for all the Fe-based systems, 
and is beyond the scope of the current review. Instead, here we adopt a more phenomenological point of view whereby, 
assuming the existence of such a transition, we write down a minimal effective theory that describes the transition and the 
critical phenomenon associated with it. It is in this low-energy effective theory sense that one should understand the above 
interaction term.

The last term,

V = V 0

∑
k,q,σ

c†
k+q,σ ck,σ , (6)

describes scattering of electrons with isotropic point-like impurity potentials. The role of this term is to provide a finite 
lifetime to the electrons. In the following, the impurity term does not affect the description of the charge nematic instability. 
However, the inclusion of finite lifetime is crucial for a meaningful discussion of the Raman response function. In a perfect 
metal, where quasi-particles are infinitely long-lived, the Raman response, involving intra-band particle–hole excitations and 
zero momentum transfer with the photons, vanishes. This is due to the fact that the constraints from energy and momentum 
conservation cannot be satisfied simultaneously. Adding impurity scattering is an effective way to bypass the latter, and to 
take into account the intra-band contribution that is always, in practice, present.

2.2. Instability and critical fluctuations

We first discuss the effect of the impurity scattering. We assume that the impurity potential is weak enough to be 
treated in Born’s approximation. This provides a finite lifetime to the electrons given by

τ−1 = 2πni V 2
0ρ0, (7)

where ni is the impurity concentration, and ρ0 is the density of states at Fermi energy.
Next, we treat the interaction in random phase approximation. The description of the charge nematic instability is facili-

tated by introducing the Hubbard–Stratanovich field φn(q) to decouple the interaction, which can be rewritten as

HI = g0

2

∑
q

[φn(−q)φn(q) + φn(−q)O n(q)] (8)

The second term above describes the interaction between electrons and the Hubbard–Stratanovich field φn(q), which is 
shown graphically in Fig. 2(a). With this rearrangement, the theory is formally quadratic in the fermionic variables, which 
can be integrated out. This leads to the action in terms of the critical variable

S [φn] =
∑
q,iνn

χ−1
n (q, iνn) |φn(q, iνn)|2 , (9)

where χn(q, i νn) is the nematic susceptibility given by

χ−1
n (q, iνn) = g0 [1 − g0�n(q, iνn)] , (10)

with the nematic polarization

�n(q, iνn) = − 2

β

∑
ωn,k

f 2
k,qGk(iωn)Gk+q(iωn + iνn) (11)

In the above β = 1/(kBT ), where kB is the Boltzmann constant, and the factor 2 is due to the summation over the spin 
index. The electron Green’s function is given by

Gk(iωn)
−1 = iωn − εk + i/(2τ ) sgn(ωn) (12)
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Note that, since the impurity potential is isotropic, for symmetry reasons the vertex correction due to impurity scattering 
affects neither the q → 0 limit of χn(q, 0), which controls the charge nematic transition temperature, nor the susceptibility 
χn(0, i νn), which will be relevant when we discuss the Raman response in the next section. Consequently, in the current 
model, the role of the impurity is restricted to providing finite lifetime to the electronic excitations.

It is convenient to divide the frequency and momentum dependencies of the nematic polarization into two parts, namely 
the contributions from the high-energy and the low-energy electrons, such that

�n(q, iνn) = �n(0,0) + �n(q, iνn)high + �n(q, iνn)low (13)

Since we do not expect any singular contribution from the high-energy electrons, the resulting frequency and momentum 
dependence is analytic. To lowest order, we expect

�n(q, iνn)high = c1(q/kF)
2 + c2(νn/EF)

2 (14)

In the above, �n(0, 0) and the coefficients c1,2 depend on the details of the band structure. The charge nematic transition 
takes place when the Stoner criterion

r0 ≡ 1 − g0�n(0,0) = 0 (15)

is satisfied. In general r0, which is related to the nematic correlation length ξn by r0 = (a/ξn)2 with a being the unit cell 
length, is temperature dependent and it decreases as the nematic correlation length increases upon approaching the insta-
bility with lowering temperature. In electron-doped Ba122, it is now known from elastic constant measurements (discussed 
in a separate contribution to this issue [55]) and also from Raman scattering measurements (described later in this review) 
that r0 is linear in temperature over a wide range, i.e.

r0(T ) = r̃0(T − T0), (16)

where T0 is the charge nematic transition temperature.
The low-energy contribution �n(q, i νn)low determines the dynamical properties of the charge nematic fluctuations, and 

its evaluation is quite standard. The εk-integral can be performed by linearizing the electronic dispersion. This gives to 
leading order

�n(q, iνn)low = −iνnρ0

2π∫
0

dθk

2π

h2
k

iSνn − vF q cos(θk − θq)

In the above, Sνn = νn + sgn(νn)/τ , vF is Fermi velocity, and θk is the angle of k measured from one of the two equivalent 
major axes of the unit cell. The angular integral can be performed analytically if we approximate the B1g form factor by 
hk ≈ − cos(2θk). From the angular integral, we get

�n(q, iνn)low = iνnρ0

vFq

[
cos2(2θq)IC(aq,νn)

+ sin2(2θq)IS(aq,νn)
]
, (17)

where aq,νn = [νn + sgn(νn)/τ ]/(vFq),

IC(a) ≡ −
2π∫
0

dθ

2π

cos2 2θ

i a − cos θ

= i(1 + 2a2)

[
(1 + 2a2)√

1 + a2
Sgn(a) − 2a

]
, (18)

and

IS(a) ≡ −
2π∫
0

dθ

2π

sin2 2θ

i a − cos θ

= 2 a i
[

1 + 2a2 − 2 |a|
√

1 + a2
]

(19)

Thus, the overall q-dependence of the nematic polarization is anisotropic, which is eventually a consequence of the form 
factor associated with the nematic variable defined in Eq. (4) [68]. In the above, the ratio aq,νn is large for temporal fluctu-
ations and it is small for spatial fluctuations.

Quasi-static limit, aq,νn 
 1: This limit is relevant for studying the thermodynamic signatures of the charge nematic 
instability. Using the properties
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IC(a → 0) = i sgn(a) − 2 i a,

IS(a → 0) = 2 i a,

we get in this limit

χ−1
n (q, iνn) = g0

[
r0 + c1

q2

k2
F

+ c2
ν2

n

E2
F

+ 2c3
|νn|
vFq

cos2 2θq

− 4 c3
ν2

n

(vF q)2
(1 + (|νn|τ )−1) cos 4θq

]
, (20)

with c3 = g0 ρ0.
Quasi-dynamical limit, aq,νn � 1: This limit is relevant for studying the signatures of the critical mode φn(q) in Raman 

spectroscopy [69]. This is because, in typical Raman scattering experiments, the momentum q given to the electrons by the 
visible photons is negligible compared to the Fermi momentum. Using

IC(a → ∞) = IS(a → ∞) = i/(2a),

we get in this limit

χ−1
n (q, iνn) = g0

[
r0 + c1

q2

k2
F

+ c2
ν2

n

E2
F

+ c3
|νn|

|νn| + 1/τ

]
(21)

In this limit, the momentum anisotropy is absent from the leading order terms.
Analyticity of χn(0, 0): From Eqs. (20) and (21) it is important to note that χn(0, 0) obtained from the static and the 

dynamic limits are the same, i.e., for an infinitesimal η > 0

lim
q→0

lim
ω→0

χn(q,ω + iη) = lim
ω→0

lim
q→0

χn(q,ω + iη) = 1

g0r0
(22)

This implies that χn(q, ω + i η) is analytic at zero momentum and frequency.
As a quick aside, the above behavior is to be contrasted with the susceptibility of a conserved quantity such as the charge 

susceptibility, which as we will show below is not what is measured in the Raman response. The charge susceptibility is 
defined by

χc(q, iνn) ≡
β∫

0

〈Tτ ρ−q(τ )ρq(0)〉ei νnτ (23)

where Tτ is the imaginary time ordering operator, and

ρq ≡
∑
k,σ

c†
k+q,σ ck,σ (24)

is the Fourier component of the charge-density operator. In this case, it is well known that the uniform charge susceptibility 
from the static limit is finite with

lim
q→0

χc(q,0) = χc = 0, (25)

where χc is the charge compressibility of the electronic system. On the other hand, the dynamical limit vanishes with

χc(0,ω + iη) = 0 (26)

This is a consequence of particle number conservation, i.e., 
[
H,ρq=0

] = 0, which in turn follows from the global U (1)

symmetry of the Hamiltonian. In other words, this symmetry enforces a non-analyticity at zero frequency and momentum, 
and

lim
q→0

lim
ω→0

χc(q,ω + iη) = lim
ω→0

lim
q→0

χc(q,ω + iη) (27)

By contrast, the uniform nematic operator is not a conserved quantity, since [HI , O n(q = 0)] = 0, and therefore there is 
no physical reason to expect a similar non-analyticity in χn(q, ω + i η) at zero frequency and momentum in purely electronic 
models, i.e., those where the coupling of the electrons to the lattice strains is ignored. As we discuss in the next section, 
the analyticity implied by Eq. (22) is important for interpreting the signature of the charge nematic instability in Raman 
response.

Note that, in order to establish the analyticity of χn(0, 0), it is crucial to consider electrons with finite lifetime. It is 
easy to check that Eq. (22) does not hold for an ideal metal for which τ−1 → 0. However, such a non-analyticity, which is 
not associated with any symmetry, and whose origin can be traced to the fact that for an ideal metal the phase space for 
particle–hole excitations is sharply defined, is rather an artefact. In practice, the electrons have a finite lifetime, and this 
ensures that the phase space for particle–hole excitations is no longer sharply defined.



120 Y. Gallais, I. Paul / C. R. Physique 17 (2016) 113–139
3. Theory: electronic Raman response near a charge nematic instability

In this section we discuss the characteristic signatures of a charge nematic instability in electronic Raman spectroscopy. 
We also discuss how electron–lattice coupling affects such an instability. We argue that the Raman response is “blind” to 
this coupling, and therefore it is an ideal tool for studying the bare electronic nematic correlations.

3.1. B1g response, static and dynamic limits

The theory underlying the electronic Raman spectroscopy for correlated systems has been reviewed elsewhere [70,71]. 
Here, we simply remind few salient points associated with this experimental technique. Accordingly, we define the stress 
tensor by

Tαβ(q) ≡
∑
k,σ

∂2εk

∂kα∂kβ

c†
k+q/2,σ ck−q/2,σ (28)

and the associated correlator as

χαβ(q, i�n) ≡
β∫

0

dτ 〈Tτ T †
αβ(q, τ )Tαβ(q,0)〉ei �nτ (29)

Following Kubo formalism, the analytic continuation of the above gives the response function

χαβ(q,�) = lim
i �n→�+i η

χαβ(q, i�n)

= i

∞∫
0

dt ei �t〈
[

T †
αβ(q, t) , Tαβ(q,0)

]
〉 (30)

The imaginary part of the stress tensor response function at its dynamical limit, i.e., χ ′′
αβ(q = 0, �) ≡ Imχαβ(q = 0, �), is 

accessible by means of Raman scattering experiment. This is because the associated scattering cross-section is proportional 
to the correlation function Sαβ(�) ≡ 〈T †

αβ(�)Tαβ(�)〉, which in turn satisfies the fluctuation–dissipation theorem

Sαβ(�) = 1

π
[1 + nB(�)]χ ′′

αβ(q = 0,�) (31)

where nB(�) is the Bose function.
In the Fe SC, using the notations of a unit cell with 1Fe/cell, the quantity of interest is the B1g stress tensor given by

TB1g(q) ≡ Txx(q) − T yy(q) (32)

Within the effective mass approximation [72], valid for non-resonant Raman scattering, we define the associated Raman 
vertex as

γB1g(k) ≡
(
∂2

kx
− ∂2

ky

)
εk = 2t1hk (33)

where the dispersion of Eq. (2) is given by εk = −2t1(cos kx + cos ky) + · · · , with t1 being the nearest-neighbor hopping 
parameter. In principle, γB1g(k) can include higher harmonics of the same B1g symmetry, such as that coming from the 
third nearest-neighbor hopping, if present in H0. In the following, we ignore such terms since they do not affect the results 
qualitatively.

The computation of the B1g correlator within random phase approximation (RPA) is quite straightforward. We get

χB1g(q, i�n) = �γγ (q, i�n) + g2
0�2

γ h(q, i�n)χn(q, i�n) (34)

where �γγ is defined like �n in Eq. (11) with the form factors f 2
k,q replaced by γ 2

B1g
(k), and �γ h is defined similarly with 

the form factors γB1g (k)hk . The graphical representation of these two terms is shown in Fig. 2(b). Note that the second term, 
which contains the critical contribution, is non-zero only in the Raman B1g channel. In the A1g and the B2g channels, this 
term is zero by symmetry. Indeed, in experiments the signature of the charge nematic instability is observed only in the 
B1g Raman channel. Since, �γγ = 4 t2

1 �n , and �γ h = 2 t1 �n , we get, at low frequency and momentum

χB1g(q, i�n) ≈ 4 t2
1 χn(q, i�n) (35)

The above proportionality implies that the properties of χn(q, i �n), discussed in Section 2, are also relevant for χB1g(q, i �n)

(see also [73,74]). In particular, in purely electronic models the B1g response function is analytic at zero frequency and mo-
mentum.
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Fig. 2. (a) Interaction between electrons (solid lines) and the charge nematic boson (wavy line) φn . The interaction vertex has a non-trivial momentum 
dependence given by fk,q = (hk + hk+q)/2 with the B1g form factor hk = cos kx − cos ky . (b) Graphs for the Raman response function. The first term is 
the quasi-particle contribution, which is non-critical. The second term is the contribution of the nematic boson, which has information about criticality 
associated with the nematic instability. This contribution is non-zero, only in the B1g Raman channel.

In electronic Raman spectroscopy in the B1g geometry, we measure a quantity proportional to χ ′′
B1g

(q = 0, �) ≡
ImχB1g (q = 0, �). This quantity can be used to deduce the frequency-integrated spectral weight of the associated Raman 
conductivity χ ′′

B1g
(q = 0, �)/�, which, by the Kramers–Kronig relation, gives the real part of the uniform response function. 

Thus,

χ
dynamic
B1g

≡ 2

π

∞∫
0

d�

�
χ ′′

B1g
(q = 0,�)

= lim
�→0

χB1g(q = 0,�) (36)

It is important to distinguish the two conceptually distinct quantities χdynamic
B1g

and

χ static
B1g

≡ lim
q→0

χB1g(q,� = 0) (37)

Note that the thermodynamic instability at a charge nematic transition is associated with a divergence in the latter quantity. 
However, since χB1g(q, �) is analytic at zero frequency and momentum in purely electronic systems, we get

χ
dynamic
B1g

= χ static
B1g

, (38)

and, therefore, the divergence is “visible” from the dynamical limit. In other words, one can obtain information about the 
divergence of a susceptibility associated with the charge nematic instability from Raman spectroscopy.

3.2. Signature of instability: quasi-elastic peak

In the following, we study the low-frequency properties of the Raman response near the transition. Using Eqs. (21) and 
(35), for � � 1/τ 
 EF, we get

χB1g(q = 0,�) = A0

[
r0 + c3

�

� + i/τ

]−1

(39)

with A0 = 4 t2
1/g0 and c3 = g0 ρ0. This implies a Raman response with

χ ′′
B1g

(q = 0,�) = A0 c3 τ−1

(r0 + c3)2

(
�

�2 + �2

)
(40)

where

� = r0

(r0 + c3)τ
(41)

Thus, the characteristic signature of the transition in the low frequency Raman conductivity is a quasi-elastic peak with a 
Lorentzian lineshape that sharpens as the system approaches the transition, since the width � → 0.

It is useful to note that the χdynamic
B1g

deduced from the experimental data [75] (described in Section 5) has the form

χ
dynamic
B1g

= A0

r0
+ B (42)

where B is a non-singular part that is often temperature independent. This apparent violation of the Kramers–Kronig rela-
tion is partly due to the fact that, in practice, the upper cutoff of the frequency integral of Eq. (36) is finite and is set to a 
value beyond which the measured Raman spectra is temperature independent. A second reason for the B-term is that part 
of the electronic Raman signal observed is symmetry independent and therefore unrelated to criticality.
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Finally, we note that, besides χdynamic
B1g

and the width �, a third quantity that is experimentally accessible is the slope of 
the Raman response at zero frequency,

Sl ≡
[
∂�χ ′′

B1g
(q = 0,�)

]
�=0

= A0 c3 τ

r2
0

(43)

where the equality is the result of the random phase approximation. Using � ≈ r0/(c3τ ) close enough to the phase transi-
tion, we get a scaling relation between the three experimentally accessible quantities

χ
dynamic
B1g

= �Sl (44)

provided we ignore the non-singular B-term in Eq. (42). This provides an independent check for the validity of the random 
phase approximation theory.

3.3. Effects of coupling with the lattice

A crucial ingredient in the above discussion is the analyticity of the nematic susceptibility χn(q, i �n), and therefore that 
of the correlator χB1g (q, i �n) involving the B1g stress tensor, at zero momentum and frequency. It is this property that 
allows us to conclude that the thermodynamic divergence at the charge nematic phase transition, which shows up in the 
susceptibility taken to its static limit, is also “visible” from the dynamic limit that is accessible via Raman spectroscopy. As 
we discussed earlier, in order to demonstrate the analyticity, it is important to consider electrons having a finite, frequency-
independent lifetime, which, in simplest models, can be typically attributed to impurity scattering.

The above conclusion, however, holds only if we ignore the symmetry-allowed coupling of the electronic charge nematic 
operator O n(q) of Eq. (4) with the orthorhombic strain of the underlying lattice. In practice, however, such electron–lattice 
coupling is always present in crystalline solids. In the Fe SC, the fact that the C4 symmetry breaking (ignoring the positions 
of the As and the chalcogen atoms) is invariably accompanied by orthorhombic distortion, provides phenomenological proof 
of the presence of such a coupling. Consequently, it is worthwhile to examine how the above statements concerning the 
charge nematic transition and its Raman “visibility” are modified once the coupling with the elastic strain is taken into 
account.

In the following, we consider a two-dimensional square lattice whose elastic free energy, to lowest order in the strains, 
is given by

FE = C11

2

(
ε2

xx + ε2
yy

)
+ C66

2
ε2

xy + C12εxxεyy (45)

Here εi j ≡ (∂iu j + ∂ jui)/2, with (i, j) = (x, y) are the strains, the vector u denotes displacement from equilibrium, and C11
etc. denote elastic constants in Voigt notation.

In terms of the above, the orthorhombic strain is given by εS (r) ≡ εxx(r) −εyy(r), and the accompanying bare elastic con-
stant is C0

S ≡ (C11 − C12)/2. We write the symmetry-allowed coupling between the orthorhombic strain and the electronic 
charge nematic operator O n(q) as

Hel−lattice = λ0

∑
q

O n(q)εS(q), (46)

where εS(q) is the Fourier transform of εS (r), and λ0 is the coupling constant having the dimension of energy.
Studying the detailed implications of the above coupling on an electronic nematic phase transition is beyond the scope 

of the current review, and will be presented elsewhere. Here we focus only on the following salient points that are relevant 
to the current discussion.

(i) One effect of the coupling is to increase the temperature of the C4 symmetry breaking nematic/orthorhombic transi-
tion from T0, defined in Eq. (16), to

TS = T0 + λ2
0/(C0

S r̃0 g0) (47)

Below TS the C4 symmetry breaking is manifested both in the electronic sector, where the dispersions becomes C2 sym-
metric, as well as in the lattice sector with orthorhombicity εS = 0. Note that the effective orthorhombic elastic constant 
can be expressed as (for a derivation see, e.g., Ref. [55])

CS = C0
S − λ2

0χn(0,0) (48)

where χn(q, ω) is the bare electronic nematic susceptibility defined in Eq. (10). This implies that CS vanishes at T = TS, and 
consequently the transition can be detected in experiments that measure CS either directly by ultrasound or indirectly by 
bending techniques.

(ii) At TS, only the effective orthorhombic elastic constant CS vanishes, while the remaining elastic constants stay finite. 
An important consequence of this is that the critical fluctuations are restricted to two high-symmetry lines qx = ±qy in 
the two-dimensional Brillouin zone [76,77]. This can be understood from the following. Writing q1 = (qx + qy)/

√
2, it can 
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be shown that along the lines qx = qy and for the polarizations n1 = (1, −1) the acoustic phonon dispersion is given by 
�1,q = (CS/ρ)1/2q1, where ρ is the atomic mass density. Similarly, along qx = −qy and for the polarization n2 = (1, 1) the 
dispersion is �2,q = (CS/ρ)1/2q2, where q2 = (qx − qy)/

√
2. It can be shown that these are the only two directions in the 

Brillouin zone for which the phonon velocity vanishes at TS. This is because for all other q the acoustic phonons excite not 
just the critical strain εS , but also the non-critical ones whose elastic constants remain finite at TS .

(iii) Finally, and most importantly for the current discussion, as a result of the electron–lattice coupling, the nematic 
susceptibility acquires a non-analytic correction. Denoting the dressed susceptibility as χ̄n , for q = qα q̂α (summation not 
implied) with α = (1, 2), we get that

χ̄−1
n (qαq̂α, i�n) = χ−1

n (qαq̂α, i�n) − λ2
0 q2

α

C0
S q2

α + �2
n

(49)

Here q̂α are the unit vectors along the two critical directions within the Brillouin zone. The non-analyticity of the second 
term is a consequence of translation symmetry. Since moving all the atomic positions by a fixed displacement does not 
change the overall energy of the system, the electron phonon coupling, which is the numerator of the second term above, 
vanishes in the uniform limit qα → 0. As a consequence, the effect of the acoustic phonons is entirely absent in the dynam-
ical limit and χ̄n(q = 0, �) = χn((q = 0, �)).1 In other words, the Raman response, being opaque to the acoustic phonons, 
measures the bare electronic nematicity and χdynamic

B1g
∝ (T − T0)

−1 deduced from it tends to diverge at the purely electronic 

temperature scale T0 [69]. This is in contrast to the inverse of the orthorhombic elastic constant C−1
S ∝ (T − TS)

−1. How-

ever, the divergence of χdynamic
B1g

is invariably cutoff at the actual C4 symmetry-breaking transition TS. Conversely, since 
the electronic Raman response function is unaffected by the acoustic phonons, any signature of nematicity seen in Raman is 
unambiguous proof that it is electronic in origin.

3.4. Extension to multi-orbital systems

Until now, the qualitative physics was described in terms of a single band system in order to simplify the discussion. 
Nevertheless, it applies equally well to multi-orbital (and multi-band) systems like Fe SC. In a multi-orbital environment, 
the main additional novelty is that, due to the presence of the orbital quantum number, one can construct different flavors 
of charge nematic order parameters. The most direct extension of the single band case described in Eq. (4) is a multi-orbital 
version of the d-wave Pomeranchuk instability where the orbitally resolved electron densities have all B1g nematic form 
factors:

O d
o ≡ 1√

N

∑
m,k

hknm
k (50)

where nk is the electron density operator, m is the orbital index, and hk = cos kx − cos ky . While little discussed initially, 
this instability has recently been put forward as a candidate order parameter for the orthorhombic phase of FeSe [79–81]. 
A second possibility is to define a orbital dependent order parameter of the form:

O s
o ≡ 1√

N

∑
k

gk(nxz
k − nyz

k ) (51)

involving the xz and the yz orbitals. Here gk is a function with A1g symmetry such as gk = 1 (equivalent to xz/yz ferro-
orbital order [28–30,82]), or gk = cos kx + cos ky . Note that the actual deformations of the Fermi pockets in the nematic 
phase, and the axis along which a pocket will elongate/contract, can vary depending on the choice of gk . In a two-orbital 
model relevant for Fe SC, the deformations obtained with gk = 1 are qualitatively similar to that obtained with a non-zero 
d-wave Pomeranchuk order parameter O d

o . One reason for this is that the electron pockets comprised mostly of the xz and 
the yz orbitals are centered around (π, 0) and (0, π), respectively, and the form factor hk is approximately a constant, with 
opposite signs for these pockets. Consequently, the projections of these two order parameters on the electron pockets are 
indistinguishable. The various Fermi surface deformations associated with different choices of the nematic order parameter 
are illustrated in Fig. 3.

Overall, we notice that in a multi-orbital system the nematic order parameter can have non-trivial structure in the 
orbital space, and it can also be accompanied by momentum space structures that are different than what is possible in 
the single-band case described by Eq. (4). From the point of view of Raman spectroscopy, it is important to note that, 
irrespective of the details of their momentum and of the orbital space structures, as long as the nematic order parameter 

1 The in-plane wave-vector transferred is indeed very small in actual Raman experiments, typically q ∼ 6.10−3 nm−1, making finite q effects unobservable 
in the energy range probed experimentally. The out-of-plane wave-vector transferred can be significantly larger due to the finite penetration depth of the 
incoming visible photons. We note however the out-of-plane component of q is irrelevant for the coupling with the orthorhombic strain which is purely 
in-plane (see Eq. (49)).
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Fig. 3. (a) Typical Fermi surface of most Fe SC within a 3-orbital tight binding model (see, e.g., Daghofer et al. [78]). The orbital content of each pocket is 
indicated. The B1g form factor coskx– cos ky is depicted in the background. (b) Fermi surface deformation associated with the d-wave Pomeranchuk order 
O d

o . (c) Fermi surface deformation associated with xz/yz ferro-orbital order O s
o with gk = 1 [28,29].

Fig. 4. (a) k-Space structure of the B1g Raman vertex matrix elements in the orbital basis for the two orbital model of Raghu et al. [84] (see also [83] for a 
more realistic 5-band calculation of the Raman vertex). In this simplified model, the main features of the Fermi surface topology of Fe SC can be reproduced 
with t2 = −1.3 t1. (b) Fermi surface deformation associated with the corresponding B1g average stress tensor projected at the Fermi wave-vectors within 
the 2-orbital model.

transforms as a B1g object, the critical fluctuations will be observable in the electronic Raman B1g channel. This can be 
illustrated by calculating the form of the B1g stress tensor or vertex for a specific tight binding model of the Fe SC. In a 
multi-orbital system, one can generalize Eq. (33) and write the component of the non-resonant B1g Raman vertex in the 
effective mass approximation [83]

γ mn
B1g

≡
(
∂2

kx
− ∂2

ky

)
εmn

k (52)

where εmn
k are the components of the tight binding dispersion in the orbital basis. In the minimal two-orbital (m, n = dxz , 

dyz) model of the Fe SC of Raghu et al. [84], the B1g vertex is diagonal in orbital space with

γB1g (k) =
(

2(t1 cos kx − t2 cos ky) 0
0 2(t2 cos kx − t1 cos ky)

)
(53)

where t1 and t2 are the near-neighbor hopping parameters for σ - and π -type Fe orbital overlap, respectively. We note that 
next nearest-neighbor hopping integral along the diagonals of the Fe square plane do not contribute to the B1g Raman ver-
tex. The k-space structure of the two diagonal Raman vertex matrix elements and the associated Fermi surface deformation 
is illustrated in Fig. 4 for the tight binding parameters of Raghu et al. [84].

In this model, the B1g stress tensor is

TB1g(q = 0) = (t1 + t2)O d
o + (t1 − t2)O s

o (54)

with gk = cos kx + cos ky . The B1g stress tensor has finite overlap with both the ferro-orbital and the d-wave Pomeranchuk 
order parameters, and therefore criticality in either of these two channels is manifested in the Raman B1g response. Con-
versely, based on the Raman data, it is difficult to determine whether the nematic criticality is ferro-orbital or of d-wave 
Pomeranchuk type.
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Fig. 5. Sketch of the scattering geometry in a Raman experiment. The photon polarization configuration corresponding to the B1g and B2g symmetries are 
depicted with respect to the FeAs plane. Note that the 1 Fe unit cell notation is used.

3.5. Summary of the theoretical discussion

Here we summarize the main points of the theory developed in the previous and in the current sections. In Section 2, 
we developed a Drude–RPA theory to describe a charge nematic or d-wave Pomeranchuk phase transition, starting from 
a phenomenological electron–electron interaction. In particular, we showed that in purely electronic models, the nematic 
susceptibility χn(q, �), which describes static and dynamic fluctuations of the charge nematic operator O n(q), is analytic 
at zero momentum and frequency, provided that we take into account the effect of impurity-induced elastic scattering of 
the electrons on their lifetimes. The latter ensures that the single particle scattering rate does not vanish at zero frequency, 
which is a crucial ingredient in order to establish the analyticity. We also noted that this analyticity is eventually tied to the 
fact that the uniform charge nematic operator O n(q = 0) is not a conserved quantity. Next, in Section 3 we discussed the 
characteristic signatures of the charge nematic instability in the electronic Raman response. Within the Drude–RPA theory, 
the effect of the criticality is symmetry-selective in the sense that it is observed only in the Raman B1g channel, and not 
in the other Raman channels. We showed that the B1g Raman response χ ′′

B1g
(�) is proportional to the imaginary part of 

the nematic susceptibility in its dynamical limit, i.e., to Im χn(q = 0, �). Next, using the analyticity discussed above, as 
well as the Kramers–Kronig relation, we argued that the frequency-integrated Raman conductivity χ ′′

B1g
(�)/� is a measure 

of the nematic susceptibility at its static limit, i.e., limq→0 χn(q, � = 0), which is the quantity whose divergence signals 
the second-order charge nematic transition. Furthermore, we showed that when the single particle lifetime is dominated by 
elastic scattering, the B1g Raman conductivity has a Lorentzian lineshape, whose width narrows as a function of temperature 
as the system approaches the nematic instability. Finally, we pointed out that the electronic Raman response function 
naturally screens out the effect of the coupling of the electronic nematic variable with the orthorhombic strain of the lattice. 
Consequently, the Raman response is a measure of the bare electronic nematicity that is unaffected by the presence of the 
lattice. As such, it is an ideal tool for providing qualitative distinction between an electronically-driven nematic instability 
from a lattice-driven one.

4. Raman experiments

Raman scattering is a photon-in–photon-out process in which an incident photon with energy ωL and polarization εL is 
inelastically scattered by the medium into a photon of energy ωS and polarization εS (Fig. 5). For a Stokes process, ωS < ωL, 
an excitation with energy ω = ωL −ωS is created in the solid. ω is usually referred to as the Raman shift and is traditionally 
given in units of cm−1 (8.066 cm−1 = 1 meV). A typical Raman spectrum for a metal consists of sharp peaks due to Raman 
allowed optical phonons superimposed on a continuum of electronic origin. The Raman experiments described here were 
carried out using a diode-pumped solid state laser emitting at 532 nm or an Ar–Kr mixed gas laser with several lines in the 
visible spectral range. The inelastically scattered photons were analyzed using a triple-grating spectrometer equipped with a 
nitrogen-cooled CCD camera. Special care was taken in order to determine the laser induced heating. It was first estimated 
by comparing the power and temperature dependencies of the phonon frequencies. This estimate was then cross-checked by 
monitoring the onset of Rayleigh scattering by orthorhombic structural domains across the structural transition temperature 
as a function of laser power. For Co–Ba122 crystals, both methods yielded an estimated heating of 1 K ± 0.2 per mW of 
incident power. In order to extract the imaginary part of the Raman response function, the raw spectra were corrected for 
the Bose factor using Eq. (31) and for the instrumental spectral response as well.

In this review, we will mostly discuss the spectra performed in the B1g symmetry because they probe the nematic 
degrees of freedom relevant to the Fe SC. The x2 − y2 or B1g symmetry can be selected by choosing crossed incoming and 
outgoing photon polarizations at 45 degrees with respect to the Fe–Fe bonds. Here the notation B1g refers to the one Fe unit 
cell whose axes are along the Fe–Fe bonds. For comparison, we will also show spectra in B2g symmetry that can be selected 
by choosing incoming and outgoing photon polarizations along the Fe–Fe bonds. Switching between both symmetries was 
usually performed by rotating the crystal by 45 degrees while keeping both the polarizer and the analyzer fixed. Note that 
in terms of the full lattice unit cell (or 2 Fe unit cell), which has its axes at 45 degrees to the Fe–Fe bonds and is sometimes 
used in the literature, the B1g (B2g) symmetry discussed here corresponds to the B2g (B1g) symmetry.
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Fig. 6. Raman responses χ ′′ and Raman conductivity χ ′′/ω in the B1g (a) and B2g (b) symmetry of BaFe2As2. The sharp lines superimposed on the 
electronic continuum are due to Raman active optical phonon excitations. (c) Temperature dependence of the extracted static nematic susceptibilities in the 
two symmetry channels using the Kramers–Kronig relation (see text).

5. Experiments: charge nematic susceptibility of electron-doped 122 systems

5.1. Electron-doped Ba(Fe1−xCoxAs)2

We first discuss Raman data in the normal state of electron-doped Ba(Fe1−xCoxAs)2 (Co–Ba122) and the evolution of 
the extracted static nematic susceptibility as a function of temperature and Co doping [75]. Being one of the most studied 
Fe SC system, the salient features of the phase diagram as a function of Co doping are well-known [85]. There is a quasi-
simultaneous magneto-structural transition in the parent compound (TS ∼ TN) [86,87], which splits under Co doping with 
TS > TN [11,12,88–91]. The superconducting dome starts at x ∼ 0.02 and extends up to at least x = 0.15. All the Co contents 
x mentioned in this review were determined using wavelength-dispersing X-ray spectroscopy (WDS).

The low-energy (ω < 600 cm−1 or 75 meV) Raman responses of the parent compound BaFe2As2 in the B1g and B2g
symmetries are shown as a function of temperature in Fig. 6(a) and (b). In the tetragonal phase, the B1g response shows 
a strong enhancement upon cooling towards TS = 138 K, before collapsing in the orthorhombic/spin density wave (SDW) 
state. By contrast, the B2g response is essentially independent of temperature in the tetragonal phase and only shows a 
mild suppression below TS. The observed symmetry dependence is in agreement with the presence of dynamical nematic 
fluctuations having x2 − y2 symmetry, as discussed above. This interpretation is confirmed by the Co doping dependence 
of the spectra, which shows a systematic enhancement of the B1g response towards TS and the disappearance of any 
temperature dependence in the strongly electron overdoped composition, far away from the orthorhombic instability (x =
0.20, see Fig. 7).

From the behavior of the Raman response at finite energy, one can define the associated nematic susceptibility χdynamic
μ , 

where μ is the symmetry channel, using Kramers–Kronig relation (see Eq. (36)). As emphasized above, the susceptibility 
is in this case obtained in the dynamical limit. The physical quantity governing the nematic susceptibility in this limit, the 
Raman conductivity χ ′′/ω, is shown as a function of symmetry for Ba122 in Fig. 6. It is also shown as a function of electron 
Co doping in Fig. 7. While the Raman conductivity is flat in B2g symmetry, in B1g symmetry it is dominated by a peak 
centered at zero energy over a wide range of Co doping in the tetragonal phase. For x ≤ 0.045, the peak amplitude grows 
upon approaching TS and collapses quickly below. It is interesting to note that the enhancement of the peak amplitude is 
also seen down to the superconducting phase, T ∼ Tc, for x = 0.065 and also, albeit more moderately, for x = 0.10. At these 
two compositions, no TS is observed, and the system remains tetragonal and paramagnetic down to T = 0 K [88,92,93]. Data 
in the SC state will be discussed in Section 7.

The Raman conductivity being independent of temperature for ω > 600 cm−1 in the tetragonal phase, the quantity 
χ

dynamic
μ can be extracted in both symmetries by first extrapolating the data from the lowest energy measured (9 cm−1 ∼

1 meV) down to 0 cm−1, and then integrating up to 600 cm−1. The symmetry dependence of this quantity is shown in 
Fig. 6(c) for the parent compound Ba122. While the values of χdynamic

μ are very similar at high temperature in B1g and 
B2g symmetries, the enhancement of the susceptibility upon cooling is only seen in B1g symmetry, clearly indicating an 
instability towards a charge nematic order with B1g or x2 − y2 symmetry.
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Fig. 7. (a) Temperature dependence of the Raman conductivity χ ′′/ω in the B1g symmetry of Ba(Fe1−xCoxAs)2 (Co–Ba122) for different Co doping concen-

trations x. (b) Color plot of the nematic susceptibility χdynamic
B1g

as a function of temperature and Co doping.

Fig. 8. (a) Curie–Weiss fits of the nematic susceptibility in the tetragonal phase of Co–Ba122. Structural transition temperatures TS are marked by arrows 
for x ≤ 0.045. (b) Phase diagram showing the Co doping dependence of the bare electronic nematic Curie–Weiss temperature T0 (green squares). (c) Tem-
perature dependence of the nematic susceptibility deduced from measurements at two different incident photon energies for x = 0.02 (TS = 110 K). (d) Co 
doping dependence of the difference between the measured structural transition temperature Ts and T0. The open squares correspond to the same quantity 
extracted from a Curie–Weiss analysis of the shear modulus Cs by Yoshizawa et al. [53].

The Co doping and temperature dependencies of χdynamic
B1g

are summarized in the color plot shown in Fig. 7(b). The 

plot shows the clear correlation between the maximum of χdynamic
B1g

and Ts . It also highlights the persistence of significant 
nematic fluctuations over a wide range of Co doping covering most of the superconducting dome.

As shown in Fig. 8(a) for each Co composition, the nematic susceptibility can be well fitted using a Curie–Weiss law (see 
Eq. (16) in Section 2.2 and Eq. (42) in Section 3.2):

χ
dynamic
B1g

= B + C

T − T0
(55)

where C = A0
r̃0

is a temperature-independent constant.
Here B is a constant that describes the temperature- and symmetry-independent part of the susceptibility, i.e. the non-

critical part of the Raman response, and T0 is the Curie–Weiss temperature corresponding to the lattice-free electronic 
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nematic transition temperature as defined in Section 2.2. The extracted values of T0 follow qualitatively the doping de-
pendence of TS and extrapolate to zero slightly below optimal doping, at the critical doping x = xc ∼ 0.055 (Fig. 8(b)). As 
displayed in Fig. 8(c) for x = 0.02, the temperature dependence of the nematic susceptibility does not depend appreciably 
on the incident photon energy ωL used for the Raman experiment. The insensitivity to ωL suggests that the resonant terms 
in the Raman vertex, if present, do not alter appreciably the temperature behavior of the B1g response above TS, justifying 
the use of the effective mass approximation as done in Eq. (33) of Section 3.1 and in Eq. (52) of Section 3.4.

It is important to note that the T0 values are systematically at least 40 K below the actual thermodynamic structural 
transition temperature TS. This difference is a natural consequence of the absence of contribution of the lattice to the 
extracted susceptibility, as discussed in Section 3.3. T0 represents the bare nematic transition temperature of the purely 
electronic system, while in the presence of the lattice, the actual transition temperature TS is moved to higher temperature 
due to the finite coupling λ0 between the electronic and lattice sub-systems (see Eq. (47)). In that case the observed 
divergence of the nematic susceptibility is therefore cut-off by the structural transition that occurs at TS > T0. The difference 
between the two temperatures is a measure of the charge–lattice coupling energy λ2

0/(c0
S r̃0 g0). This quantity, which is 

accessible both from Raman and from elastic constant measurements, is shown as a function of Co doping in Fig. 8(d).

5.2. Comparison with elastoresistivity and elastic measurements

The observed Curie–Weiss-like enhancement of the charge nematic susceptibility is qualitatively consistent with both 
elastoresistivity and elastic modulus measurements performed on Co–Ba122 [52–54,62]. The presence of orbital fluctuations 
above TS was also inferred from point-contact spectroscopy measurements in the same system [94]. In the case of elastore-
sistivity measurements, the purely electronic nematic susceptibility could be obtained by strain-dependent measurements 
of the resistivity anisotropy in the tetragonal phase [62]. The extracted divergence was taken as evidence of an electronic-
driven structural transition. Since the nematic susceptibility extracted from Raman measurements is free from lattice effects, 
they also confirm the present of diverging electronic nematic degrees of freedom in the tetragonal phase of undoped and 
electron-doped Ba122. We note, however, that the Curie–Weiss temperatures extracted from transport measurements are 
significantly higher than the ones obtained from Raman measurements on samples with similar Co doping. The discrepancy 
could be due to different couplings with electronic nematic degrees of freedom. Indeed, while Raman scattering couples 
with charge nematic degrees of freedom, the nematic component of the elastoresistivity tensor is a more complex quantity. 
On the one hand, it could be a measure of Drude-weight anisotropy arising from the sensitivity of the electronic structure to 
generate anisotropy in the presence of external strain [95]. On the other hand, elastoresistivity is also sensitive to anisotropy 
in transport lifetimes of the carriers that can arise from scattering with the spin fluctuations or the impurities [37,38,64,
96–99]. Deviations from the Curie–Weiss behavior have also been recently reported in several Fe SC near optimal doping 
by elastoresistivity measurements [100]. They have been interpreted as due to random field disorder, which is a relevant 
perturbation near a quantum critical nematic transition.

Elastic modulus measurements (discussed in a separate contribution in this issue [55]) can also be fitted with a 
Curie–Weiss-like temperature dependencies. While Young’s modulus measurements by the three-point bending tech-
nique are now available for different Fe SC systems and doping values [54,101], direct measurements of the shear 
modulus CS from ultrasound velocity measurements are only available for Co–Ba122 [23,52,53]. In both types of mea-
surements, a Curie–Weiss like softening is observed in Co–Ba122. The extracted Curie–Weiss temperatures are very 
close to TS, which is consistent with a second-order structural phase transition. We note that recent neutron scat-
tering measurements in parent 122 compounds also observe a clear softening of the associated transverse acoustic 
phonon at low wavevectors [102]. Assuming a simple Landau-type approach of the coupling between shear modulus 
and electronic nematic degrees of freedom identical to the one presented in Section 3.3, the bare electronic nematic 
transition temperature could also be extracted from these elastic measurements using the relation CS = C0

S (
T −T CW

S
T −T0

), 
where T CW

S ∼ TS and T0 is the purely electronic nematic transition temperature. The T0 values obtained from shear 
modulus measurements in Co–Ba122 agree remarkably well with the ones extracted from Raman measurements
[53,75].2 For both Raman and shear modulus measurements, TS − T0 increases mildly with Co doping (see Fig. 8(d)), 
indicating a possible increase in the electron–lattice coupling energy scale λ0

C0
s r̃0 g0

(see Eq. (47)) upon electron doping. We 
will come back in Section 6.3 for a more quantitative comparison between elastic and Raman measurements.

5.3. Impact of disorder: Sr(Fe1−xCoxAs)2

As already stated above, mechanisms of anisotropic scattering are a possible source of the transport anisotropies [96–99], 
associated with lifetime effects, which have been reported in both the orthorhombic and the tetragonal phases under ap-
plied strains or stress. Indeed transport measurements performed on annealed crystals appear to show a much reduced 
anisotropy in the orthorhombic phase, hinting at a key role of scattering mechanisms in the observed nematicity [38]. STM 

2 We note that the T0 extracted from Young’s modulus measurements are somewhat higher for Co–Ba122 [54]. This might be due to the contribution of 
other non-critical components of the elastic tensor to the Young’s modulus.
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Fig. 9. (a) Temperature dependence of the resistivity of Ba122 (red, RRR∼ 9) and Co–Sr122 (x = 0.04, blue, RRR∼1). Unpublished data courtesy of F. Rullier-
Albenque. (b) Corresponding nematic susceptibilities extracted from Raman measurement in the B1g symmetry [109]. The lines are Curie–Weiss fits of the 
data points.

measurements have further shown the nucleation of nematic nano-domains around defect sites in the orthorhombic phase, 
and even possibly in the tetragonal phase [103,104]. These anisotropic impurity states were postulated to be responsible for 
the observed transport anisotropies because they are expected to act as strongly anisotropic scatterers [98,105,106]. Recent 
NMR measurements also suggest the presence of short-range but static nematic order above TS. This short-range order 
could be due to pinning by impurities or to the presence of micro-strains [107], and could possibly explain the onset of 
anisotropy observed at T > TS in magnetic torque measurements [108].

The above measurements have raised the question of the intrinsic nature of nematicity in Fe SC. A direct comparison 
between the Raman measurements in Ba122 (TS = 138 K) and Co–Sr122 (x = 0.04, TS = 137 K) allows a direct assessment 
of the possible role of disorder in the emergence of nematic fluctuations above TS [109]. Indeed, despite having essentially 
identical TS values, the resistivity measurements shown in Fig. 9(a) indicate a much higher residual resistivity ratio (RRR) 
in Co–Sr122, likely caused by the insertion of Co into the FeAs plane. Despite an order of magnitude difference in RRR, the 
extracted nematic susceptibilities show extremely similar temperature dependencies in both systems (see Fig. 9(b)). In par-
ticular, the extracted Curie–Weiss temperatures T0 agree within ±5 K, clearly demonstrating a relative insensibility of the 
nematic fluctuations and their associated diverging susceptibility to disorder. The Raman measurements are consistent with 
recent elasto-resistivity measurements that show that while the magnitude of the observed transport anisotropies might be 
disorder dependent, the diverging behavior of the extracted susceptibility in the tetragonal state is not [64]. This conclu-
sion is supported by a recent strain-dependent optical conductivity study that suggests that the strain-induced transport 
anisotropy observed above TS is not due to an anisotropic scattering rate, but rather to an anisotropic Drude weight [110]. 
It is likely that disorder helps revealing an underlying intrinsic nematicity in transport and local probe measurements. The 
magnitude of the observed anisotropies is thus not necessarily the right quantity to assess the intrinsic nematicity of a 
given Fe SC system.

6. Dynamical aspects of the charge nematic response

6.1. Quasi-elastic peak

We now go beyond the static properties of the nematic susceptibility discussed in the previous section, and analyze 
the frequency dependence of the nematic fluctuation spectrum revealed by the Raman measurements in B1g symmetry. The 
temperature and symmetry dependencies of the Raman response in Ba122 (Fig. 6) suggest the presence of two contributions. 
The first one, broad in energy and weakly temperature dependent, is seen in both symmetries and dominates the Raman 
responses at high temperature. It can be assigned to intra and/or interband quasiparticles excitations that do not become 
critical upon cooling. This contribution shows only a weak suppression in the orthorhombic phase, which is linked with 
the simultaneous opening of the SDW gap. The second contribution, only present in B1g symmetry, is strongly temperature 
dependent and is responsible for the strong enhancement of the static nematic susceptibility as discussed above. This 
contribution, obtained by subtracting the first contribution, is shown as a function of Co doping in Fig. 10(a). The observed 
dynamical nematic fluctuations are quasi-elastic in nature and can be well reproduced by a damped Lorentzian lineshape of 
width � and amplitude A, in agreement with the form obtained in the theory part of this review (Eq. (40)):

χ ′′
QEP = A

ω�

2 2
(56)
ω + �
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Fig. 10. (a) Evolution of the quasi-elastic peak contribution (QEP) in the B1g symmetry as a function of temperature and Co doping. The contribution was 
extracted by subtracting the raw B1g response by the one in B2g symmetry for each doping. Fits using a damped Lorentzian are shown for each spectra. 
(b) Temperature evolution of width � of the quasi-elastic peak. (c) Temperature dependence of the inverse of the area A−1 of the QEP. (d) Co doping 
evolution of the mean-field nematic transition T0 extracted by three different methods.

The temperature dependence of the width of the quasi-elastic peak (QEP) � is shown in Fig. 10(b). We find that � softens 
considerably upon approaching TS for x ≤ 0.045. This is because � is approximately the single particle lifetime renormalized 
by (a/ξn)2, where a is the unit cell length and ξn is the nematic correlation length, and the latter starts to increase as 
the system approaches the nematic instability with lowering temperature. Assuming a Curie–Weiss T dependence of the 
nematic susceptibility, and sufficiently close to T0, the temperature dependence of � is expected to vanish linearly with a 
zero intercept at T0, the bare electronic nematic transition temperature (see Eq. (41) in Section 3.2):

� = r0

(r0 + c3)τ
∝ (T − T0) (57)

For all Co compositions, � is found to decrease linearly between TS and up to at least 40 K above TS. As in the case of the 
static susceptibility, the softening of � is not complete because of lattice effects that move the transition temperature to a 
higher temperature TS.

The above analysis also allows us to extract the temperature dependence of the QEP area A, which is directly proportional 
to the diverging part of the nematic susceptibility i.e. without the background non-singular contribution B in Eq. (55).

χ
dynamic,QEP
B1g

= 2

π

∞∫
0

dω

ω
χ ′′

Q E P (ω) = A (58)

As shown in Fig. 10(c), the temperature dependence of A−1 is fairly linear, as expected for a Curie–Weiss behavior, with 
A−1 ∼ (T − T0). The extrapolation of the measured temperature dependencies of � and A−1 in the tetragonal phase down 
to zero temperature provide a measure of the scale T0, which is in good agreement with the values obtained from the 
Curie–Weiss fits of the static susceptibility described in the previous section (see Fig. 10(d)).

6.2. Adequacy of RPA theory of the nematic transition

Both the frequency and the temperature dependencies of the nematic susceptibility are in broad agreement with the 
expectations from the simple RPA description of a charge nematic transition outlined in the theory section of this review. 
The fact that the diverging nematic susceptibility is interrupted by the structural transition is a direct consequence of 
the lack of coupling with the lattice of a nematic susceptibility extracted from Raman in the dynamic limit. Both the 
Curie–Weiss behavior of the susceptibility and the linear decrease with T of the effective one-particle scattering rate � are 
also in agreement with a simple mean-field description of a charge nematic instability described in Section 3.2. The RPA 
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Fig. 11. (a) Temperature dependence of the slope of the Raman response at low energy Sl . The solid lines are fits using Sl = a′ + c′
(T −T0)2 . (b) Temperature 

dependence of the product � Ȧ, where � is the effective one-particle scattering rate and A the diverging part of the nematic susceptibility (see text).

type picture can be further tested by looking at the low-energy slope of the B1g Raman response, Sl , which is predicted to 
vary as (T − T0)

−2 (see Eq. (43)). As illustrated in Fig. 11(b), the quantity Sl follows nicely the expected behavior for all Co 
doping values, even when forcing T0 to the value previously obtained from the Curie–Weiss fits of the susceptibility.

A further test of the RPA picture can be made by looking at the temperature dependence of the product � A. Identifying 
Eq. (40) with Eq. (56), this product should become almost temperature independent upon approaching T0: �A ∼ A0

τ ∼ 1
g0τ

. 
This is indeed what is found over a wide range of Co composition as shown in Fig. 11(b). The decrease in 1

g0τ
from x = 0

to x = 0.045 can come from different sources. It could be linked to the decrease of the bare quasiparticle scattering rate 
1
τ , as suggested by transport measurements in Co–Ba122 [12,88], but it could also be due to an increase in the coupling 
constant g0 upon Co-doping. Overall there is, thus, a remarkable consistency between the behavior of the nematic B1g
Raman response in Co–Ba122 and the theoretical expectations from a simple RPA theory of the nematic transition.

6.3. A consistent picture with shear modulus measurements

The Raman measurements indicate the presence of genuine electronic nematic fluctuations in the tetragonal phase of 
Co–Ba122. These fluctuations are expected to soften the lattice and trigger the structural transition [23,76]. The availability 
of both Raman and shear modulus data in Co–Ba122 allows us to draw a more quantitative picture linking electronic 
and lattice degrees of freedom. Indeed, by symmetry the charge nematic order parameter O n probed by Raman and the 
orthorhombic lattice distortion εO are linearly coupled (Eq. (46)). Remembering that Raman probes the bare charge nematic 
susceptibility, and using Eqs. (35) and (48), we have a simple relationship between χdynamic

B1g
and CS:

CS = C0
S − λ2

0

4t2
1

χ
dynamic
B1g

(59)

where λ0 is the charge lattice coupling constant introduced in Section 3.3 and t1 is the nearest-neighbor hopping parameter 
introduced after Eq. (33). Assuming a weakly temperature-dependent C0

S , the renormalized shear modulus can become soft 
via the linear coupling with the charge nematic susceptibility χdynamic

B1g
, causing a second-order structural phase transition at 

TS defined as CS(T = TS) = 0 (see Fig. 12(a)). Fig. 12(b) shows a comparison between the shear modulus data of Yoshizawa 
et al. [53] and the theoretical shear modulus expected from the Raman data using equation (59), with λ2

0/(4t2
1) as the only 

free parameter. The quantitative agreement between shear modulus data and the theoretical expectation for both undoped 
and Co-doped Ba122 demonstrates that the charge nematic fluctuations observed by Raman scattering can fully account for 
the structural softening observed in Co–Ba122. It also provides a further evidence that the structural distortion observed in 
Fe SC is electronic driven. We stress that such quantitative agreement cannot be reached if we assume that Raman scattering 
couples with the fully dressed nematic susceptibility, i.e. including lattice effects. The realization that Raman probes the bare 
nematic susceptibility is therefore crucial in reaching a consistent picture.

One question left open in our discussion until now is the role of spin degrees of freedom in the nematicity observed 
in Fe SC. Anisotropic spin fluctuations associated with the stripe AF instability at or below TS of many Fe SC have been 
invoked early on as a main driver for nematicity [20,21]. Naively one might conclude from the consistency between shear 
modulus and Raman measurements that only charge/orbital degrees of freedom as probed by Raman scattering are relevant 
in driving the structural transition. This would however be incorrect, since it is very plausible that the diverging charge 
nematic susceptibility is itself enhanced or even driven by spin-nematic fluctuations via spin-charge coupling [32,111–116].
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Fig. 12. (a) Mean-field model of the linear coupling between the inverse lattice (or shear modulus) and electronic nematic susceptibilities. The bare shear 
modulus C0

S , initially independent of temperature, is softened by the linear coupling with a diverging nematic electronic susceptibility χdynamic
B1g

causing a 
phase transition at TS > T0. (b) Comparison between the experimental temperature dependence of the shear modulus CS [53] for Co–Ba122 (x = 0 and 
x = 0.038) and the theoretical temperature dependence using the charge nematic susceptibility deduced from Raman measurements (x = 0 and x = 0.045, 
see text for details). To account for the slight mismatch in the structural transition temperatures TS of the crystal used in the two experiments, the 
temperature axis was set in units of TS.

In fact it has been argued that a similar consistency as in Fig. 11(c) can be reached by comparing NMR measurements of 
spin fluctuations at Q SDW = (0, π)/(π, 0) and shear modulus data [117]. Disentangling between the electronic degrees of 
freedom behind nematicity thus remains a formidable task in 122 systems [51]. Other systems like FeSe with no magnetic 
transition [16,18,81,101,118–120], or hole-doped Ba122 with a still mysterious C4 magnetic phase [121–124] may prove 
fruitful playgrounds to answer this question. It is also possible that, like the structure of the SC gap, the respective weights 
of various electronic degrees of freedom behind nematicity are not universal and depend on the Fe SC systems considered.

6.4. Digression: Raman fingerprints of nematicity in cuprates

The presence of nematic correlations as possible precursor of uni-axial modulated charge/spin ordered states is also 
intensively discussed in the context of cuprates [125–131]. It is therefore interesting to discuss here earlier Raman data 
on La1−xSrxCuO4 (La-214) and YBa2Cu3O6+δ (Y-123), which are somewhat reminiscent of the results discussed here, albeit 
with some key differences [65,73,132–134]. In underdoped La-214, a Raman QEP was observed to grow upon cooling over 
a relatively broad doping range [65]. The symmetry of the QEP was found to switch from B2g to B1g channels at the critical 
doping value p = 0.05, indicating a 45-degree rotation of the nematic fluctuations: along the Cu–O bond at moderate doping 
and at 45 degrees of the Cu–O at low doping. This is in agreement with neutron scattering studies where stripe-like spin 
modulations were also found to rotate upon increasing doping [135]. In La-214 there appears thus to be an intimate link 
between nematic (q = 0) fluctuations observed by Raman and finite q stripe-like charge/spin fluctuations [132,136]. This 
phenomenology is similar to the spin-nematic scenario for the structural transition in Fe SC discussed above. In contrast 
with underdoped Co–Ba122, however, the growth of the QEP in La-214 and its softening saturate at low temperature and 
therefore no true static long-range order sets in [65]. Besides, the growth of the QEP in La-214 is accompanied by the 
opening of a pseudogap at intermediate energies upon lowering temperature whose relationship with nematicity is still 
unclear.

In other cuprates like Y-123, Bi2Sr2CaCu2O8+δ and HgBa2CuO4+δ evidence for nematic fluctuations in the Raman spectra 
are more elusive as no clear QEP is observed for moderately underdoped systems in any symmetry [133,137,138]. Notably 
in moderately underdoped Y-123 where CDW fluctuations are clearly observed in X-ray measurements and where transport 
anisotropies have been reported, no QEP is observed in the nematic B1g and B2g symmetries [133,137]. It has been recently 
suggested that the opening of the pseudogap may suppress the nematic QEP in B1g symmetry in moderately underdoped 
cuprates [134]. We also note that in Y-123, the question of whether the incipient order is nematic or bi-axial is still contro-
versial [139–147]. By contrast, a clear QEP emerges in B2g symmetry for strongly underdoped composition (p < 0.05) [133]. 
In this regime, however, neutron scattering data indicate the presence of uniaxial magnetic correlations along the Cu–O 
bond rather the Cu–O diagonal, as suggested by the B2g symmetry of the Raman QEP [148]. Here again, the connection be-
tween Raman results and other probes appears problematic. The role of nematicity in cuprates and its link to the pseudogap 
is therefore largely unsettled, as many competing and fluctuating spin- and/or charge-ordered phases are in close proximity.

7. Nematicity and superconductivity

As of date, the study of nematicity in Fe SC has concentrated mostly on the role of the various electronic nematic degrees 
of freedom in driving the structural transition in the normal metallic state. Relatively less attention has been given to study 
the nature of these fluctuations, if at all they exist, in the superconducting phase. In the following, we show that, in a 
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fully-gapped superconductor, soft nematic fluctuations lead to a new collective mode whose signature is a finite frequency 
resonance peak in the electronic Raman response. This behavior is qualitatively different from the quasi-elastic peak that 
develops when the nematic transition is approached in the normal state.

A second motivation to study nematic fluctuations in the superconducting phase comes from the possibility that such 
fluctuations might affect the pairing mechanism and the superconducting transition. Theoretically, it has been argued that 
nematic fluctuations can play a role in the interplay between s and d-wave pairing states, which are likely nearly degenerate 
in several Fe SC systems [149–156]. Concerning the effect on pairing, recent theoretical works [157,158] suggest that ne-
matic fluctuations enhance superconductivity irrespective of the gap symmetry, at least for weak-coupling superconductors. 
Therefore, it is possible that nematic fluctuations provide a complementary contribution to the pairing interaction on top of 
the (π, 0) magnetic fluctuations that promote s± pairing symmetry.

On the experimental side, both X-ray measurements of the orthorhombicity and elastic modulus measurements from 
ultrasound velocity indicate competition between nematic and superconducting order parameters, which is in broad agree-
ment with the expectations from simple Ginzburg–Landau-type theoretical arguments [23,52,159,160]. However, these 
studies did not address the question of whether the nematic/orthorhombic transition stays of the second order (or weakly 
of the first order) in the superconducting phase [161], and, if so, how the properties of the accompanying nematic fluctu-
ations differ from those in the normal phase. In fact, experimental evidence of the existence of nematic fluctuations in the 
superconducting phase was lacking until recently. Consequently, it is notable that a recent study has identified resonance 
peaks in the electronic Raman response of Co-doped Ba122 and Na111 as evidence of the existence of nematic fluctuations 
in the superconducting phase [162].

With the above motivations, in this section we briefly discuss the theory of nematic fluctuations in a SC phase, and we 
compare it with the experimental findings from Raman response measurements in the SC state of electron-doped FeAs. We 
finish by comparing the properties of the nematic resonance mode with those of other collective modes that have been 
postulated to exist in the context of superconductivity in the Fe SC.

7.1. Theory: nematic resonance near a nematic quantum critical point

In the superconducting phase, the nematic fluctuations can be modeled by the same RPA approach as the one used to 
describe the QEP in the normal state data. As in the normal state, we assume that the nematicity is driven by an electronic 
interaction of the form given by Eq. (3), with the interaction constant g0 replaced by g , its value in the superconducting 
phase. Within RPA, the interacting nematic susceptibility probed in B1g symmetry in the superconducting state can be 
expressed in term of the bare superconducting response and g . It is given by (see Eqs. (10) and (34)):

χB1g(ω) = �B1g(ω)

1 − g �B1g(ω)
(60)

Mathematically, it is clear that, since in the superconducting phase the Bogoliubov excitations are gapped, the structure 
of �B1g is quite different from that of a normal metal. For a fully gapped clean superconductor, there are no fermionic 
excitations below 2�. Consequently, the imaginary part of the bare nematic response �′′

B1g
is zero below 2�, and it is 

dominated by a pair-breaking peak at 2�. It is simple to check that, by Kramers–Kronig relation, this implies that the real 
part �′

B1g
diverges logarithmically upon approaching 2� from below. Therefore, for a positive nematic coupling g , the RPA 

response develops a resonance below 2� at an energy �r defined as

1 − g �′
B1g

(�r) = 0 (61)

This condition will always be met for a fully gapped superconductor in the C4-symmetric phase near the nematic instabil-
ity. Thus, the presence of a nematic resonance in the Raman spectra is a generic property of the superconducting excitation 
spectrum near a nematic quantum critical point. Physically, the opening of the gap shifts spectral weight from low fre-
quencies ω ∼ � in the normal phase, where � is the renormalized single-particle scattering rate defined in Eq. (41), to 
higher frequencies ω ∼ � in the superconducting phase. This shift of spectral weight transforms the quasi-elastic peak of 
the normal state into a resonance peak in the superconducting state. Close to the nematic quantum critical point, the spec-
tral weight of this nematic resonance quickly overwhelms that of the pair-breaking peak and grows as the critical point is 
approached as a function of a tuning parameter such as doping [162]. The presence of a full gap is however crucial for the 
existence of the resonance, as nodes will effectively wash out the divergence of the real part of the bare susceptibility �. 
For more details, we invite the reader to consult Ref. [162].

7.2. Experiments: fingerprints of a nematic resonance in superconducting Ba(Fe1−xCox)2As2

Raman scattering data provide a direct insight into this problem by following the evolution of the quasi-elastic peak 
upon crossing Tc. Of particular interest are sample compositions that show significant nematic fluctuations down to Tc
while staying in the tetragonal phase. This is illustrated for optimally doped Co–Ba122 (x = 0.065) in Fig. 13(a). At this 
composition, the low-energy B1g QEP observed in the normal state (see Fig. 10) is strongly renormalized below Tc with a 
suppression at low energy and the emergence of a well-defined peak at finite energy in the SC state.
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Fig. 13. (a) Evolution the B1g Raman conductivity χ ′′/ω across Tc for Co–Ba122 (x = 0.065) [163]. (b) Co doping evolution of the SC B1g Raman response 
(in blue). The responses just above Tc are shown in black. (c) Evolution of the integrated SC spectral weight of the Raman response χ ′′ (in blue) [163] as 
a function of Co doping. The corresponding nematic susceptibilities χdynamic

B1g
both at (N) and well below Tc (SC) are also shown in red.

The SC peak is only observed in B1g symmetry. It was initially interpreted as a Cooper pair-breaking peak associated 
with the creation of pairs of Bogoliubov quasiparticles in a BCS state [163–167]. Its energy is indeed close to twice the 
energy gap 2� detected by ARPES experiments at the electron pockets in similarly doped crystals [168,169]. Its Co doping 
dependence however displays a striking departure from simple BCS-like expectations (see Fig. 13(b)). Coming from the 
tetragonal overdoped side (x = 0.1, Tc = 20 K), the SC peak spectral weight is strongly enhanced upon approaching the 
boundary between the tetragonal and orthorhombic phases that is located between x = 0.065 and x = 0.06 in Co–Ba122. In 
the nematic/SDW phase, the peak spectral weight decreases and a much weaker peak emerges at a smaller energy [163].

The strong enhancement observed on the tetragonal side (x > 0.06) of the phase diagram is at odds with the small 
changes in Tc when going from x = 0.1 (Tc = 20 K) to x = 0.065 (Tc = 24.7 K). It is also inconsistent with the fact that 
the peak energy actually softens towards x = 0.065 [163].3 On the other hand, the doping dependence of the peak spectral 
weight tracks the behavior of the nematic response above Tc: it is stronger for the Co compositions when the nematic sus-
ceptibility is the strongest at T = Tc, i.e. close to the nematic instability (see Fig. 13(c)). This observation indicates that, as 
expected from the simple RPA picture discussed above, the same interaction responsible for the enhancement of the nematic 
susceptibility is also enhancing the SC peak spectral weight, producing a nematic resonance close to the nematic critical 
point. We note that a similar enhancement of a B1g SC peak spectral weight has also been recently observed in electron-
doped Co–Na111 upon approaching the nematic instability, indicating that the effect is possibly generic to electron-doped 
FeAs systems [170]. This implies that the observed peak in the superconducting B1g channel is due to the nematic resonance 
rather than simply to non-interacting pair-breaking physics.

While the nematic resonance is essentially a delta function for a clean system, finite lifetime effects due to, e.g., disorder 
are expected to broaden it. The broadening can be especially significant if the resonance is not fully detached from the 2�

pair-breaking peak. It is interesting to note the peak observed in the experiments on Co–Ba122 are significantly broader 
than in Co–Na111: at least 5 meV (full width at half maximum) for the former, while it can be as sharp as 1 meV for the 
latter [163,164,170]. This indicates that a fully detached and well-defined resonance is only present in Co–Na111, while the 
nematic resonance manifests itself only as a enhanced pair-breaking peak in Co–Ba122. This may reflect a stronger coupling 

3 In the BCS framework the spectral weight of the Raman pair-breaking peak should scale as �.
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g in the case of Co–Na111, but could also be due to a larger disorder due to the higher Co concentration of optimally doped 
Co–Ba122.

In principle the spectral weight of the resonance is expected to diverge and its energy to go to zero at the nematic 
quantum critical point x = xc. This corresponds to the situation where the nematic coupling reaches the critical value gc
such that the Stoner criterion is satisfied, r0 = 0 (see Eq. (15)). However, because the nematic Raman response does not 
couple with the lattice, this does not happen: the actual thermodynamic QCP occurs before the bare nematic critical point 
xc: xQCP > xc or gQCP < gc. In Co–Ba122, xc can be estimated by extrapolating the doping dependence of T0: xc ∼ 0.055 [75,
162]. xQCP, on the other hand, lies at a slightly higher doping: between x = 0.06 and x = 0.065 (see Fig. 8(b)). Therefore, just 
like the divergence of the nematic susceptibility in the normal state is preempted by the structural transition that occurs at 
a higher temperature TS > T0, the complete softening of the resonance energy is also preempted by the nematic order that 
intervenes at a higher doping. This also explains the relatively mild softening of the mode energy seen in the experiments 
in Co–Ba122.

7.3. Relationship with other superconducting collective modes

The nematic resonance observed in the Raman spectrum of electron-doped Fe SC bears a strong analogy with neutron 
resonance observed in several families of unconventional SC. In both cases, they are due to residual electronic interactions 
in the particle–hole channel, which, within RPA type pictures, trigger a well-defined excitonic-like pole in the charge and 
spin SC responses, respectively. The nature of the residual interactions differs: magnetic and centered at finite qAF for the 
neutron resonance, while they are centered at zero wavevector for the nematic resonance. Both resonances are connected 
to soft excitations associated with nearby quantum critical points: antiferromagnetic in one case and nematic in the other 
one. It so happens that both critical points seem to exist in Fe SC, and therefore both neutron and nematic resonances 
are present in their SC state. There is another key difference between both resonances: while neutron resonance requires a 
sign-changing gap, nematic resonance only requires the presence of a full gap. Because the presence of nodes is suspected 
in several Fe SC systems, it is likely that the nematic resonance will not be observed in several systems. The presence or not 
of a nematic resonance near the nematic instability is thus a powerful test for the presence of nodes for several systems, 
including, e.g., P-doped Ba122.

Finally, we should note that other collective modes have been predicted to occur in the SC state of Fe SC [171–175]. 
Among them, the Bardasis Schrieffer (BS) mode [172,173,176,177], an in-gap electron bound state in a sub-leading pairing 
channel, is the most relevant for our discussion because of the near-degeneracy of s and d-wave paring states in many 
Fe SC [4,150–155]. Fingerprints of its presence have been reported in the Raman spectra of optimally hole doped K–Ba122, 
where several sharp modes are detected below Tc [178,179]. In principle, both the nematic resonance and the BS mode can 
be simultaneously present in the SC Raman spectrum and may even couple [180,181]. However it is likely that their re-
spective visibility will be strongly system dependent. While anisotropic gaps will suppress both collective modes efficiently, 
their presence is also linked to different criteria: the nematic resonance relies on the proximity of a nematic quantum crit-
ical point while the BS mode will occur when s and d-wave pairing states are nearly degenerate [173,182]. In this respect, 
we note that, from the point of view of nematicity, shear modulus and Raman scattering data show much weaker nematic 
fluctuations near optimally hole doped K–Ba122 where a region of C4 magnetic phase has also been observed [54,183]. We 
therefore suspect that, by contrast to the electron-doped side, nematic resonance may not be present in hole-doped 122 
systems, at least near optimal doping. This illustrates the remarkable richness of Fe SC where the nature of the SC ground 
state and its collective excitation spectrum can vary strongly from one system to the other.

8. Conclusions

The purpose of this review was two-fold. First, we have provided a general theoretical framework within which one 
can understand electronic Raman scattering measurements near a nematic instability. Since Raman scattering measurement 
in the appropriate symmetry couples directly with the nematic order parameter involving the charge degrees of freedom, 
we have argued that it is one of the few direct probes of nematic fluctuations in a metallic system. However, contrary to 
thermodynamic probes like elastic constant measurements, the electronic Raman response probes the frequency-momentum 
dependent nematic susceptibility in its dynamical limit. An important consequence of this is that it is essentially blind to 
the lattice strains and the acoustic phonons. This, in turn, implies that Raman response is an unique probe of pure electronic 
nematic correlations. Experimental data on electron-doped 122, and more recently 111, Fe SC systems are consistent with 
this theoretical picture, and therefore provide unambiguous evidence of an enhanced nematic susceptibility of electronic 
origin. The comparison with shear modulus data confirm the absence of coupling between the electronic Raman response 
and the lattice strains. It also shows that the nematic fluctuations observed in the charge sector by Raman scattering 
can account for the observed lattice softening in electron-doped 122, providing further evidence that the structural phase 
transition is electronic driven.

However, despite the encouraging consistency between different probes of nematicity in the tetragonal phase, there re-
main several unsolved questions. The first one is related to the issue whether the electronic nematicity is driven by spin, 
orbital or charge degrees of freedom. In this respect, FeSe is an interesting system because of the absence of magnetic 
ordering. While preliminary Raman measurements indicate the presence of charge nematic fluctuations above TS in FeSe 
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[120,184], the nature of the magnetic fluctuations in this system remains to be clarified [101,185,186]. The second question 
is how generic are nematic fluctuations in Fe SC and whether or not they play a role in the SC pairing mechanism. Recent 
transport measurements advocate for the presence of underlying nematic quantum critical point near optimal doping for 
several systems and doping values. This will have to be confirmed by other probes and we believe electronic Raman scat-
tering is ideally suited to answer this question. Indeed we have shown that the presence of a nematic resonance in the SC 
Raman response is a natural consequence of the proximity to a nematic quantum critical point, providing a smoking-gun 
experiment for its existence.

From a more general perspective, the discovery of nematicity in Fe SC, first revealed via transport measurements, has 
stimulated intense efforts to design and understand experiments capable of probing nematic degrees of freedom. These 
efforts can now be capitalized to search for other systems where nematic degrees of freedom have been either predicted or 
indirectly observed. We have already mentioned cuprates and bi-layer ruthenates in the introduction, we can also add less 
correlated systems like bi-layer graphene [187–189] and even bismuth [190,191]. The presence of nematic correlations can 
also be used to tune electronic orders via uniaxial stress or strain, just like magnetic field is routinely used to tune magnetic 
orders. Strain control of electronic phases has already been demonstrated in semiconductor-based heterostructures like AlAs 
[192,193]. In more correlated materials, strain effects have been demonstrated recently in Sr2RuO4, where a strong Tc
enhancement under uniaxial strain was observed [194]. Up to now, the microscopic origin of these kind of effects remain 
relatively poorly studied however. It is therefore likely that nematicity will remain a subject of intense research in the 
coming years.
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