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SUMMARY

Synaptic scaling is a form of homeostatic plas-
ticity driven by transcription-dependent changes in
AMPA-type glutamate receptor (AMPAR) trafficking.
To uncover the pathways involved, we performed a
cell-type-specific screen for transcripts persistently
altered during scaling, which identified the m subunit
(m3A) of the adaptor protein complex AP-3A. Syn-
aptic scaling increased m3A (but not other AP-3
subunits) in pyramidal neurons and redistributed
dendritic m3A and AMPAR to recycling endosomes
(REs). Knockdown of m3A prevented synaptic scaling
and this redistribution, while overexpression (OE)
of full-length m3A or a truncated m3A that cannot
interact with the AP-3A complex was sufficient to
drive AMPAR to REs. Finally, OE of m3A acted syner-
gistically with GRIP1 to recruit AMPAR to the den-
dritic membrane. These data suggest that excess
m3A acts independently of the AP-3A complex to re-
route AMPAR to RE, generating a reservoir of recep-
tors essential for the regulated recruitment to the
synaptic membrane during scaling up.

INTRODUCTION

The ability of networks to maintain stable function over time, and

to efficiently store information, is thought to rely on homeostatic

plasticity mechanisms that stabilize neuronal and network ac-

tivity (Davis, 2013; Turrigiano and Nelson, 2004). Synaptic

scaling is a form of homeostatic plasticity that scales post-

synaptic strength up or down in response to perturbations in

neuronal firing (Gainey et al., 2009, 2015; Goold and Nicoll,
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2010; Ibata et al., 2008), a process thought to contribute to the

stabilization of firing rates both in vitro (Turrigiano et al., 1998)

and in vivo (Hengen et al., 2013, 2016). Synaptic scaling is

accomplished through changes in the abundance of postsyn-

aptic AMPA receptors (AMPARs), but despite great effort, the

full set of molecular trafficking events that homeostatically adjust

synaptic AMPAR abundance is poorly understood (Pozo and

Goda, 2010; Turrigiano, 2012). In particular, although synaptic

scaling is known to be transcription dependent (Gainey et al.,

2015; Goold and Nicoll, 2010; Ibata et al., 2008; Meadows

et al., 2015), the factor or factors that are transcriptionally regu-

lated to drive synaptic scaling are largely unknown. We thus

set out to devise an unbiased screen for factors that are

persistently upregulated during synaptic scaling in the hopes

of gaining deeper insight into the transcription-dependent

AMPAR trafficking pathways involved in this critical form of syn-

aptic plasticity.

Synaptic scaling up is induced within primary visual cortex

(V1) by brief sensory deprivation (Desai et al., 2002; Lambo

and Turrigiano, 2013). Several studies have examined the tran-

scriptional changes within extracts of V1 following visual depri-

vation protocols (Lachance and Chaudhuri, 2004; Majdan and

Shatz, 2006; Tropea et al., 2006). However, these earlier studies

probed tissue derived from total V1, including all cell types and

all layers. This is problematic, because synaptic scaling is ex-

pressed in a cell-type- and layer-specific manner (Desai et al.,

2002; Maffei and Turrigiano, 2008); therefore, this approach

does not provide the necessary sensitivity to isolate transcripts

that are specifically involved in synaptic scaling. For this reason,

we designed a screen that would allow us to probe for transcrip-

tional changes in a defined population of pyramidal neurons in

which we know synaptic scaling is induced. Two days of visual

deprivation via intraocular tetrodotoxin (TTX) injection induces

synaptic scaling up of miniature excitatory postsynaptic currents

(mEPSCs) onto layer 4 (L4) star pyramidal neurons in rodent
rts 16, 2711–2722, September 6, 2016 ª 2016 The Author(s). 2711
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visual cortex during early postnatal development (Desai et al.,

2002). Here we generated a mouse with mCitrine expressed

within these L4 star pyramids, allowing us to probe for transcrip-

tional changes in this specific cell population (Sugino et al.,

2006). This highly targeted approach revealed a relatively small

number of transcripts (30) with expression changes that reached

the criterion (fold change > 1.5, p < 0.0034) following visual

deprivation.

Surprisingly, two of these, Ap3m1 and Ap4m, code for m sub-

units (m3A and m4, respectively) of the heterotetrameric clathrin

adaptor protein (APC) complexes AP-3 and AP-4. The APC

family is composed of five members (AP-1 through AP-5) that

sort and shuttle membrane-bound cargo between different

endosomal and cell-surface compartments (Faúndez et al.,

1998; Hirst et al., 2013; Le Borgne et al., 1998; Nakatsu and

Ohno, 2003; Newell-Litwa et al., 2007; Robinson and Bonifacino,

2001; Simpson et al., 1997); the m subunits are critical for most

cargo recognition (Bonifacino and Traub, 2003; Mardones

et al., 2013; Ohno et al., 1998; Traub and Bonifacino, 2013).

Although none of these complexes were previously known to

have activity-regulated expression, several of them have been

implicated in basal sorting and trafficking of glutamate receptors

(Margeta et al., 2009; Kastning et al., 2007; Lee et al., 2002). In

particular, m3A and m4 can bind AMPAR indirectly through inter-

actions with transmembrane AMPR regulatory proteins (TARPs)

(Matsuda et al., 2008, 2013), and this interaction is important for

dendritic trafficking of AMPAR (Matsuda et al., 2008) and for

N-methyl-D-aspartate (NMDA)-induced trafficking of internal-

ized AMPAR from early endosomes (EEs) to lysosomes (AP-3;

Matsuda et al., 2013). These considerations suggest that m3A

could contribute to the regulated trafficking of AMPAR that

underlies synaptic scaling up (Kennedy and Ehlers, 2006; Turri-

giano, 2008).

Here we show that m3A upregulation plays an essential role

in synaptic scaling up by trafficking GluA2-containing AMPAR

into the recycling pathway. AP-3 is classically known for sorting

membrane proteins into the lysosomal pathway for degradation

(Bonifacino and Traub, 2003), so it was surprising to find that TTX

treatment rerouted m3A from lysosomes to recycling endosomes

(REs). Both TTX treatment and overexpression (OE) of m3A were

able to drive AMPAR into the RE pathway, as was OE of a trun-

cated m3A that cannot interact with the rest of the AP-3 complex

(Mardones et al., 2013). Furthermore, knockdown (KD) of m3A,

which blocks the normal increase in m3A induced by activity

blockade, prevented the activity-dependent rerouting AMPAR

to REs and blocked synaptic scaling. Finally, OE of m3A acted

synergistically with the GluA2 trafficking protein GRIP1 to recruit

AMPAR to the dendritic surface. Taken together, these data

show that activity blockade transcriptionally upregulates m3A

to reroute AMPAR into the RE pathway and is essential for the

recruitment of AMPAR to the cell surface during synaptic scaling

up (Figure S1).

RESULTS

We set out to identify in an unbiased manner a set of candidate

‘‘scaling factors’’ that might participate in transcription-depen-

dent synaptic scaling up. The ex vivo slice and profiling studies
2712 Cell Reports 16, 2711–2722, September 6, 2016
were conducted on HsCt5 mice (described later) at postnatal

day (P) 14 to P15, an age at which synaptic scaling can be

induced within L4 star pyramidal neurons by 2 days of optic

nerve blockade using intraocular TTX (Figure 1A; Desai et al.,

2002). In vitro experiments were performed on postnatal visual

cortical cultures after 7–8 days in vitro, and pyramidal neurons

were targeted using standard morphological features as

described (Watt et al., 2000).

Generation and Characterization of the HsCt5 Mouse
The HsCt5 mouse was generated as part of a lentiviral enhancer

trap screen (Kelsch et al., 2012; Shima et al., 2016) through

random insertion of a lentiviral vector containing the tet-transac-

tivator (tTA) driving mCitrine. Upon screening lines for restricted

mCitrine expression, the HsCt5 line was identified as having

expression largely restricted to neocortical L4 (Figure 1B; Fig-

ure S2A). For many labeled neurons in V1, a thin apical dendrite

could be discerned (Figure S2B), as is typical of star pyramidal

neurons (Desai et al., 2002; Maffei et al., 2004). When slices

were fixed and stained against g-aminobutyric acid (GABA; Fig-

ures S2B and S2C) 97.5% of mCitrine+ neurons were GABA

negative (n = 685 cells from three animals). Whole-cell current

clamp recordings from labeled neurons in slices from V1 re-

vealed that recorded neurons had regular-spiking properties,

and fills revealed the typical star-pyramidmorphology (Figure 1C,

n = 5). Thus, most labeled neurons were excitatory star pyrami-

dal neurons.

Next, we verified that excitatory synapses onto labeled neu-

rons undergo synaptic scaling up upon visual deprivation. We

used an established protocol (Desai et al., 2002; Maffei and Tur-

rigiano, 2008) to block optic nerve impulses with intraocular TTX

injections for 2 days commencing just before eye opening

(�P12; Figure 1A). Only one optic nerve was blocked, allowing

us to use the contralateral monocular V1 from the same animals

as a control. Slice recordings were then obtained frommCitrine+

neurons in either the deprived or the control hemisphere, and

AMPAR-mediated mEPSCs measured as described previously

(Figure 1D; Desai et al., 2002; Maffei and Turrigiano, 2008).

Consistent with our previous findings in rats (Desai et al.,

2002), 2 days of optic nerve block significantly increasedmEPSC

amplitude in mCitrine+ neurons (Figures 1E and 1F, n = 11

each condition, p = 0.015) without affecting mEPSC frequency

(p = 0.17), mEPSC kinetics (rise and decay times, p > 0.29;

Figure 1F, peak-scaled mEPSC waveforms), or passive cellular

properties (Rin, input resistance; Vm, restingmembrane potential;

membrane capacitance, Cm; p > 0.05). Furthermore, mEPSC

amplitude was scaled up multiplicatively (Figure 1E), as is char-

acteristic of synaptic scaling both in vitro (Turrigiano et al., 1998)

and in vivo at this developmental stage (Desai et al., 2002; Goel

and Lee, 2007).

Microarray Screen for the Synaptic-Scaling-Associated
Transcriptome
To probe for candidate synaptic scaling factors with expression

levels persistently and significantly altered by visual deprivation,

we used the same deprivation paradigm described earlier (Fig-

ure 1A) and then isolated the monocular portion of V1 from

both the deprived and the control hemispheres. L4 mCitrine+



Figure 1. Characterization of Synaptic

Scaling in L4 Star Pyramidal Neurons in the

HsCt5 Mouse

(A) Visual deprivation paradigm.

(B) Coronal section from the HsCt5 mouse at P15,

showing mCitrine+ neurons (green) in V1. Scale

bar, 50 mm.

(C) Recordings from L4 mCitrine+ neurons at P15.

Fill during current clamp recording (left) and ex-

amples of evoked firing (right).

(D) Representative mEPSC recordings from control

and deprived mCitrine+ neurons in L4 V1.

(E) Cumulative mEPSC amplitude distributions for

control and deprived conditions; the dashed line

shows scaled-down amplitude distribution. Inset:

average mEPSC amplitudes.

(F) Average mEPSC waveforms (left) and peak-

scaled mEPSC waveforms (right) to illustrate

average kinetics.

*p < 0.05 indicates different from control; **p <

0.01; sample sizes are given in the text. All sum-

mary data are expressed as mean ± SEM. See also

Figure S2.
cells were isolated andmanually sorted, and their mRNAwas lin-

early amplified and used to probe affymetrix microarrays as pre-

viously described (see Experimental Procedures; Sugino et al.,

2006). Expression levels were then compared between the con-

trol and the deprived hemisphere in three biological replicates.

We identified the top 30 differentially expressed transcripts

based on robust expression changes (fold change > 1.5), rank-

ordered by p value (Table 1).

None of the classic activity-regulated genes (such as c-Fos,

Arc, BDNF, or Npas1–4; Flavell and Greenberg, 2008), some of

which (BDNF and Arc) have previously been implicated in synap-

tic scaling (Shepherd et al., 2006; Rial Verde et al., 2006; Ruther-

ford et al., 1998), showed changes in expression that reached

the criterion, likely because the manipulation we used here

(2 days of optic nerve block) is subtle relative to classic activity

deprivation or enhancement paradigms, such as prolonged

enucleation and dark rearing or high K+ and seizure induction

(Flavell and Greenberg, 2008; Nedivi et al., 1993). There was

also no change in expression of AMPAR or other glutamate

receptor subunits. Finally, transcripts coding for a number of

trafficking proteins, regulatory proteins, and kinases previously

implicated in synaptic scaling (including GRIP1, PICK1, Homer1,

PSD-95, Narp1, Plk2, CDK5, DHHC2, CaMKIV, andMeCP2; Tur-
Cell Repor
rigiano, 2012), did not reach the criterion

for altered expression (Table S1).

None of the top differentially expressed

transcripts have previously been impli-

cated in synaptic scaling. These include

Ptprj (a protein tyrosine phosphatase),

Map3k2 (a member of the mitogen-acti-

vated protein [MAP] kinase pathway),

and Dbp (the clock gene D site albumin

promoter binding protein; Table 1). There

were several transcripts involved in ubiq-

uitin processing, including Ube2g1 (a
ubiquitin-conjugating enzyme), Usp48 (a predicted but unchar-

acterized ubiquitin peptidase), and Anapc1 (anaphase promot-

ing complex 1, a member of a large E3 ubiquitin ligase complex),

and several with known or putative involvement in protein

trafficking, including Dync2h1 (cytoplasmic dynein 2 heavy

chain 1), Dlg1 (the trafficking/scaffold protein SAP97), and

Ap3m1 and Ap4m (m subunits of the tetrameric clathrin adaptor

protein complex, or APC, family members AP-3 and AP-4). The

two most significant hits in this group were Ap3m1 (coding for

m3A) and Ap4m (coding for m4), which increased 2.9- and

2.2-fold, respectively (Table 1). None of the other AP-3 or AP-4

subunits showed altered expression, and a second isoform of

Ap3m, Ap3m2 (coding for m3B), was unaffected.

To determine whether these expression changes were pre-

dictive of increased protein levels during synaptic scaling, we

analyzed a subset of these hits using quantitative immunohisto-

chemistry in vitro (Figure 2; Figure S6A). We treated neocortical

cultures with TTX for 6 hr (a period sufficient to induce transcrip-

tion-dependent scaling up in vitro; Ibata et al., 2008; Gainey

et al., 2015); fixed, permeabilized, and stained against SAP97,

m3, or profilin 1; and then quantified the intensity of the signal

within the somatic and dendritic compartments of morphologi-

cally identified pyramidal neurons as described (Figure 2; see
ts 16, 2711–2722, September 6, 2016 2713



Table 1. L4 Pyramidal Neuron Genes with Significantly Altered Expression during Synaptic Scaling

Gene Symbol Fold Change p Value Gene Name and Description Function or Pathway

Upregulated during Scaling

Ube2g1a 60 0.0001 ubiquitin-conjugating enzyme E2G 1 Ub

Ap3m1 2.9 0.0004 clathrin adaptor-related protein complex 3, mA subunit A

Ap4m 2.2 0.0005 clathrin adaptor-related protein complex 4, m subunit A

Usp48 1.9 0.0002 ubiquitin-specific peptidase 48 Ub

Sic7A 1.8 0.0003 solute carrier family 7 (cationic amino acid transporter) T

Arh 2.1 0.0007 Aryl-hydrocarbon receptor St

Cacnb1 1.9 0.0011 calcium channel, voltage dependent, b1 subunit –

Ptprj 3.0 0.0012 protein tyrosine phosphatase, receptor type, J K/P

Dlg1a 17.4 0.0013 disks, large homolog 1 (SAP97) –

Nyap2 2.8 0.0016 neuronal tyrosine-phosphorylated phosphoinositide 3-kinase adaptor 2 K/P

PyCard 3.5 0.0017 PYD and CARD domain containing –

Mtmr15 1.9 0.0018 myotubularin-related protein 15 K/P

Apbh 1.7 0.0019 androgen-binding protein beta St

Tbrg1 6.2 0.0021 transforming growth factor b-regulated gene 1/NIAM –

Pfn1 2.1 0.0022 profilin 1 –

Pggt1b 3.3 0.0022 protein geranylgeranyltransferase type I, b subunit –

Hsdl2 5.6 0.0023 hydroxysteroid dehydrogenase-like 2 St

Abcc1 1.5 0.0023 ATP-binding cassette, subfamily C (CFTR/MRP), member 1 T

Dph3 2.5 0.0024 DPH3 homolog –

Olfr138 1.7 0.0026 olfactory receptor 138 –

Rhbdd2 3.8 0.0026 rhomboid domain containing 2 –

Arfgef1 20 0.0026 ADP-ribosylation factor guanine nucleotide-exchange factor 1 –

Map3k2 2.8 0.0027 mitogen-activated protein kinase kinase kinase 2 K/P

Dbp 2.1 0.0030 D site albumin promoter binding protein –

Downregulated during Scaling

Dync2h1 1.7 0.0003 Dynein cytoplasmic 2 heavy chain 1 –

Sgpp1 2.0 0.0007 sphingosine-1-phosphate phosphatase 1 K/P

Atg5a 2.4 0.0011 autophagy related 5 –

V1ra8 2.0 0.0015 vomeronasal 1 receptor, A8 –

Anapc1a 2.1 0.0021 anaphase promoting complex 1 (E3 ubiquitin ligase complex) Ub

Tceb1 1.5 0.0034 transcription elongation factor B –

A, clathrin adaptor protein complex family; Ub, ubiquitin pathway; St, steroid response; K/P, kinase or phosphatase; T, transporter.
aIntronic probe set. See also Table S1.
also Experimental Procedures; Gainey et al., 2015). Because

there were no reliable commercially available antibodies against

m3 that worked for immunohistochemistry, we generated and

characterized a m3 rabbit polyclonal antibody (see also Experi-

mental Procedures; Figure S3). There is �80% homology

between m3A and m3B (Pevsner et al., 1994), so this antibody

recognizes both m3 subunits but does not recognize other m sub-

units, such as m4 (Figure S3B). SAP97 (Figures 2A–2C, n = 10–24

neurons/condition) and m3 (Figures 2D and 2E, n = 16–23 neu-

rons/condition) increased in a transcription-dependent manner

within pyramidal neuronal dendrites (Figures 2B and 2E) and

somata (Figure 2C) following TTX treatment. Another means of

inducing synaptic scaling up is to express a dominant-negative

form of CaMKIV in pyramidal neurons (Ibata et al., 2008; Pratt

et al., 2011). Like TTX treatment, this significantly increased m3

protein in pyramidal neuron dendrites (Figure 2F, n = 11–13 neu-
2714 Cell Reports 16, 2711–2722, September 6, 2016
rons/condition, p < 0.04). In contrast, the profilin 1 signal was not

significantly elevated by 6 hr TTX treatment (p > 0.07); thus, two

of the three hits tested showed rapid upregulation at the protein

level during synaptic scaling.

AP-3A is a heterotetrameric complex. To determine whether

other subunits increased in tandem with m3, we double-labeled

against m3 and the d subunit d3, which is obligatory for full

AP-3 complex formation (Kantheti et al., 1998; Peden et al.,

2002). Both antibodies recognized endosomal compartments

within the soma and dendrites, and�50% of d3 dendritic puncta

had detectible levels of colocalized m3 (Figure 2G). Although TTX

increased both total m3 (Figure 2H) and m3 at colocalized sites

(Figure 2I, p < 0.05), neither total d3 nor colocalized d3 were

elevated by TTX (Figures 2H and 2I, n = 17–20 neurons/condi-

tion). Thus, consistent with our microarray data, synaptic scaling

is associated with a selective increase in the m3 protein with no



A

D

G H I

E F

B C Figure 2. Activity Deprivation In Vitro In-

creases SAP97 and m3 Protein in Pyramidal

Neurons

(A) Examples of pyramidal neuron dendrites

stained against endogenous SAP97 in control,

6 hr TTX, or 6 hr TTX + ActD treated cultures. Scale

bar, 3 mm.

(B) Intensity of the punctate SAP97 signal in the

dendrites for conditions in (A).

(C) Total intensity of the SAP97 signal from pyra-

midal neuron somata.

(D) Examples of cultured pyramidal neuron den-

drites stained against endogenous m3 in control,

6 hr TTX, or 6 hr TTX + ActD. Scale bar, 5 mm.

(E) Intensity of the punctate m3 signal for conditions

in (D).

(F) Total intensity of the dendritic m3 signal for EV

and dnCaMKIV.

(G) Example of the dendritic double-label against

m3 and d3. Scale bar, 2 mm.

(H and I) Quantification of puncta intensity for all m3

and d3 dendritic puncta (H) and for colocalized

puncta (I) following TTX treatment.

*p < 0.05 indicates different from control; **p <

0.01; sample sizes are given in the text. All sum-

mary data are expressed asmean ± SEM. See also

Figure S3 for m3 antibody characterization.
change in d3. Furthermore, a significant fraction of endosomal

compartments contains detectible m3 without detectible d3

(Figure 2G).

Synaptic Scaling Changes the Endosomal Distribution
of m3
AP-3A, which associates indirectly with AMPAR through m3A

binding to TARPs, has been implicated in the sorting and traf-

ficking of glutamate receptors (Matsuda et al., 2013), suggesting

that transcriptional upregulation of m3A might play a critical role

in synaptic scaling. As expected, immunohistochemistry local-

ized m3 to a number of endosomal compartments within pyrami-

dal neurons (Figures 3A–3F), including a subset of those labeled

with internalized transferrin receptor (TfR, a marker of RE), EEA1

(a marker of EEs), and LAMP1 (a lysosomal marker).

To determine whether TTX increases the accumulation of

m3 within specific endosomal compartments, we performed

double-labeling against m3 and LAMP1 (lysosomes), TfR (RE),
Cell Repor
or EEA1 (EE) and quantified the intensity

of the m3 signal at colocalized sites. The

m3 signal associated with RE and EE

was unchanged in the cell body but was

significantly elevated in the dendrites

(Figures 3G and 3H, n = 9–11 neurons/

condition, p = 0.007 RE, p = 0.017 EE).

In contrast, the m3 signal associated with

the lysosomal compartment decreased

following TTX treatment in the cell body

(Figure 3I, n = 9–14 neurons/condition,

p < 0.01). Thus, TTX reduces the associa-

tion of m3 with lysosomes while increasing

its association with dendritic RE and EE.
TTX did not significantly affect the colocalization rates between

m3 and these various endosomal markers (data not shown). As

a control, we verified that the experimental colocalization rate

between m3 and TfR is significantly higher than expected if the

distribution of m3 were random relative to the TfR signal, as

described (Gainey et al., 2015); we ran the same control for triple

colocalization among GluA2, m3, and TfR and found that the

observed rates were many fold higher than predicted for random

association (Figure S4).

Upregulation of m3A Is Necessary for Synaptic Scaling
To determine whether m3A is necessary for synaptic scaling

up, we designed two small hairpin RNAs (shRNAs) targeted

against two distinct and unique regions of the m3A mRNA to

knock down expression of m3A, an approach that allowed us

to target m3A in an acute and cell-autonomous manner, thus

avoiding circuit level and developmental defects due to pro-

longed loss of m3A. Neurons were transfected with the hairpins
ts 16, 2711–2722, September 6, 2016 2715



A

D

G H I

E F

B C Figure 3. Activity Deprivation Alters the En-

dosomal Distribution of m3 within Pyramidal

Neuron Dendrites

(A–C) Examples of staining in pyramidal dendrites

against endogenous m3 (green) and (A) transferrin-

labeled RE (TfR, red); (B) EE (EEA1, red); and (C)

lysosomes (Lyso; LAMP1, red). Arrows show ex-

amples of colocalized puncta. Scale bars, 2 mm.

(D–F) Quantification of colocalization rates be-

tween m3 and TfR (D), EEA1 (E), and LAMP1 (F).

(G–I) Intensity of m3 puncta in either the cell body or

the dendrites for m3 puncta colocalized with TfR in

RE (G), with EEA1 in EE (H), and with LAMP1 in

lysosomes (I) for control and TTX-treated neurons.

*p < 0.05 indicates different from control; **p <

0.01; sample sizes are given in the text. All sum-

mary data are expressed as mean ± SEM.
or an empty vector (EV), along with EGFP at low efficiency (Fig-

ure S6) for 3 days, and then fixed, stained, and processed for

immunohistochemistry against m3. Both shRNAs reduced the

intensity of m3 staining in the somatic and dendritic compart-

ments to �60% and �40% of control, respectively (Figures

4A and 4B, n = 9–13 neurons/condition, p < 0.05 for soma,

p < 0.01 for dendrite). This likely represents an underestimate

of the degree of m3A KD, because the shRNAs are specific for

m3A but the antibody recognizes both m3A and m3B (Fig-

ure S3B). Importantly, in KD neurons, TTX treatment was not

able to increase m3 expression in either the cell body or the

dendrites (Figure 4C).

Pyramidal neurons transfected with the EV showed normal

synaptic scaling up of mEPSC amplitude following 6 hr TTX

(Figures 4D and 4E, n = 12–16 neurons/condition, p = 0.01). In

contrast, neurons in which m3A had been knocked down using

either shRNA, which target unique and distinct sequences in

the m3A mRNA, failed to show synaptic scaling up (Figures 4D

and 4E, n = 9–11 neurons/condition). Neither shRNA affected
2716 Cell Reports 16, 2711–2722, September 6, 2016
baseline mEPSC amplitude (Figure 4E,

ANOVA, p = 0.61) or frequency (ANOVA,

p = 0.79).

Synaptic scaling in neocortical pyra-

midal neurons operates primarily through

changes in synaptic accumulation of

AMPAR (Turrigiano, 2008), so we next

examined the ability of m3A KD to prevent

the TTX-induced enhancement of sur-

face AMPAR. The intensity of the surface

punctate GluA2 signal was increased

by TTX treatment as expected (Figures

4F and 4G, n = 9–12 neurons/condition,

p = 0.04), and this increase was

completely blocked by m3A KD (Fig-

ure 4G, shm3A#1); similar results were

obtained with GluA1 (data not shown).

Finally, coexpression of an RNAi-insenti-

tive m3A (m3AshR) was able to rescue

the effects of endogenous m3A KD (4G,

shm3A#1 + m3AshR); together with our
earlier data using two distinct hairpins, this shows that the

inability of neurons to undergo synaptic scaling is not the result

of off-target effects of the shRNA.

m3A Is Necessary to Traffic GluA2 to RE during Synaptic
Scaling Up
The preceding data suggest that enhanced expression of m3A is

critical for the regulated delivery of AMPARs to synapses during

synaptic scaling. AMPARs are thought to be mobilized to the

dendritic surface from RE and/or EE (Park et al., 2004), and we

found that dendritic m3A increases in both RE and EE during

synaptic scaling (Figures 3G and 3H). We thus wondered

whether m3A might play an important role in trafficking AMPAR

to these compartments during scaling. To test this, we first

asked whether m3A and GluA2 are colocalized within RE and

whether the amount of GluA2 at such colocalized sites is

affected by TTX treatment. RE were labeled with TfR, and

internal GluA2 was labeled by applying antibody to the surface,

waiting 45 min for receptor internalization, stripping surface
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D

F G

E

B C Figure 4. KD of m3ABlocks Synaptic Scaling

(A) Example staining against endogenous m3 for

control and TTX-treated neurons expressing EV or

the shRNA shm3A#1 in pyramidal dendrites. Scale

bar, 5 mm.

(B) Quantification of the m3 signal for EV, shm3A#1,

and shm3A#2.

(C) Quantification of the m3 signal for EV or

shm3A#1, ±TTX for 6 hr.

(D) Representative mEPSC recording (top trace)

and average mEPSC waveforms ± TTX (bottom

traces) from EV- or shm3A#1-transfected pyra-

midal neurons.

(E) Average mEPSC amplitude for EV-, shm3A#1-,

and shm3A#2-expressing neurons, ±TTX for 6 hr

(TTX).

(F) Examples of staining against endogenous sur-

face GluA2 for neurons expressing EV or shRNA

shm3A#1 or coexpressing shm3A#1 and RNAi-

resistant m3A (m3AshR), ±TTX for 6 hr. Scale bar,

5 mm.

(G) Quantification of the surface GluA2 signal in

dendrites for the conditions in (F).

*p < 0.05 indicates different from control; **p <

0.01; sample sizes are given in the text. All sum-

mary data are expressed as mean ± SEM.
antibody, and then permeabilizing and staining for m3 (Figure 5A;

Tatavarty et al., 2013; Gainey et al., 2015). A significant fraction

of internalized GluA2 puncta were colocalized with m3 in RE

(Figure 5B, left panel, �18% in dendritic compartments), many

fold higher than expected for random colocalization (Figure S4).

Although TTX did not affect the fraction of RE with detectible

GluA2 and m3, there was a significant increase in the intensity

of both the GluA2 and the m3 signal within this population of

dendritic RE following TTX treatment (Figures 5C and 5D, n =

12–13 neurons/condition). Thus, TTX treatment simultaneously

enhances the accumulation of GluA2 and m3 within a subset of

dendritic RE.

Next, we asked whether this TTX-induced enhancement

of GluA2 in RE depends on m3A. Neurons were transfected

with either EV or shm3A, and internal GluA2 in RE was labeled

as earlier (Figure 6A). In the EV condition, TTX treatment
Cell Repor
increased the intensity of the GluA2

signal within the RE compartment, and

this increase was completely blocked

by KD of m3A (Figures 6B and 6C).

This demonstrates that the deprivation-

induced increase in m3A is necessary

for enhanced trafficking of GluA2-con-

taining AMPAR to RE. Interestingly, KD

of m3A did not significantly affect basal

levels of internal GluA2 (Figure 6C, n =

12 neurons/condition, p = 0.40, compare

EV to shm3A), suggesting that the ability

of m3A KD to prevent the TTX-induced

enhancement of surface GluA2 does

not result from a gross defect in basal

trafficking of GluA2 to RE.
To determine whether upregulation of m3A was sufficient to

drive GluA2 to RE, we OE FLAG tagged m3A and quantified the

GluA2 signal within RE as earlier. OE of m3A significantly

increased the intensity of the GluA2 signal within RE (Figure 6D,

EV, n = 46; m3A, n = 43, p = 0.014). In contrast, m3A OE did not

affect the intensity of the GluA2 signal within other endosomal

compartments (Figures S6B and S6C). Next, we asked whether

m3A must interact with the AP-3 complex to traffic GluA2 to RE.

The m3A subunit interacts with the AP-3A complex through its

N-terminal domain and interacts with TARPs (and thus AMPAR)

through its C-terminal domain (Aguilar et al., 1997; Mardones

et al., 2013; Matsuda et al., 2013). Because TTX selectively in-

creases m3A without increasing expression of the other AP-3

subunits, and OE of m3A alone is sufficient to recruit AMPAR to

RE (Figure 6D), we reasoned that m3A might be acting indepen-

dently of the full AP-3 complex during synaptic scaling. To test
ts 16, 2711–2722, September 6, 2016 2717



A

B C D

Figure 5. Activity Blockade Increases the

Abundance of GluA2 in m3-Containing RE

(A) Example images of dendritic labeling for

endogenous internalized GluA2 (IntGluA2, green),

TfR-labeled RE (red), and endogenous m3 (blue).

Arrows indicates example triple colocalized

puncta. Scale bar, 5 mm.

(B) Quantification of colocalization rates for

IntGluA2 with m3 and TfR (left) and for m3 with

IntGluA2 and TfR (right), ±TTX.

(C) Quantification of IntGluA2 intensity at triple

colocalized sites in the cell body or dendrites of

pyramidal neurons, ±TTX.

(D) Quantification of m3 intensity at triple colo-

calized sites in the cell body or dendrites of pyra-

midal neurons, ±TTX.

*p < 0.05 indicates different from control; **p <

0.01; sample sizes are given in the text. All sum-

mary data are expressed asmean ± SEM. See also

Figure S4.
this idea further, we OE a truncated form of m3A that lacks the

N-terminal domain but can still recognize and bind cargo (Mar-

dones et al., 2013). This truncated m3A was still able to traffic

to RE (Figure S5), and like full-length m3A, was able to recruit

GluA2 to RE (Figure 6D, n = 22, p = 0.03).

If the recruitment of GluA2 to RE were sufficient to drive an

increase in synaptic strength during synaptic scaling, then OE

m3A should increase mEPSC amplitude. To test this, neurons

were transfected with EV (n = 8), FLAG-tagged m3A (n = 8), or un-

tagged m3A (n = 10) constructs; neither m3A construct was suffi-

cient to scale up mEPSC amplitude (Figure 6E). Thus, increased

m3A expression is necessary (Figures 4D and 4E) but not suffi-

cient for the regulated recruitment of AMPAR to the synaptic

membrane during synaptic scaling, suggesting that an additional

trafficking step is required to bring internal AMPAR to the synap-

tic membrane. GRIP1 accumulates at sites of exocytosis, as well

as at synapses, and is essential to recruit AMPAR to synapses

during synaptic scaling up (Gainey et al., 2015; Tan et al.,

2015). To determine whether the m3A-dependent trafficking

of GluA2 into the recycling pathway enhances the ability of

GRIP1 to recruit GluA2 to the membrane, we compared surface

levels of endogenous GluA2 after OE of m3A alone, GRIP1 alone,

or m3A + GRIP1 (Figure 6F). While neither alone was sufficient to

significantly increase surface GluA2, the two together produced

a robust recruitment of GluA2 to the membrane (Figure 6G, n =

25–33 neurons/condition, ANOVA followed by post hoc Tukey

test, p = 0.024). Taken together, our data suggest a novel role

for m3A in which selective activity-dependent upregulation of

the m3A (cargo recognition) subunit reroutes AMPARs into the

recycling pathway, where they can then be recruited to themem-

brane during a second trafficking step (Figure S1).

DISCUSSION

To generate insight into the transcription-dependent processes

that induce synaptic scaling up, we devised a cell-type-spe-

cific screen to identify a set of candidate scaling factors with

altered expression during scaling. This screen identified m3A,

the cargo-recognition subunit of the APC family member
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AP-3, as important for sorting and trafficking of membrane-

bound cargo between endosomal compartments. Because of

the known association of m3A with AMPAR, we set out to deter-

mine whether m3A has a role in the regulated changes in AMPAR

trafficking that drive synaptic scaling. We found that activity

blockade reroutes both m3A and GluA2 into RE, without affecting

the d3 subunit, which is obligatory for complex formation. KD of

m3A prevented synaptic scaling and the redistribution of GluA2

into RE, while OE of either full-length m3A or a truncated form

that cannot interact with the AP-3A complex was sufficient to

drive GluA2 to REs. Finally, OE of m3A acted synergistically

with GRIP1 to recruit GluA2 to the cell surface. Taken together,

these data support a model in which excess m3A acts indepen-

dently of the AP-3A complex to reroute AMPAR to RE, from

which they are recruited to the synapse to enhance synaptic

strength during scaling up (Figure S1).

We used an unbiased cell-type-specific profiling approach

(Sugino et al., 2006) that allowed us to probe for persistent tran-

scriptional changes in a population of neurons (L4 star pyramidal

neurons from V1) known to undergo synaptic scaling in response

to visual deprivation during early postnatal development (Desai

et al., 2002). None of the small number of candidates identified

(Table 1) had previously been associated with synaptic scaling.

There is no overlap between this candidate set and transcripts

previously found to be regulated by visual deprivation in V1 of ro-

dents or primates (Nedivi et al., 1996; Lachance and Chaudhuri,

2004; Majdan and Shatz, 2006; Tropea et al., 2006). This is

likely due to large methodological differences in approach;

most importantly, these previous studies probed whole V1

extracts, while here we probe changes in a specific cell type

as these neurons are undergoing synaptic scaling. Because of

the complexity of neocortical circuits and cell types and the

diversity of plasticity mechanisms present (Feldman, 2009;

Nelson and Turrigiano, 2008), this cell-type-specific approach

is likely critical for identifying candidates that are tied to partic-

ular forms of neocortical plasticity, rather than general circuit-

wide responses to deprivation or other activity paradigms.

Interestingly, none of the signaling and trafficking proteins

that have previously been linked to synaptic scaling through a



A

D

F G

E

B C Figure 6. m3 Is Necessary and Sufficient to

Recruit GluA2 toRE andEnhances theAbility

of GRIP1 to Recruit GluA2 to the Dendritic

Surface

(A) Example of the internalized GluA2 signal (green)

within RE (TfR, red). Scale bar, 1 mm.

(B) Dendritic internalized GluA2 signal for EV, EV +

TTX, or shm3A#1 + TTX conditions. Scale bar, 5 mm.

(C) Quantification of the intensity of internalized

GluA2 colocalized with TfR in pyramidal dendrites

transfected with EV or shm3A#1, ± 6 hr TTX.

(D) Quantification of the intensity of internalized

GluA2 colocalized with TfR in pyramidal dendrites

transfected with EV, m3A-FLAG, or truncated m3A-

FLAG.

(E) Average mEPSC amplitude for FLAG or m3A-

FLAG-transfected pyramidal neurons.

(F) Example dendritic staining for surface GluA2

after transfection with FLAG alone, m3A-FLAG,

GRIP1, or m3A-FLAG + GRIP1.

(G) Quantification of the conditions in (F).

*p < 0.05 indicates different from control; **p <

0.01; sample sizes are given in the text. All sum-

mary data are expressed as mean ± SEM. See also

Figures S5 and S6.
candidate approach came up in our screen (Table S1). As

an example, the essential scaling factor GRIP1 is not tran-

scriptionally regulated, consistent with the observation that

although GRIP1 increases at synapses during scaling, this is

not accompanied by an increase in total GRIP1 protein (Gainey

et al., 2015). This underscores the point that synaptic scaling in-

volves the activity-dependent regulation of several AMPAR traf-

ficking steps, only some of which are regulated at the level of

transcription.

We chose to focus on m3A because AP-3 plays a role in traf-

ficking of receptors into dendrites and/or to the neuronal surface
Cell Repor
(Matsuda et al., 2008; Bendor et al., 2010)

and, more recently, AP-3A has been

shown to interact with AMPAR through

an indirect association involving m3A bind-

ing to the TARP stargazin (STG), an asso-

ciation that is important for the induction

of long-term depression (LTD) (Matsuda

et al., 2013). None of the tetrameric APC

family member subunits were previously

known to exhibit activity-dependent tran-

scriptional regulation, whereas here we

find that both m3A and m4 (but not any

other subunits of either APC) were upre-

gulated by day 2 of visual deprivation.

AP-3A is primarily known for a role in

sorting cargo from the Golgi or EE to lyso-

somes or lysosome-related organelles

(LROs) (Dell’Angelica, 2009; Dell’Angelica

et al., 1997; Peden et al., 2004), and during

LTD, the association of m3A with stargazin

enhances the trafficking of AMPAR to ly-

sosomes (Matsuda et al., 2013). Thus, it
was a surprise to find that during synaptic scaling, the upregula-

tion of m3A leads to enhanced accumulation of m3A and AMPAR

within the RE compartment and a reduction in the association of

m3A with lysosomes. These data show that the localization of

m3A is dynamic and can be regulated by activity to redirect cargo

(in particular, AMPAR) into the recycling endocytic pathway.

The RE compartment has been shown to be critical for supply-

ing AMPAR during LTP (Hanley, 2010; Park et al., 2004), but

whether they also supply AMPAR for synaptic scaling has

been less clear (Gainey et al., 2015; Tan et al., 2015). Interest-

ingly, although an increase in m3A is necessary for scaling, and
ts 16, 2711–2722, September 6, 2016 2719



is necessary and sufficient to drive AMPAR to RE, it is not suffi-

cient to increase mEPSC amplitude. This suggests that once

AMPAR are rerouted into the recycling pathway by m3A, they

must still be recruited to the synaptic membrane in a second

activity-dependent trafficking step. The GluA2-interacting pro-

tein GRIP1 plays a critical role in recruiting AMPAR from internal

endosomal compartments to the synaptic membrane during

synaptic scaling (Gainey et al., 2015; Tan et al., 2015). Here

we show that when m3A and GRIP1 are OE together, they can

act synergistically to enhance surface AMPAR accumulation,

providing direct experimental support for a two-step trafficking

model in which m3A recruits AMPAR into the recycling pathway,

where they can then be recruited to and stabilized by GRIP1 at

the synaptic membrane (Figure S1).

Systemic loss of functional AP-3 causes endosomal trafficking

defects, Hermansky-Pudlak syndrome, and neurological symp-

toms (Kantheti et al., 1998; Lane and Deol, 1974; Peden et al.,

2002; Seong et al., 2005; Sirkis et al., 2013; Swank et al., 2000;

Yang et al., 2000). These have mainly been ascribed to defects

in lysosomal trafficking and/or biogenesis of LROs. Our data

suggest that the m3A subunit traffics AMPAR away from lyso-

somes and into the recycling pathway by acting independently

of the full AP-3 complex. Three main pieces of evidence support

this idea. First, while m3A is upregulated during synaptic scaling,

the d3 subunit is not. Because the d3 subunit is obligatory for for-

mation of both the AP-3A and the AP-3B complexes (Kantheti

et al., 1998; Peden et al., 2002), this suggests that either m3A

is limiting for complex formation or that activity-induced m3A is

not acting as part of the complex. The latter interpretation is

favored by the observation that the intensity of the m3A signal in-

creases even in endosomal compartments with no detectible d3.

Second, we find that OE of m3A alone is sufficient to recruit

AMPAR to RE and to enhance the ability of GRIP1 to recruit

AMPAR to the dendritic membrane. Finally, OE of a truncated

m3A that cannot interact with the AP-3 complex is also able to re-

cruit AMPAR to RE. These data show that selectively increasing

m3A is able redirect AMPAR into the recycling pathway, possibly

by protecting AMPAR from association with the full AP-3 com-

plex. Once in the recycling pathway, they can be recruited to

the synapse during a subsequent trafficking step, likely involving

GRIP1 (Figure S1).

Taken together, our data identify m3A as an essential transcrip-

tion-dependent switch point that can redirect AMPAR to RE dur-

ing synaptic scaling. These data show that both scaling up and

LTP share a common reliance on AMPAR trafficking to the RE

compartment (Ehlers, 2000; Park et al., 2004). Furthermore,

AP-3 is important for trafficking AMPAR to lysosomes during

LTD (Matsuda et al., 2013). This raises the possibility that

competition between AP-3 and m3A for the binding and sorting

of AMPAR is a key mechanism underlying several distinct forms

of synaptic plasticity.
EXPERIMENTAL PROCEDURES

All experiments were approved by the Brandeis Animal Care and Use Commit-

tee and were in accordance with NIH guidelines. Experiments were performed

on animals of both sexes. Detailed methods are provided in Supplemental

Experimental Procedures. Briefly, cultures were prepared and transfected
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72 hr before recording or staining as described (Pratt et al., 2003). For culture

physiology, mEPSC recordings were obtained from visually identified pyra-

midal neurons and analyzed as described previously (Turrigiano et al., 1998;

Wierenga et al., 2005). At P12 or P13, HsCt5 mice were subjected to

monocular deprivation by intraocular injection of TTX (1 mM) as described

(Desai et al., 2002; Maffei and Turrigiano, 2008); injections were performed

twice (at P12 or P13 and then again at P13 or P14) to maintain the block for

48 hr. For slice electrophysiology, coronal brain slices from HsCt5 mice

(300 mm) containing monocular primary visual cortex (V1m) were prepared

from control and deprived hemispheres (P14–P15) and recordings were ob-

tained from labeled neurons as described (Maffei et al., 2006; Loebrich

et al., 2013).

Microarray Screen

Isolation of labeled neurons, RNA preparation, and microarray screening

from L4 V1 from the HsCt5 line was performed as described previously (Su-

gino et al., 2006; Hempel et al., 2007), using 30 to 50 labeled cells from

either the deprived or the control hemisphere for each of three replicates.

To stabilize the probe effects (i.e., probe-specific sources of variance), we

used an approach similar to the frozen robust multiarray analysis (fRMA)

method developed by McCall et al. (2010); details are given in Supplemental

Experimental Procedures. Data were filtered by fold change > 1.5, and the

top 30 probes (ranked by p value) annotated to RefSeq genes were included

in Table 1.

Antibody Generation and Characterization

A rabbit anti-m3 polyclonal antibody was raised against the peptide DMYGEK

YKPFKGVKY (LifeTein, residues 393–407) by Cocalico Biologicals. Bleeds

were examined and specificity was confirmed by western blot analysis against

cortical extracts, and 293 lysates (ATCC) transfected with Ap3m1, Ap3m2, or

Ap4m1-mCherry expression vectors. Immunohistochemical staining was

abolished by preabsorption with the peptide used to generate the antibody

(Figure S3C) andwas decreasedwhenmu3Awas knocked down by RNAi (Fig-

ures 4A–4C).

Statistical Analysis

Data are presented as mean ± SEM for the number of neurons indicated. Each

experiment was repeated on at least three separate animals or dissociations,

and the n values represent the number of neurons. To determine statistical

significance, unpaired two-tailed Student’s t tests—or, for multiple compari-

sons, single-factor ANOVAs followed by a Tukey test or a Kruskal-Wallis test

followed by a Dunn-Bonferroni post hoc test—were run as appropriate.

p values % 0.05 were considered significant.
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