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Abstract

In this note, we study the behavior of independent sets of maximum probability measure in tensor graph powers. To do this,
we introduce an upper bound using measure preserving homomorphisms. This work extends some previous results concerning
independence ratios of tensor graph powers.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The graphs in this note can have infinite number of vertices. A homomorphism from a graph H to a graph G is a map
h from the vertices of H to the vertices of G such that h(u)h(v) is an edge in G for every edge uv ∈ E(H). For every
graph G, we assume that there is a probability measureµG on the vertices of G. A homomorphism h : V (H)→ V (G)
is measure preserving if h is measurable and for every measurable S ⊆ V (G), µH (h−1(S)) = µG(S). By H → G,
we mean that there exists a measure preserving homomorphism from H to G.

Definition 1. Let G be a graph with the probability measure µG on its vertices. We call G vertex transitive if

1. there exists a set S of measure preserving homomorphisms φ : V (G)→ V (G);
2. there exists a probability measure ν on S such that for almost every v ∈ V (G), φ(v) has the same distribution as
µG when φ is chosen according to ν.

Note that for a finite graph with the uniform measure, this definition coincides with the known definition of vertex
transitivity of finite graphs (take S to be the group of automorphisms of G with the uniform measure).

The tensor product of two graphs, G and H , has vertex set V (G) × V (H), where (u, v) and (u′, v′) are adjacent
if and only if uu′ ∈ E(G) and vv′ ∈ E(H). The measure on the new vertex set is the product measure. The
characteristics of tensor products of graphs have been studied extensively (for example see [4,6]).
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Let Gn be the tensor product of n copies of G. For a graph G, define α(G) := supI µG(I ), where I is a measurable
independent set. It is easy to see that if H → G, then α(H) ≥ α(G) and Hn

→ Gn . Since Gi+1
→ Gi , this

in particular implies that α(Gn) is a nondecreasing sequence, and limn→∞ α(Gn) exists. For finite graphs when
the corresponding measure is the uniform probability measure on the vertices this limit has been previously studied
(see [4,2]) under the name of the ultimate categorical independence ratio. For a finite vertex transitive graph H with
the uniform measure, it is known that α(Hn) = α(H) (see [1]). We prove an infinite version of this fact:

Lemma 1. Let H be a (possibly infinite) vertex transitive graph. Then for any positive integer n,

α(Hn) = α(H).

Proof. Since α(Hn) ≥ α(H), it is enough to prove that α(Hn) ≤ α(H). According to Definition 1, there exists a
probability measure ν on a set S such that together they satisfy Definition 1 (properties 1, 2). Consider an arbitrary
measurable independent set I ⊆ Hn and for a vertex w ∈ Hn denote by [w ∈ I ] the function that is 1 if w ∈ I and 0
otherwise. Note that

µHn (I ) = Pr
vi∈V (H)

[(v1, . . . , vn) ∈ I ] = Pr
φi∈S,v∈V (H)

[(φ1(v), . . . , φn(v)) ∈ I ].

Thus, there exists a choice of φ1, . . . , φn such that

µHn (I ) ≤ Pr
v∈V (H)

[(φ1(v), . . . , φn(v)) ∈ I ]

= µ({v : (φ1(v), . . . , φn(v)) ∈ I, v ∈ V (H)}).

But {v : (φ1(v), . . . , φn(v)) ∈ I } is an independent set in H because I is an independent set and {φi } are
homomorphisms. Thus we obtain that µHn (I ) ≤ α(H) which completes the proof. �

We call a vertex transitive graph H a descriptor of G if H → G. Thus, for a descriptor H , we have

α(H) = lim
n→∞

α(Hn) ≥ lim
n→∞

α(Gn).

Now, define u(G) as below:

u(G) = inf
descriptorH

α(H).

Trivially, we have

lim
n→∞

α(Gn) ≤ u(G). (1)

This raises the following question:

Question 1. Does every finite graph G satisfy limα(Gn) = u(G)?

This question is inspired by the work of Dinur and Friedgut [5], in which measure preserving homomorphisms are
used to give a new proof for an Erdös–Ko–Rado-type theorem. We study the behavior of limα(Gn) for graphs with
probability measures. This is closely related to and can be considered as the generalization of some resultsin [4,2].

2. The results

For the following lemma an analogous form appears in [4] for graphs without measure, which is re-proved in [2]
using ideas similar to what we are using here. This lemma is the generalization of the Brown et al. result to graphs
with probability measures.

Lemma 2. For every finite graph G, if limα(Gn) > 1
2 , then limα(Gn) = 1.
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Proof. If limα(Gn) > 1
2 , then there exists a positive integer i such that α(Gi ) > 1

2 . Letting H = Gi , trivially
limα(Hn) = limα(Gn). Let I be an independent set of measure 1

2 + ε of H . Define J ⊆ V (Hn) as the set of
vertices with strictly more than half of the coordinates in I . Clearly, J is an independent set of Hn . To prove that
α(Hn) = 1, it suffices to prove that as n goes to infinity a random vertex which is taken from Hn with respect to
µHn is in J almost surely. Let X i be an indicator random variable such that X i = 1 if the i th coordinate of the
random vertex belongs to I and X i = 0 otherwise. As a result, we have E[X i ] = α(H) and the mean and variance
of X i are finite. Thus, by applying the weak law of large numbers for the random variable X = 1

n

∑n
i=1 X i , we

obtain limn→∞ P(|X − α(H)| < ε′) = 1 for every positive real ε′. Therefore, X is greater than 1
2 almost surely, as

desired. �

Now, we characterize the graphs for which limα(Gn) = 1 and, by using this, we present some classes of graphs
satisfying limα(Gn) = u(G). It should be noted that for Lemmas 3 and 4, analogous forms appear in [2] for graphs
without measures.

Lemma 3. For every finite graph G, if u(G) = 1 then there exists an independent set I ⊆ V (G) such that
µG(I ) > µG(N (I )), where N (I ) is the set of the vertices in V (G) that are adjacent to at least one vertex in I .

Proof. Suppose that every independent set I ⊆ V (G) satisfies µG(I ) ≤ µG(N (I )). We claim that for all Q ⊆ V (G),
we have µG(Q) ≤ µG(N (Q)). Suppose that for a Q ⊆ V (G), we have µG(Q) > µG(N (Q)). Let I be the set of
all vertices of Q without any neighbor in Q. Clearly, I is an independent set and since µG(Q) > µG(N (Q)), I is
nonempty. Let Q′ = Q \ I . Hence, Q′ ⊆ N (Q) and N (I ) ⊆ N (Q) \ Q′. Therefore,

µG(N (I )) ≤ µG(N (Q))− µG(Q
′) < µG(Q)− µG(Q

′) = µG(I ),

a contradiction.
Now let G ′ = G× K2, where K2 = uv has the uniform measure. It is clear that X = {(z, u) ∈ V (G ′) : z ∈ V (G)}

and Y = V (G ′) − X is a bipartition of G ′. Consider a flow network with vertices V (G ′) ∪ {s, t} and nonnegative
capacities c(s, x) = µG ′(x), and c(y, t) = µG ′(y), for x ∈ X and y ∈ Y , and c(x, y) = ∞ if xy ∈ E(G ′). All the
other capacities are 0. Let (S, T ) be a minimum cut of this network with capacity c(S, T ). By the structure of the flow
network, we have c(S, T ) ≤ 1

2 . Now, let X1 = S ∩ X , Y1 = S ∩Y , X2 = T ∩ X , and Y2 = T ∩Y . Since c(x, y) = ∞
if xy ∈ E(G ′), there is no edge between X1 and Y2. Therefore, X1 ∪ Y2 is an independent set in G ′. Since for all
Q ⊆ V (G), µG(Q) ≤ µG(N (Q)), we have µG ′(X1) ≤ µG ′(N (X1)) and µG ′(Y2) ≤ µG ′(N (Y2)), which yields
µG ′(X1) + µG ′(Y2) ≤ µG ′(N (X1)) + µG ′(N (Y2)). Thus, we obtain µG ′(X1) + µG ′(Y2) ≤

1
2 . Therefore, we have

µG ′(X2)+ µG ′(Y1) ≥
1
2 and because c(S, T ) = µG ′(X2)+ µG ′(Y1), we obtain c(S, T ) = 1

2 . Thus by the max-flow
min-cut theorem, the value of a maximum flow f must be equal to 1

2 .
Now by using the maximum flow f , we construct a descriptor graph H for G ′ together with the measure preserving

homomorphism h : H → G ′ as follows. The vertices of H are the elements of the interval [0, 1) endowed with the
(uniform) Lebesgue measure, and E(H) = {{a, a + 1

2 } : a ∈ [0,
1
2 )}. It is easy to see that H is vertex transitive. Now

we have to specify h. For xy ∈ E(G ′), let fxy denote the amount of the flow that passes through this edge. Since the
value of f is equal to 1

2 , we have
∑

xy∈E(G ′) fxy =
1
2 . So it is possible to partition the interval [0, 1

2 ) into disjoint

intervals in the following way: [0, 1
2 ) =

⋃
xy∈E(G ′)[axy, axy + fxy), where axy ≥ 0. Now h is defined, as for every

z ∈ V (G ′) = X ∪ Y ,

h−1(z) =


⋃

y: zy∈E(G ′)

[azy, azy + fzy) if z ∈ X

⋃
x : xz∈E(G ′)

[
1
2
+ axz,

1
2
+ axz + fxz

)
if z ∈ Y.

It is not hard to see that h is a measure preserving homomorphism from H to G ′. Since G ′→ G, H is a descriptor
of G. Hence, we have u(G) ≤ 1

2 . �

Lemma 4. For every finite graph G, if there exists an independent set I ⊆ V (G) such that µG(I ) > µG(N (I )), then
limα(Gn) = 1.
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Proof. Let U = V (G)\ (I ∪ N (I )). Let mn = α(Gn). Trivially, µG(I )+µG(N (I ))+µG(U ) = 1, m1 ≥ µG(I ) and
µG(U ) < 1. Consider the union of the vertices with first coordinate in I and the vertices with first coordinate in U
and last n−1 coordinates in the maximum measure independent set of Gn−1. It can be seen that this is an independent
set and we have mn ≥ µG(I )+ µG(U )mn−1. By applying this inequality repeatedly, we obtain

mn ≥ µG(I )+ µG(I )µG(U )+ · · · + µG(U )
n−1.m1

≥ µG(I )+ µG(I )µG(U )+ · · · + µG(I )µG(U )
n−1
=
µG(I )− µG(I )µG(U )n

1− µG(U )
.

Thus, we have limn→∞ mn ≥
µG (I )

1−µG (U )
=

µG (I )
µG (I )+µG (N (I ))

> 1
2 , and by Lemma 2, we have limα(Gn) = 1. �

Theorem 1. For every finite graph G, the following are equivalent:
(i) limα(Gn) = 1;

(ii) u(G) = 1;
(iii) there exists an independent set I ⊆ V (G) such that µG(I ) > µG(N (I )).

Proof. (i) implies (ii) by the inequality (1), (ii) implies (iii) by Lemma 3, and (iii) implies (i) by Lemma 4. �

Corollary 1. For every finite graph G, if limα(Gn) ∈ { 12 , 1} then limα(Gn) = u(G).

Remark 1. It is not hard to see that for graphs with rational measures, Theorem 1(i) directly yields Theorem 1(iii). To
prove this, it can be shown that if the condition Theorem 1(iii) does not hold, a graph H could be found which satisfies
both H → G and Tutte’s 1-factor theorem. Thus, this graph has a perfect matching M and limα(Gn) ≤ α(M) ≤ 1

2 .
To generalize this to graphs with real measures, a density argument by Noga Alon can be used [3]. The sketch of this
proof is as follows: Suppose that the statement of Theorem 1(iii) does not hold, and let V = {v1, v2, . . . , vm}. The
set of all points (ν(v1), ν(v2), . . . , ν(vm)) in Rm satisfy ν(vi ) ≥ 0 for i = 1, . . . ,m,

∑m
i=1 ν(vi ) = 1, and for every

independent set I ⊆ V (G), ν(I ) ≤ ν(N (I )) is a nonempty convex polytope with rational vertices. Thus, µG is a
convex combination of rational measures and for fixed integer n > 0 and ε > 0, there exists a rational measure ν
in this polytope satisfying |µGn (T ) − ν(T )| ≤ ε for every independent set T ⊆ V (Gn). Now by the result for the
rational case (mentioned above), it is not hard to see that for every n, limα(Gn) ≤ 1

2 .

Corollary 1 presents a family of graphs for which equality holds in Question 1. Trivially, finite vertex transitive
graphs are another family of graphs for which equality holds in Question 1. In the next proposition, we show that this
family also contains bipartite graphs. For Proposition 1 an analogous form appears in [4] for graphs without measure.

Proposition 1. For a finite bipartite graph G, we have limα(Gn) ∈ { 12 , 1}.

Proof. Let X and Y be a bipartition of G. The set of the vertices of Gn whose first coordinates are in X and the set of
the vertices of Gn whose first coordinates are in Y is a bipartition of Gn . Thus, for the bipartite graph Gn , α(Gn) ≥ 1

2 .
Therefore, by Lemma 2, we obtain limα(Gn) ∈ { 12 , 1}. �
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