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a b s t r a c t

The main goal of this paper is to derive long time estimates of the energy for the higher
order hyperbolic equations with time-dependent coefficients. In particular, we estimate
the energy in the hyperbolic zone of the extended phase space by means of a function f (t)
whichdepends on the principal part and on the coefficients of the terms of orderm−1. Then
we look for sufficient conditions that guarantee the same energy estimate from above in all
the extended phase space. We call this class of estimates hyperbolic-like since the energy
behavior is deeply depending on the hyperbolic structure of the equation. In some cases,
these estimates produce a dissipative effect on the energy.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Let m ≥ 2. We consider in [0,∞)× R the Cauchy problem for the following m-th order equation with time dependent,
regular coefficients:∂

m
t u −

m−1
j=0

aj(t)λ(t)m−j∂
j
t∂

m−j
x u + bm−1,0(t)∂m−1

t u +

m−2
j=0

m−1−j
k=1

bj,k(t)λ(t)k∂
j
t∂

k
xu = 0,

∂
j
tu(0, x) = uj(x), j = 0, . . . ,m − 1.

(1)

We assume that the coefficients aj(t) of the principal part are bounded whereas λ(t) > 0 may be unbounded. The function
λ(t)will describe the behavior of the speed of propagation. We remark that in (1) there are no terms with zero derivatives
in x but ∂mt u and bm−1,0(t)∂m−1

t u. For the sake of simplicity, we consider (1) in one space dimension, but our arguments can
be easily extended to x ∈ Rn, n ≥ 2.

It is well known that if the coefficients are sufficiently regular and the equation is strictly hyperbolic then the Cauchy
problem (1) is C∞ well-posed with no loss of regularity. Moreover, denoting by

E(t) =

m−1
j=0

∥∂
j
tu(t, ·)∥

2
Hm−1−j , (2)

the energy for the solution u(t, x) to (1), then E(t) ≤ CTE(0) for any t ∈ [0, T ], with CT > 0 (see, for instance, [10]). Indeed,
information on the long time behavior of the energy is interesting for many reasons. For instance, it can provide a basis
to derive Strichartz decay estimates [15]. We refer the interested reader to [14] for dispersive and Strichartz estimates for
solutions of higher order equations with constant coefficients.
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On the other hand, it is interesting to study the behavior of the homogeneous λ-energy

Eλ(t) =

m−1
j=0

λ(t)2(m−1−j)
∥∂

j
t∂

m−1−j
x u(t, ·)∥2

L2 , (3)

deriving estimates in the form Eλ(t) ≤ Cd(t)E(0) uniformly in [0,∞), for some function d(t) (see (25)).
The study of the λ-energy has been recently developed [11–13] for second-order wave-type equations of the form

utt − λ(t)2uxx + b(t)ut = 0, (4)

by assuming regular coefficients with controlled oscillations. If λ ≡ 1 and b(t) ≥ 0 then the presence of the damping term
b(t)ut produces dissipative effects on the wave energy

∥ut(t, ·)∥2
L2 + ∥ux(t, ·)∥2

L2 ,

which can be used as a basis to derive decay estimates [9,16–20]. These decay estimates are a useful tool in the study of
nonlinear estimates [3,5].
On the other hand, if b ≡ 0 and λ(t) → ∞ with λ′(t) > 0, then Eλ(t) ≤ Cλ(t)E(0) (see [6]). In particular, the elastic energy
∥ux(t, ·)∥2

L2
dissipates with a speed estimated by λ(t)−1.

In the recent paper [2], we obtained estimates for the λ-energy of (4), which take into account effects coming from both
λ(t) and b(t). We also derived results in the presence of a drift term b1(t)ux and a small negative mass term −m(t)2u. The
approach in [2] gave hint on how to determinate and study possible dissipative effects for higher order equations of a special
class what we called hyperbolic-like.
As far as we know, it is not yet clear how to determinate dissipative terms for higher order equations written in a general
form. In this paper we delineate a strategy, stating some sufficient conditions which can be tested on different models.
We call the class of estimates that we study hyperbolic-like because the control that we derive for the energy is derived
by estimating the pointwise energy in the hyperbolic zone of the extended phase space [0,∞) × Rn. This zone contains
frequencies ξ that are largewith respect to some function depending on t related to the speed of propagation λ(t). In some
cases, the obtained estimates will represent a dissipative effect in a sense which will be clarified in Remark 10.

1.1. The almost-positivity property

In this paper, we are going to deal with long time integral inequalities. To deal with them we will make use of some
assumption on the coefficients of (1). For the ease of readiness, in the next paragraph we introduce a property which comes
into play in our hypotheses andwhich generalizes the positivity of a function in away suitable for our purposes. This property
has been recently introduced in [2].

Notation 1. Let f , g : [0,∞) → (0,∞) be two strictly positive functions.We use the notation f ≈ g if there exist constants
C1 and C2 such that C1g(t) ≤ f (t) ≤ C2g(t) for all t ≥ 0. If the inequality is one-hand sided, namely, if f (t) ≤ Cg(t) (resp.
f (t) ≥ Cg(t)) for all t ≥ 0, then we write f . g (resp. f & g).
In particular f ≈ 1 means that C1 ≤ f (t) ≤ C2 for some constants C1, C2.

Definition 1. Let a : [0,∞) → R be a continuous function. We say that a(t) is almost-zero, and we denote it by a(t) =(a) 0,
if there exists a constant C > 0 such that

− C ≤

 t

0
a(τ ) dτ ≤ C, (5)

that is, if each of its primitive integrals is bounded. We say that a1 : [0,∞) → R is almost-positive, and we denote
it by a1(t) ≥(a) 0, (or, respectively, almost-negative, a1(t) ≤(a) 0) if there exists a almost-zero function a(t) such that
a1(t)− a(t) ≥ 0 (or, respectively, ≤ 0).
Clearly, we say that two functions a1, a2 : [0,∞) → R are almost-equal and we write a1(t) =(a) a2(t), if a1(t) − a2(t) is
almost-zero, whereas we say that a1(t) is almost-greater than a2(t) and we write a1(t) ≥(a) a2(t) if a1(t)− a2(t) is almost-
positive.

Remark 1. A continuous function a : [0,∞) → R is almost-positive if a(t) ≥ 0 in [T ,∞) for some T ≥ 0.

Remark 2. Let a : [0,∞) → R be a continuous function, and let A : [0,∞) → (0,∞) be defined by

A(t) := exp
 t

0
a(τ ) dτ


. (6)

Then a(t) is almost-positive (respectively almost-negative) if, and only if, there exists an increasing (respectively decreasing)
function g : [0,∞) → (0,∞) such that A ≈ g . Trivially, a(t) =(a) 0 if, and only if, A ≈ 1.
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In particular, it is clear that if a(t) ≥(a) 0 (respectively a(t) ≤(a) 0) then A(t) in (6) is bounded by a positive constant from
below, i.e. A(t) ≥ C1 > 0 (respectively from above, i.e. A(t) ≤ C2).

Remark 3. Let a(t) ≥(a) 0 and let A : [0,∞) → (0,∞) be as in (6). Let f : [0,∞) → [0,∞) be a continuous function.
Then, for any s ≤ t , we can estimate t

s
A(τ )f (τ ) dτ . A(t)

 t

s
f (τ ) dτ ; A(s)

 t

s
f (τ ) dτ .

 t

s
A(τ )f (τ ) dτ .

Analogously if a(t) ≤(a) 0 or a(t) =(a) 0.

2. Main result

First we introduce the instruments to construct the function d(t)which will provide the estimate for the λ-energy Eλ(t)
in (3).

We assume that the equation in (1) is λ(t)-scaled uniform strictly hyperbolic.

Hypothesis 1. We assume that them roots τi(t) of

P (t, τ ) :=
p(t, λ(t)τ )
λ(t)m

≡ τm −

m−1
j=0

aj(t)τ j = 0, (7)

are real-valued and that they verify the following condition:

0 < C ≤ ∆(t) =


i≠l

(τi(t)− τl(t))2, t ≥ 0. (8)

In particular, from (8) and from the boundedness of the coefficients aj(t), it follows that the speed of propagation of the
equation in (1) is given by λ(t).

Remark 4. We remark that the roots τi(t) in Hypothesis 1 are the eigenvalues of the matrix

A(t) :=


0 1 · · · 0
...

. . .
...
0

0 · · · 0 1
a0(t) a1(t) · · · am−1(t)

 . (9)

We also assume a sufficient condition to exclude effects coming from the first derivatives of the roots of (7) on the long-
time behavior of the energy. We notice that, by virtue of (8), the regularity of τi(t) will follow from the regularity of the
coefficients aj(t) (see later in Hypothesis 4).

Hypothesis 2. We assume that the roots τi(t) of (7) satisfy the following condition:

τ ′

i (t)
τi(t)− τk(t)

=(a) 0, for any k ≠ i. (10)

We may now construct them scalar functions fi(t)which will determinate the estimate for Eλ(t) in Theorem 1.

Definition 2. Let Vj be them-th order Vandermonde vector related to τj, that is,

Vj :=

1, τj, . . . , τm−1

j

T
,

and let

Coeff[p] := (αm−1, . . . , α1, α0) ,

where Coeff[p] is the vector of the coefficients of a polynomial p(τ ) =
m−1

k=0 αk τ
m−1−k. It follows that p(τj) = Coeff[p] · Vj.

We put

Wi(t) := Coeff[Pi](t),
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where Pi(t, τ ) is the polynomial in τ given from

Pi(t, τ ) =
P(t, τ )
τ − τi(t)

=


l≠i

(τ − τl(t)) .

Moreover, we define

W ♯

i (t) := Coeff♯[Pi](t), where Coeff♯[p] := ((m − 1)αm−1, (m − 2)αm−2, . . . , α1, 0) .

Remark 5. It is easy to check that Wi(t) is a left eigenvector of A(t) related to τi(t), whereas Vj(t) is a right eigenvector of
A(t) related to τj(t). Since

Wi(t) · Vj(t) = δ
j
iPi(t, τi(t)),

if we put Ṽj(t) = Vj(t)/Pj(t, τj(t)), it follows that

N(t) := (W1(t), . . . ,Wm(t))T , N−1(t) =


Ṽ1(t), . . . , Ṽm(t)


, (11)

is a diagonalizer for A(t), namely,

N(t)A(t)N−1(t) = D(t) := diag(τ1(t), . . . , τm(t)).

The diagonalizer N(t) is bounded as A(t), and uniformly regular thanks to (8), being detN(t) =
√
∆(t).

Moreover, let A0 be the m × m diagonal matrix defined by

A0 := diag(m − 1,m − 2, . . . , 1, 0). (12)

It follows thatWj(t) · A0 = W ♯

j (t).

We refer the interested reader to [7,8] for more details concerning the construction of the diagonalizer in (11).

Definition 3. Let us define m scalar functions fi : [0,∞) → R as the inner products

fi(t) :=


(λ′(t)/λ(t))W ♯

i (t)+ (bm−1(t))


· Ṽi(t), (13)

for any i = 1, . . . ,m, where the vector (bm−1(t)) depends on the coefficients of the terms of order m − 1 in (1) and it is
given by

(bm−1(t)) =

−b0,m−1(t),−b1,m−2(t), . . . ,−bm−1,0(t)


.

We remark that the functions fi(t) depend only on the coefficients of the terms of orderm and m − 1 in (1).
To state our assumptions on the coefficients of the equation in (1) we introduce some auxiliary functions.

Hypothesis 3. Let λ ∈ C2 be a strictly positive function, with λ ∉ L1 and λ(0) = 1. We define

Λ(t) := 1 +

 t

0
λ(τ)dτ , (14)

η(t) :=
λ(t)
Λ(t)

, (15)

and we assume that

|λ(k)(t)|
λ(t)

. η(t)k, for k = 1, 2. (16)

We remark that the function η(t) in (15) plays a fundamental role in our approach, and its properties are related to the speed
of propagation λ(t).

Remark 6. It is easy to prove that

λ′(t)
λ(t)

=
η′(t)
η(t)

+ η(t). (17)

We assume that the coefficients bj,k of the terms of order j + k in the equation in (1) are bounded by η(t)m−(j+k). Since we
have in mind to use a C2 diagonalization procedure, we also assume a similar condition on a′

j(t), a
′′

j (t), and on b′

j,k(t) for
j + k = m − 1.
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Hypothesis 4. We assume that the coefficients aj ∈ C2 and bj,m−1−j ∈ C1 are real-valued, whereas the coefficients bj,k ∈ C
for j + k ≤ m − 2 may be complex-valued. Moreover we assume the following:

|a(ℓ)j (t)| . η(t)ℓ, for ℓ = 0, 1, 2, (18)

|b(ℓ−1)
j,m−1−j(t)| . η(t)ℓ, for ℓ = 1, 2, (19)

|bj,k(t)| . η(t)m−(j+k), for any j + k ≤ m − 2. (20)

Hypothesis 5. We assume that

η′(t)
η(t)

≤(a) δη(t), for any δ > 0. (21)

Remark 7. In fact, property (21) is very natural. In particular, it trivially holds if η(t) is monotonic. Indeed, if η(t) is
decreasing then η′(t) ≤ 0 and (21) is trivially satisfied, whereas if η(t) is increasing then η′(t)/η(t)2 is integrable, since

∞

s

η′(τ )

η(τ )2
dτ ≤

1
η(s)

≤
1
η(0)

.

In particular, 0 ≤ η′(t)/η(t)2 → 0 as t → ∞ therefore (21) follows (see Remark 1). Analogously if η′(t)/η(t) ≤(a) 0 or
η′(t)/η(t) ≥(a) 0.

We are now ready to state our first result.

Theorem 1. Let us assume Hypotheses 1–5. Let f : [0,∞) → R be a function with constant sign, such that

fi(t) ≤(a) f (t), for any i = 1, . . . ,m. (22)

Moreover, let us assume that there exists r ∈ [0, 1) such that

− bm−1,0(t) ≤(a)
η′(t)
η(t)

+ (1 − r) η(t) ≤(a) f (t). (23)

Then the solution to (1) satisfies the following energy estimate:

Eλ(t) ≤ C d(t)E(0), (24)

where d(t) is given by

d(t) = exp

2
 t

0
f (σ ) dσ


. (25)

The proof of Theorem 1 will be divided in several steps (see Sections 4 and 6).

Remark 8. Condition (23) means that the estimate in (24), which is related to the function f (t) satisfying (22), is hyperbolic-
like. That is, the decay function d(t) is related to the contribution coming from the functions fi(t) deriving from the
diagonalization procedure. Then we assume condition (23) to exclude possible perturbations coming from the low-
frequencies (see Section 6).
In fact, the range r ∈ [0, 1) in condition (23) can be enlarged to r ∈ [−q, 1) for some q > 0, if we have additional information
on the structure of the equation in (1),more precisely if a part of the symbol of the equation vanishes at higher order as ξ → 0
(see Remark 14 in Section 6).

Remark 9. Condition (22) means that the function f (t) represents a control on the possible strong influence coming from
fi(t) to the long-time behavior of Eλ(t). It is clear that the choice of f (t) is not unique. The estimate in Theorem 1 is as better
as f (t)will be smaller, provided that it satisfies (22) and (23).

Remark 10. We remark that, in general, f (t) may be a positive function; in such a case, d(t) is an increasing function.
Nevertheless, from (24) we get

∥∂m−1−k
t ∂kxu(t, ·)∥

2
L2 ≤ C

d(t)
λ(t)2k

E(0), for any k = 0, . . . ,m − 1.
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In particular, if λ(t) is increasing or, more in general, if λ′(t)/λ(t) ≥(a) 0, and

f (t) ≤(a) ℓ
λ′(t)
λ(t)

, for some ℓ = 1, . . . ,m − 1,

then ∥∂m−1−k
t ∂kxu(t, ·)∥

2
L2 is bounded by a decreasing function for any k = ℓ, . . . ,m − 1.

In such a case, the dissipative character of our model is described by d(t) and (24).

Remark 11. In particular, thanks to (21), from the right-hand side of (23), it also follows that

f (t) ≥(a) k
η′(t)
η(t)

+ ϵ η(t), (26)

for any k ≥ 2, for any ϵ ∈ (0, 1 − r). Indeed, the right-hand side of (23) corresponds to (26) for k = 1 and ϵ = 1 − r .

Remark 12. It is clear that (23) implies that

f (t)+ bm−1,0(t) ≥(a) 0. (27)

3. Examples

It is clear that condition (22) in Theorem1depends on the functions fi(t) in Definition 3,which are related to the structure
of the equation in (1). These functions fi(t) are not easy to compute, in general. In the following we first present some
examples in which we check condition (23) in Theorem 1 but we do not consider (22). Then we present two models for
which we explicitly compute fi(t) and f (t)which satisfy (22).

Example 1. Let λ(t) = (1 + t)p, that is, Λ ≈ (1 + t)p+1, for some p > −1. We remark that λ(t) is strictly decreasing for
p ∈ (−1, 0) and constant λ ≡ 1 for p = 0. We can compute

η(t) =(a)
p + 1
1 + t

,
η′(t)
η(t)

=(a) −
1

1 + t
.

Condition (21) trivially holds since η′(t) ≤(a) 0. Let us assume that

bm−1,0(t) ≥(a) µ(1 + t)−1, f (t) ≥(a)
ϕ

1 + t
,

for some µ, ϕ ∈ R. Condition (23) holds if −µ ≤ −1 + (1 − r)(p + 1) ≤ ϕ for some r ∈ [0, 1), that is, if

µ ≥ −p and

ϕ > −1, if µ ≥ 1,
ϕ ≥ −µ if µ < 1. (28)

It is easy to check that (23) is equivalent to (28). Indeed, if µ ≥ 1 and ϕ > −1, then the left-hand side of (23) holds for any
r ∈ [0, 1), whereas the right-hand side holds for some r ∈ [0, 1), since −1 + (1 − r)(p + 1) → −1 as r → 1. On the other
hand, if µ ∈ [−p, 1) and ϕ ≥ −µ, then (23) holds for

r = 1 −
1 − µ

p + 1
, which satisfies r ∈ [0, 1), due to µ ∈ [−p, 1).

An analogous reasoning holds for Examples 2 and 3.
The function d(t) in (25) is given by d(t) = (1 + t)2ϕ . We remark that ϕ may be strictly negative if µ > 0. On the other
hand, if p > 0 and ϕ ≤ (m − 1)p then Remark 10 is applicable.

Example 2. Let λ(t) = ept , that is,Λ ≈ λ, for some p > 0. Then

η(t) =(a) p,
η′(t)
η(t)

=(a) 0.

Condition (21) trivially holds since η′(t) =(a) 0. Let us assume that

bm−1,0(t) ≥(a) µ, f (t) ≥(a) ϕ,

for some µ, ϕ ∈ R. Then condition (23) holds if −µ ≤ (1 − r)p ≤ ϕ for some r ∈ [0, 1), that is, if

µ ≥ −p and

ϕ > 0, if µ ≥ 0,
ϕ ≥ −µ if µ < 0.

The function d(t) in (25) is given by d(t) = e2ϕ t . We remark that ϕ may not be negative. Remark 10 is applicable if
ϕ ≤ (m − 1)p.



M. D’Abbicco, M.R. Ebert / J. Math. Anal. Appl. 395 (2012) 747–765 753

Example 3. Let λ(t) = etee
t
−1, that is,Λ(t) = ee

t
−1. Then

η(t) = et ,
η′(t)
η(t)

= 1.

Condition (21) holds (see Remark 7). Let us assume that

bm−1,0(t) ≥(a) µet , f (t) ≥(a) ϕ et ,

for some µ, ϕ ∈ R. Then condition (23) holds if −µ ≤ 1 − r < ϕ for some r ∈ [0, 1), that is, if

µ ≥ −1 and

ϕ > 0, if µ ≥ 0,
ϕ > −µ if µ < 0.

The function d(t) in (25) is given by d(t) = e2ϕe
t
.We remark thatϕmaynot be negative. Remark 10 is applicable ifϕ ≤ m−1.

3.1. A third-order equation model

Let us consider the equation in (1) form = 3, and let us assume that the three roots of (7) are α, 1,−1, where α is a real
parameter, and α ≠ ±1 so that (8) is satisfied. This gives

uttt − αλ(t)uttx − λ(t)2utxx + αλ(t)3uxxx + b2,0(t)utt + b1,1(t)λ(t)utx + b0,2(t)λ(t)2uxx + b0,1(t)λ(t)ux = 0 (29)

with initial data (u, ut , utt)(0, x) = (u0, u1, u2)(x). We study the λ-energy for the solution in (3), that is,

Eλ = ∥utt(t, ·)∥2
L2 + λ(t)2∥utx(t, ·)∥2

L2 + λ(t)4∥uxx(t, ·)∥2
L2 . (30)

For the coefficients we assume conditions (18)–(20), so we are now able to compute the functions fi(t) in (13). The
diagonalizer for the matrix A(t) in (11) is constant, therefore (10) trivially holds, and

W ♯

1 = (−2, 0, 0), Ṽ1 = −
1

1 − α2
(1, α, α2),

W ♯

2 = (−2α, 1 − α, 0), Ṽ2 =
1

2(1 − α)
(1, 1, 1),

W ♯

3 = (2α,−(1 + α), 0), Ṽ3 =
1

2(1 + α)
(1,−1, 1).

Therefore, since (b2(t)) = (−b02(t),−b11(t),−b20(t)), if we put f2 = f− and f3 = f+, then the functions fi(t) in (13) can be
written as

f1(t) =
1

(1 − α2)


2
λ′(t)
λ(t)

+ b0,2(t)+ αb1,1(t)+ α2b2,0(t)

, (31)

f±(t) =
1

2(1 ± α)


(1 ± 3α)

λ′(t)
λ(t)

− b2,0(t)± b1,1(t)− b0,2(t)

. (32)

The structure of the fi(t) greatly simplifies if we consider a special model. Let us apply on the left-hand side the first-order
operator

L(∂t , λ(t)∂x, t) = ∂t − αλ(t)∂x + a(t), (33)

where α ≠ ±1, to the second-order wave equation with time-dependent speed of propagation and damping

utt − λ(t)2uxx + b(t)ut = 0,

where b(t) is real-valued, bounded, with |b′
| . η and |b′′

| . η2. From

(∂t − αλ(t)∂x + a(t))

∂2t − λ(t)2∂2x + b(t)∂t


u = 0, (34)

if we put a(t) := −b′(t)/b(t) then we get (29) with

b2,0(t) = b(t)−
b′(t)
b(t)

, (35)

b1,1(t) = −αb(t), (36)

b0,2(t) =
b′(t)
b(t)

− 2
λ′(t)
λ(t)

, (37)
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and b0,1 ≡ 0. By computing the fi(t) as above, using (35)–(37), we immediately derive that

f1(t) =
b′(t)
b(t)

, f±(t) =
1
2


3
λ′(t)
λ(t)

− b(t)

. (38)

We are now able to check condition (22) in Examples 1–3.

Example 4. Following Example 1, let λ(t) = (1 + t)p for some p > −1. Let b(t) = b0(1 + t)−1 for some b0 ≥ −(p + 1),
that is, a(t) = −(1 + t)−1 in (33), so that

b2,0(t) =
µ

1 + t
, where µ = b0 + 1 ≥ −p.

It follows that f (t) = ϕ(1 + t)−1, where

ϕ = max {−1, (3p − b0)/2}

satisfies (22). Since ϕ > −1 is a necessary condition to apply Theorem 1, we have to assume

p > −
3
4
, b0 ∈ [−(p + 1), 3p + 2), so that ϕ =

3p − b0
2

.

It remains to check ϕ +µ ≥ 0 in condition (28), that is, b0 ≥ −(3p + 2). Therefore (23) holds for b0 ∈ [−(3p + 2), 3p + 2)
if p ∈ (−2/3,−1/2] and for b0 ∈ [−(p + 1), 3p + 2) if p ≥ −1/2.

We remark that d(t) = (1+ t)3p−b0 in (25). In particular, let p ≥ 0. The exponent is negative if b0 ∈ [3p, 3p+2). We remark
that if p = 0, that is, the speed of propagation λ ≡ 1 is constant, this means b0 ∈ [0, 2). According to Remark 10, if p > 0
and b0 ≥ −p, then we obtain the dissipative estimates

∥utx(t, ·)∥2
L2 ≤ C(1 + t)−(b0−p)E(0), if b0 ∈ [p, 3p + 2), and

∥uxx(t, ·)∥2
L2 ≤ C(1 + t)−(p+b0)E(0), for any b0 ∈ [−p, 3p + 2).

We notice that Remark 14 is applicable in the special case α = 0, since b1,1 ≡ 0 in (36). In such a case, we can also consider
b0 ∈ [−2(p + 1),−(p + 1)), but we cannot have a dissipative effect in the sense of Remark 10.

Example 5. Following Example 2, let λ(t) = ept for some p > 0. Let b2,0(t) = b(t) = µ for some µ ∈ [−p, 3p), that
is, a ≡ 0 in (33) and f (t) = ϕ = (3p − µ)/2 satisfies (22). One can easily check that in this case condition (23) holds.
We remark that d(t) = e(3p−µ)t in (25). The exponent is always strictly positive, but according to Remark 10 we obtain the
dissipative estimates

∥utx(t, ·)∥2
L2 ≤ Ce−(µ−p)tE(0), if µ ∈ [p, 3p), and

∥uxx(t, ·)∥2
L2 ≤ Ce−(p+µ)tE(0), for any µ ∈ [−p, 3p).

As in Example 4, Remark 14 is applicable in the special case α = 0.

Example 6. Following Example 3, let λ(t) = etee
t
−1. Let b(t) = b0et for some b0 ∈ (−1, 3), that is, a ≡ −1 in (33). Since

b0 < 3, the function f (t) = ϕet where ϕ = (3 − b0)/2 satisfies (22). One can easily check that condition (23) holds.

We remark that d(t) = e(3−b0)et in (25) is an increasing function. According to Remark 10we obtain the dissipative estimates

∥utx(t, ·)∥2
L2 ≤ Ce−(b0−1)et E(0), if b0 ∈ [1, 3), and

∥uxx(t, ·)∥2
L2 ≤ Ce−(b0+1)et E(0), for any b0 ∈ (−1, 3).

As in Example 4, Remark 14 is applicable in the special case α = 0.

3.2. A fourth-order equation model

Now we consider a fourth order equation. Let the four roots of (7) be α,−α, 1,−1, where α is a real parameter, and
α ≠ ±1 so that (8) is satisfied. This gives

∂4t u − (1 + α2)λ(t)2∂2t ∂
2
x u + α2λ(t)4∂4x u +

2
j=0

3−j
k=1

bj,k(t)λ(t)k∂
j
t∂

k
xu = 0. (39)
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The diagonalizer for the matrix A(t) in (11) is constant, therefore (10) trivially holds, and we get

W ♯

1 = (−3α,−2, α, 0), Ṽ1 = −
1

2α(1 − α2)
(1, α, α2, α3),

W ♯

2 = (3α,−2,−α, 0), Ṽ2 =
1

2α(1 − α2)
(1,−α, α2,−α3),

W ♯

3 = (−3α2,−2α2, 1, 0), Ṽ3 =
1

2(1 − α2)
(1, 1, 1, 1),

W ♯

4 = (3α2,−2α2,−1, 0), Ṽ4 = −
1

α(1 − α2)
(1,−1, 1,−1).

As in Section 3.1, we present a model for (39), which comes from the composition of a wave-type equation and a wave-type
damped wave equation. For the sake of simplicity, let λ(t) = ept for some p > 0, as in Example 2; we consider

∂2t − α2e2pt∂2x
 
∂2t − e2pt∂2x + µ∂t


u = 0, (40)

where µ ∈ R. Eq. (40) can be written as in (39) if we put

b3,0 ≡ µ, b1,2 ≡ −(α2µ+ 4p), b0,2 ≡ −4p2

and b2,1 = b0,3 = b2,0 = b1,1 = b1,0 = b0,1 = b0,0 = 0. Straightforward calculations give a very easy expression for the
functions fi(t) in (13):

f1(t) = f2(t) =
p
2
, f3(t) = f4(t) =

5p − µ

2
.

Therefore we can take f (t) = ϕ, where ϕ = max{5p − µ, p}/2. Due to the simple structure of Eq. (40) we can apply
Remark 14 with q = 1, that is, we can take r ∈ [−1, 1) in (23). It is easy to check that (23) holds for any µ ≥ −2p; the
function d(t) in (25) is given by d(t) = e(5p−µ)t if µ ∈ [−2p, 4p] and by d(t) = ept if µ ≥ 4p. According to Remark 10 we
obtain the dissipative estimates

∥uttx(t, ·)∥2
L2 ≤ Ce−pt E(0), ∥utxx(t, ·)∥2

L2 ≤ Ce−3pt E(0), ∥uxxx(t, ·)∥2
L2 ≤ Ce−5pt E(0),

if µ ≥ 4p; otherwise, we have the following ones:

∥uttx(t, ·)∥2
L2 ≤ Ce−(µ−3p)t E(0), if µ ∈ [3p, 4p],

∥utxx(t, ·)∥2
L2 ≤ Ce−(µ−p)t E(0), if µ ∈ [p, 4p), and

∥uxxx(t, ·)∥2
L2 ≤ Ce−(p+µ)t E(0), if µ ∈ [−p, 4p).

4. The hyperbolic-like estimate

Herewe describe the philosophywhich leads to focus our attention on the function f (t) in (22).Wewill use the following.

Notation 2. If v = (v1, . . . , vm) is a vector in Cm, then we denote by diagv or diag(v1, . . . , vm) the m × m diagonal matrix
M = (Mij) with entries Mii = vi and Mij = 0 for any i ≠ j. On the other hand, if M = (Mij) is a square matrix, then we
denote the diagonal part ofM by DiagM , that is, (DiagM)ii = Mii, and (DiagM)ij = 0 if i ≠ j.

We perform the Fourier transform with respect to x of (1) and we introduce the Cauchy problem for the ordinary
differentialm by m system with parameter ξ

∂tU = iλ(t)ξA(t)U + A0
λ′(t)
λ(t)

U +

m−1
j=0

(iλ(t)ξ)−(m−1−j)Bm−1−j(t)U, (41)

with initial data U(0, ξ) = U0(ξ), where we put

U =

(iλ(t)ξ)m−1u, (iλ(t)ξ)m−2ut , . . . , iλ(t)ξ∂m−2

t u, ∂m−1
t u , (42)

U0(ξ) =

(iξ)m−1u0(ξ), (iξ)m−2u1(ξ), . . . , um−1(ξ)


, (43)

with A(t) and A0 as in (9) and (12), and the matrices Bm−1−j(t) are given by

Bm−1−j(t) =

(0), (0), . . . , (0), (bj(t))

T
,

where (0) is the null vector, and (bj(t)) are the vectors

(bj(t)) = (−b0,j(t),−b1,j−1(t), . . . ,−bj,0(t), 0, . . . , 0).
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Hypothesis 1 corresponds to say that the system in (41), is uniformly strictly hyperbolic. In fact, the eigenvalues of the matrix
A(t) are given by τi(t) (see Remark 4). Moreover, it is clear that the λ-energy given in (3) for (1) is given by ∥U(t, ·)∥2

L2
where

U is as in (42). Analogously, it holds ∥U0∥
2
L2 ≤ E(0), with U0 as in (43).

Our aim is to prove that

E(t, ξ) ≤ Cd(t)E0(ξ), (44)

with d(t) as in (25), uniformly with respect to ξ ∈ R, where E(t, ξ) is the wave type pointwise energy given by

E(t, ξ) :=

m−1
j=0

(λ(t)|ξ |)2(m−1−j)
|∂

j
tu(t, ξ)|2, (45)

whereas E0(t, ξ) is the Klein–Gordon type pointwise energy given by

E0(ξ) :=

m−1
j=0

(1 + |ξ |2)m−1−j
|uj(ξ)|

2. (46)

Indeed, by integrating this inequality with respect to ξ and by Plancherel’s Theorem, the estimate (24) immediately follows
from (44).

In order to prove (44) we divide, for some constantN > 0, the extended phase space [0,∞)×Rn into the pseudo-differential
and the hyperbolic zone, defined by

Zpd(N) = {(t, ξ) ∈ [0,∞)× R : Λ(t)|ξ | ≤ N},

Zhyp(N) = {(t, ξ) ∈ [0,∞)× R : Λ(t)|ξ | ≥ N}.

SinceΛ : [0,∞) → [1,∞) is strictly increasing and surjective, the separating curve is given by

θ : (0,N] → [0,∞), θ|ξ | = Λ−1 (N/ |ξ |) .

We put also θ0 = ∞, and θ|ξ | = 0 for any |ξ | > N . The pair (t, ξ) in the extended phase space is in Zpd(N) (resp. in Zhyp(N))
if, and only if, t ≤ θ|ξ | (resp. t ≥ θ|ξ |).

In Zhyp(N) the profile of the pointwise energy E(t, ξ)will be exactly described by the function d(t) in (25). On the other
hand, in Zpd(N) we will only look for conditions which guarantee that the same function d(t) appears in the estimate from
above of the pointwise energy E(t, ξ). For this reason, we say that we are studying hyperbolic-like estimates.

5. The hyperbolic zone

In Zhyp(N)we use a C2 diagonalization procedure. We want to prove the a priori estimate

|U(t, ξ)|2 ≤ C
d(t)

d(θ|ξ |)
|U(θ|ξ |, ξ)|2, t ≥ θ|ξ |, (47)

with d(t) as in (25). Let N(t) be the diagonalizer for A(t) introduced in Remark 5 and let V (t, ξ) = N(t)U(t, ξ). Then (41)
becomes

∂tV = iλ(t)ξD(t)V + B0(t)V +

m−2
j=0

(iλ(t)ξ)−(m−1−j)Bm−1−j(t) V , (48)

where

B0(t) =


N ′(t)+

λ′(t)
λ(t)

N(t)A0 + N(t)B0(t)

N−1(t), (49)

Bm−1−j(t) = N(t)Bm−1−j(t)N−1(t), j = 0, . . . ,m − 2. (50)

Thanks to Hypotheses 3 and 4, it is clear that ∥B0∥ . η and ∥B ′

0∥ . η2, whereas ∥Bm−1−j∥ . ηm−j for j ≤ m − 2. Indeed:

• the function λ′(t)/λ(t) is bounded by η(t) and its derivative is bounded by η(t)2 by virtue of (16),
• the matrices N(t) and N−1(t) are bounded (see Remark 5), and their derivatives are bounded by η(t) thanks to (18),
• the matrix B0(t) is bounded by η(t) and its derivative is bounded by η(t)2 by virtue of (19),
• the matrices Bm−1−j(t) are bounded by η(t)m−j by virtue of (20).
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To derive our estimate in Zhyp(N), we need to control the diagonal part of B0(t) in (49). Thanks to Remark 5, it is clear that
the rows of the matrix N(t)A0 are given by the vectors W ♯

i (t), for i = 1, . . . ,m, whereas each row of the matrix N(t)B0(t)
is given by the vector (bm−1(t)), since all the entries in the last column of N(t) are 1. Therefore we get

λ′(t)
λ(t)

N(t)A0 + N(t)B0(t)

N−1(t) =

(λ
′(t)/λ(t))W ♯

1 (t)+ (bm−1(t))
...

(λ′(t)/λ(t))W ♯
m(t)+ (bm−1(t))

Ṽ1(t)T , . . . , Ṽm(t)T


whose diagonal entries are given by fi(t) as in (13). Let f (t) be as in (22); since f (t) − fi(t) ≥(a) 0, it follows fromDefinition 1
that there existm almost-zero functions fi,w(t) such that

fi,s(t) := f (t)− fi(t)− fi,w(t) ≥ 0.

Herewe use the notation fi,w(t) and fi,s(t) to distinguish betweenweak and strong components of each difference f (t)−fi(t).
We can now construct the second diagonalizer K(t, ξ), that depends on the not diagonal entries of B0(t):

Kii(t, ξ) = 1; Kij(t, ξ) =

ξλ(t)(τi(t)− τj(t))

−1
(B0(t))ij if i ≠ j. (51)

Thanks to (18)–(20), we derive

|Kij(t, ξ)| ≤
Cη(t)

|ξ | λ(t)
=

C
|ξ |Λ(t)

≤
C
N
, for any i ≠ j,

that is, K(t, ξ) is uniformly regular and bounded for a sufficiently large N . We replace V (t, ξ) = K(t, ξ)W (t, ξ) in (48) and
we get

∂tW = D(t)iλ(t)ξW + F0(t)W + J(t, ξ)W , (52)

where

F0(t) = DiagB0(t) = diag(fi(t)), (53)

and J(t, ξ) satisfies (see [2])

∥J(t, ξ)∥ ≤ C
η(t)2

|ξ | λ(t)
. (54)

Now let

D(t, ξ) = exp

 t

θ|ξ |

Diag(N ′(σ )N−1(σ ))dσ


diag


exp

 t

θ|ξ |


iτj(σ )λ(σ )ξ + fj,w(σ )


dσ


.

Thanks to (10), we obtain (see [4]) that each entry of the diagonal matrix Diag

N ′(t)N(t)−1


is a almost-zero function. Since

τj(t) are real and fj,w(t) =(a) 0, the matrix D(t, ξ) is uniformly regular and bounded, i.e. ∥D(t, ξ)∥, ∥D−1(t, ξ)∥ ≤ C . By
making the substitutionW (t, ξ) =


d(t)d(θ|ξ |)−1D(t, ξ)Z(t, ξ), we obtain in Zhyp(N),

∂tZ = G(t)Z +J(t, ξ) Z, t ≥ θ|ξ |,

Z(θ|ξ |, ξ) = K−1(θ|ξ |, ξ)N−1(θ|ξ |)U(θ|ξ |, ξ),
(55)

where G(t) is a diagonal matrix with negative entries −fi,s(t) andJ(t, ξ) = D−1(t, ξ)J(t, ξ)D(t, ξ) satisfies again (54). It is
easy to prove that |Z(t, ξ)| ≤ C |Z(θ|ξ |, ξ)|, and this concludes the proof of (47).

Remark 13. It is now clear that the functions fi(t) introduced in Definition 3 came into play in Zhyp(N). Moreover, we remark
that the estimate given in (47) holds also from below, that is,

|U(t, ξ)|2 ≈
d(t)

d(θ|ξ |)
|U(θ|ξ |, ξ)|2, t ≥ θ|ξ |,

if fi(t) =(a) f (t) for any i = 1, . . . ,m. Moreover, if g(t) is a function with constant sign such that g(t) ≤(a) fi(t) for any
i = 1, . . . ,m, then one can easily prove that

|U(t, ξ)|2 & exp

 t

θ|ξ |

2g(σ ) dσ


|U(θ|ξ |, ξ)|2, t ≥ θ|ξ |.

6. The pseudo-differential zone

Having in mind (47), we can conclude the proof of our claim (44) for any (t, ξ) ∈ [0,∞) × Rn if we prove it in Zpd(N),
that is, for any |ξ | ≤ N and t ≤ θ|ξ |.
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Herewe present a strategy to derive (44) in Zpd(N), inwhichwe reduce our problem to a systemof one Volterra-type integral
equation and m − 1 integral inequalities. This strategy is particularly successful due to the special structure in (1), that is,
there are no terms with zero derivatives in x, but ∂mt u and bm−1,0(t)∂m−1

t u.
Since in Zpd(N)we can estimate λ(t)|ξ | ≤ Nη(t), we put

V =

(iη(t))m−1u, (iη(t))m−2ut , . . . , ∂

m−1
t uT ,

and V =
√
d(t)V with d(t) as in (25), and we study the Cauchy problem

∂tV = A(t, ξ)V , V (0, ξ) = V0(ξ) :=

im−1u0, im−2u1, . . . , um−1

T
, (56)

with

A :=



(m − 1)η′/η iη 0 0 . . . 0
0 (m − 2)η′/η iη 0 . . . 0
0 0 (m − 3)η′/η iη . . . 0
...

...
...

. . .
. . .

...
0 0 0 . . . η′/η iη

β0/η
m−1 β1/η

m−2 β2/η
m−3 . . . βm−2/η βm−1

−
d′

2d
Im,

where Im denotes the identitym bym matrix and

βm−1(t, ξ) := iξλ(t)am−1(t)− bm−1,0(t), (57)

βj(t, ξ) := i aj(t)(ξλ(t))m−j
−

m−1−j
k=1

i−(m−1−j−k)bj,k(t)(ξλ(t))k, j = 0, . . . ,m − 2. (58)

Our purpose is to prove that the fundamental solution E(t, ξ) to (56), that is, the solution to

∂tE = A(t, ξ)E, E(0, ξ) = Im, where E(t, ξ) = (Ej,k)j,k=1,...,m is anm by mmatrix,

is bounded. Indeed, since |U(t, ξ)| . |V (t, ξ)| for any t ≤ θ|ξ | and |V0(ξ)| ≤ E0(ξ), our claim (44) immediately follows if
∥E(t, ξ)∥ ≤ C , uniformly in Zpd(N). We can write the integral equations

Eℓ,k =
η(t)m−ℓ

√
d(t)


δℓk + i

 t

0

√
d(τ )

η(τ )m−1−ℓ
Eℓ+1,k(τ ) dτ


, for any ℓ = 1, . . . ,m − 1, (59)

Em,k =
Θ(t, ξ)
√
d(t)


δmk +

 t

0

√
d(σ )

Θ(σ , ξ)


m−2
j=0

βj(σ , ξ)

η(σ )m−1−j
Ej+1,k(σ , ξ)


dσ


, (60)

for k = 1, . . . ,m, where we defined

Θ(t, ξ) := exp
 t

0


iξλ(τ)am−1(τ )− bm−1,0(τ )


dτ

.

We want to write a Volterra-type integral equation for Em−1,k, independent of the other Ej,k:

Em−1,k(t, ξ) = fk(t, ξ)+

 t

0
g(t, τ , ξ) Em−1,k(τ , ξ) dτ . (61)

By using (59) and (60) and integrating by parts we get

Em−1,k(t, ξ) =
η(t)

√
d(t)


δm−1,k + iδmk

 t

0
Θ(τ , ξ) dτ


+ i

η(t)
√
d(t)

 t

0
Θ(τ , ξ)

 τ

0

√
d(σ )

Θ(σ , ξ)


m−2
j=0

βj(σ , ξ)

η(σ )m−1−j
Ej+1,k(σ , ξ)


dσ dτ

=
η(t)

√
d(t)


δm−1,k + iδmkΘ1(t, 0, ξ)


+ i

η(t)
√
d(t)

 t

0
Θ1(t, σ , ξ)


d(σ )


m−2
j=0

βj(σ , ξ)

η(σ )m−1−j
Ej+1,k(σ , ξ)


dσ ,

where we put

Θ1(t, σ , ξ) := Θ(σ , ξ)−1
 t

σ

Θ(τ , ξ) dτ ≡

 t

σ

exp
 τ

σ


iξλ(t)am−1(s)− bm−1,0(s)


ds


dτ .
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By using (59) for Ej+1,k, for any j ≤ m − 3 and integrating by parts again, we obtain

Em−1,k(t, ξ) =
η(t)

√
d(t)


δm−1,k + iδmkΘ1(t, 0, ξ)


+ i

η(t)
√
d(t)

 t

0
Θ1(t, σ , ξ)

√
d(σ )
η(σ )

βm−2(σ , ξ)Em−1,k(σ , ξ) dσ

+ i
η(t)

√
d(t)

 t

0
Θ1(t, σ , ξ)

m−3
j=0

βj(σ , ξ)


δj+1,k + i

 σ

0

√
d(τ )

η(τ )m−2−j
Ej+2,k(τ ) dτ


dσ

=
η(t)

√
d(t)


δm−1,k + iΘ1(t, 0, ξ)δmk + i

m−3
j=0

Θ2,j(t, 0, ξ)δj+1,k



+ i
η(t)

√
d(t)

 t

0
Θ1,m−2(t, σ , ξ)

√
d(σ )
η(σ )

Em−1,k(σ , ξ) dσ

−
η(t)

√
d(t)

 t

0


m−3
j=0

Θ2,j(t, τ , ξ)
√
d(τ )

η(τ )m−2−j
Ej+2,k(τ ) dτ


,

where we put

Θ1,j(t, σ , ξ) := Θ1(t, σ , ξ) βj(σ , ξ),

Θ2,j(t, τ , ξ) :=

 t

τ

Θ1,j(t, σ , ξ) dσ .

Using again (59) for Ej+2,k, for any j ≤ m − 4 and integrating by parts, we get

Em−1,k(t, ξ) =
η(t)

√
d(t)


δm−1,k + iΘ1(t, 0, ξ)δmk + i

m−3
j=0

Θ2,j(t, 0, ξ)δj+1,k −

m−4
j=0

Θ3,j(t, 0, ξ)δj+2,k



+ i
η(t)

√
d(t)

 t

0
Θ1,m−2(t, σ , ξ)

√
d(σ )
η(σ )

Em−1,k(σ , ξ) dσ

−
η(t)

√
d(t)

 t

0
Θ2,m−3(t, τ , ξ)

√
d(τ )
η(τ )

Em−1,k(τ ) dτ

− i
η(t)

√
d(t)

 t

0


m−4
j=0

Θ3,j(t, σ , ξ)
√
d(σ )

η(σ )m−3−j
Ej+3,k(σ ) dσ


,

where we put

Θ3,j(t, σ , ξ) :=

 t

σ

Θ2,j(t, τ , ξ) dτ .

It is clear that we can iterate the procedure, so that we obtain (61), where

fk(t, ξ) =
η(t)

√
d(t)


δm−1,k + iΘ1(t, 0, ξ)δmk +

m−2
ℓ=1

iℓ


m−2−ℓ
j=0

Θℓ+1,j(t, 0, ξ)δj+ℓ,k


, (62)

and

g(t, τ , ξ) =
η(t)

√
d(t)

√
d(τ )
η(τ )

m−1
ℓ=1

iℓΘℓ,m−1−ℓ(t, τ , ξ). (63)

We have in mind to estimate E♯m−1,k(t, ξ) := |Em−1,k(t, ξ)|. Since λ(t)am−1(t) is real, it holds |Θ(t, ξ)| = γ (t), where

γ (t) := exp


−

 t

0
bm−1,0(τ )dτ


, (64)

is a positive functionwhich does not depend on ξ .We remark thatΘ1(t, 0, ξ) =
 t
0 Θ(τ , ξ)γ (τ ) dτ sinceΘ(0, ξ) = γ (0) =

1, and that

|Θ1(t, σ , ξ)| ≤ γ (σ )−1
 t

σ

γ (τ) dτ .
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In particular, |Θ1(t, 0, ξ)| ≤ Γ (t), where we put

Γ (t) :=

 t

0
γ (τ) dτ . (65)

Then we can estimate

|Θ1,j(t, τ , ξ)| ≤ |βj(τ , ξ)| γ (τ)
−1
 t

τ

γ (σ ) dσ =:Θ
♯

1,j(t, τ , ξ),

and, analogously,

|Θℓ,j(t, τ , ξ)| ≤

 t

τ

Θ
♯

ℓ−1,j(t, σ , ξ) dσ =: Θ
♯

ℓ,j(t, τ , ξ),

for any ℓ = 2, . . . ,m − 1 and j ≤ m − 1 − ℓ. This gives us

|fk(t, ξ)| ≤
η(t)

√
d(t)


1 + Γ (t)+ C maxΘ♯

ℓ,j(t, 0, ξ)


=: f ♯k (t, ξ), (66)

where the maximum is taken over ℓ = 2, . . . ,m − 1 and j ≤ m − 1 − ℓ, and

|g(t, τ , ξ)| ≤
η(t)

√
d(t)

√
d(τ )
η(τ )

m−1
ℓ=1

Θ
♯

ℓ,m−1−ℓ(t, τ , ξ)=: g♯(t, τ , ξ). (67)

Therefore, to prove that Em−1,k(t, ξ) is bounded (with respect to (t, ξ)) in Zpd(N), we can apply a Gronwall-like lemma to
the following inequality:

E♯m−1,k(t, ξ) ≤ f ♯k (t, ξ)+

 t

0
g♯(t, τ , ξ) E♯m−1,k(τ , ξ) dτ . (68)

In order to do this, since the kernel g♯(t, τ , ξ) depends on both t and τ and on the parameter ξ , we look for two positive,
continuous functions q(t) and φN(τ , ξ), with q(t) bounded, such that

f ♯k (t, ξ) ≤ Ck,N q(t), for any t ≤ θ|ξ | and k = 1, . . . ,m, (69)

g♯(t, τ , ξ) ≤ q(t) φN(τ , ξ), for any t ≤ θ|ξ |, (70) t

0
q(τ )φN(τ , ξ) dτ ≤ CN , for any t ≤ θ|ξ |. (71)

Indeed, thanks to (69) and (70), from (68) we obtain

E♯m−1,k(t, ξ) ≤ q(t)

Ck,N +

 t

0
φN(τ , ξ) E

♯

m−1,k(τ , ξ) dτ


and therefore, using (71), it follows that E♯m−1,k(t, ξ) is bounded by virtue of the following Gronwall-type estimate (which
follows as corollary of Theorem 1.5 in [1]).

Lemma 1. Let u(t), q(t), φ(t) be continuous, non negative functions in [0,∞). If

u(t) ≤ Cq(t)+ q(t)
 t

0
b(σ )u(σ ) dσ , (72)

q(t) exp
 t

0
q(τ )b(τ ) dτ


≤ C ′, (73)

for some C, C ′ > 0, then u(t) is bounded.

Let us assume that we found q(t) and φN(τ , ξ) such that (69)–(71) hold, so that Em−1,k is bounded. Then the boundedness
of Eℓk(t, ξ) for any ℓ = 1, . . . ,m − 2, follows if

η(t)m−ℓ

√
d(t)


1 +

 t

0

√
d(τ )

η(τ )m−1−ℓ
dτ


≤ C, for any ℓ = 1, . . . ,m − 2. (74)

Condition (74) immediately follows from

f (t)− (m − ℓ)
η′(t)
η(t)

− ϵ η(t) ≥(a) 0, ℓ = 1, . . . ,m − 2, (75)
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which is a consequence of (26) (see Remark 11). On the one hand, by virtue of Remark 2, from (75) it follows that

η(t)m−ℓ

√
d(t)

≤ CΛ(t)−ϵ → 0 as t → ∞.

On the other hand, thanks to (75), using the notation in Remark 3 we put

a(t) = f (t)− (m − ℓ)
η′(t)
η(t)

− ϵ η(t) ≥(a) 0, A(t) ≡ exp
 t

0
a(τ ) dτ


=

√
d(t)

η(t)m−ℓ
Λ(t)−ϵ,

so that we get

η(t)m−ℓ

√
d(t)

 t

0

√
d(τ )

η(τ )m−1−ℓ
dτ ≤ CΛ(t)−ϵ

 t

0
η(τ)Λ(τ )ϵ dτ ≡ CΛ(t)−ϵ

 t

0
λ(τ)Λ(τ )ϵ−1 dτ ≤ Cϵ−1.

Moreover, if Em−1,k is bounded as well as Ej,k for any j = 1, . . . ,m − 2, then Emk(t, ξ) is bounded too if

γ (t)
√
d(t)


1 +

 t

0

√
d(σ )
γ (σ )


m−2
j=0

|βj(σ , ξ)|

η(σ )m−1−j


dσ


≤ CN , for any t ≤ θ|ξ |. (76)

We are now ready to prove Theorem 1.

Proof of Theorem 1. It is clear that the proof of Theorem 1 follows if we construct two functions q(t) and φN(τ , ξ) which
satisfy (69)–(71) and if we prove (76). Let r ∈ [0, 1) be as in (23). We claim that

q(t) = Cm,δ,N
λ(t)

√
d(t)

Λ(t)−r , φN(τ , ξ) := |ξ |1−(r+δ)Λ(τ )−δ

d(τ ),

verify (69)–(70) for any δ ∈ (0, 1 − r). Indeed, in such a case condition (71) holds since

|ξ |1−(r+δ)
 t

0
λ(τ)Λ(τ )−r−δ dτ ≤

(|ξ |Λ(t))1−(r+δ)

1 − (r + δ)
≤

N1−(r+δ)

1 − (r + δ)
.

Moreover, the boundedness of q(t) follows from the right-hand side of (23), which implies λΛ−r .
√
d.

Let us prove (69)–(70). Thanks to (19) and (20), we can estimate βj(t, ξ) in (58) by

|βj(t, ξ)| ≤ C
m−j
k=1

(|ξ |λ(t))kη(t)m−j−k
≤ C1|ξ |λ(t)η(t)m−1−j, (77)

for any j = 0, . . . ,m − 2. By using the left-hand side of (23) we get

λ(s)Λ(s)−rγ (s)−1
 t

s
γ (τ) dτ ≤ C

 t

s
λ(τ)Λ(τ )−r dτ ≤

C
1 − r

Λ(t)1−r .

SinceΛ(s) |ξ | ≤ N for any s ≤ θ|ξ |, we can estimate

|ξ | ≤ N r+δ
|ξ |1−(r+δ)Λ(s)−(r+δ),

so that we obtain

Θ
♯

1,j(t, s, ξ) ≤ CN |ξ |1−(r+δ) η(s)m−1−jΛ(s)−δΛ(t)1−r ,

for any j = 0, . . . ,m − 2. Moreover, we remark that 1 + Γ (t) ≤ CΛ(t)1−r using again the left-hand side of (23), therefore
we can estimate

η(t)
√
d(t)

(1 + Γ (t)) ≤ C
λ(t)

√
d(t)

Λ(t)−r
≤ q(t),

in (66). Since δ > 0, thanks to (21) we can estimate t

s
η(τ)kΛ(τ )−δ dτ ≤ Cδ−δ1η(s)

k−1Λ(s)−(δ−δ1)
 t

s
η(τ)Λ(τ )−δ1 dτ ≤

Cδ−δ1
δ1

η(s)k−1Λ(s)−δ, (78)



762 M. D’Abbicco, M.R. Ebert / J. Math. Anal. Appl. 395 (2012) 747–765

for any k ≥ 1 and for any δ1 ∈ (0, δ). Therefore we can estimate

Θ
♯

ℓ,m−1−ℓ(t, τ , ξ) ≤ Cm,δ,N |ξ |1−(r+δ)Λ(t)1−rη(τ)Λ(τ )−δ,

for any ℓ = 1, . . . ,m − 1 and

Θ
♯

ℓ,j(t, 0, ξ) ≤ Cm,δ,N |ξ |1−(r+δ)Λ(t)1−r
≤ NCm,δΛ(t)δ,

for any ℓ = 2, . . . ,m − 1 and j = 0, . . . ,m − 1 − ℓ. We remark that in the estimate above we could use |ξ |1−(r+δ) ≤

N1−(r+δ)Λ(t)r+δ−1 since 1 − (r + δ) ≥ 0.
Conditions (69) and (70) immediately follow.

Now we prove (76). On the one hand, using (27), by virtue of Remark 2, we can estimate the function γ in (64) by γ .
√
d.

On the other hand, thanks to (77) and (27), using the notation in Remark 3 we put

a(t) = f (t)+ bm−1(t) ≥(a) 0, A(t) ≡ exp
 t

0
a(τ ) dτ


=

√
d(t)
γ (t)

,

so that we get

γ (t)
√
d(t)

 t

0

√
d(σ )
γ (σ )


m−2
j=0

|βj(σ , ξ)|

η(σ )m−1−j


dσ ≤ C

γ (t)
√
d(t)

 t

0

√
d(σ )
γ (σ )

|ξ | λ(σ) dσ

≤ C1

 t

0
|ξ | λ(σ) dσ ≤ C1 N.

This completes the proof of Theorem 1. �

Remark 14. In the same assumptions of Theorem 1, let q ∈ {1, . . . ,m − 2} be such that
am−k ≡ 0 for any 2 ≤ k ≤ q,
bj,k ≡ 0 for any 1 ≤ k ≤ q (79)

that is, we have no term with a number of x derivatives lesser than or equal to q, but ∂mt u, bm−1,0(t)∂m−1
t u and

am−1(t)λ(t)∂m−1
t ∂xu.

Then we can enlarge the range r ∈ [0, 1) in (23) to r ∈ [−q, 1). Indeed, thanks to (79) it follows that βj ≡ 0 for any
m − q ≤ j ≤ m − 2 and we can refine estimate (77) to the following:

|βj(t, ξ)| ≤ C
m−j
ℓ=q+1

(|ξ |λ(t))ℓη(t)m−j−ℓ
≤ (|ξ |λ(t))q+1η(t)m−1−(j+q)

= |ξ |q+1 λ(t)Λ(t)qη(t)m−1−j
≤ Nq−r

|ξ |1−r λ(t)Λ(t)−rη(t)m−1−j, (80)

for any j = 0, . . . ,m − (q + 1). We can now follow the proof of Theorem 1.
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Appendix. The completem-th order equation

In (1)we considered an equationwithno termswith zero derivatives in xbut ∂mt u and bm−1,0(t)∂m−1
t u. In order to consider

the Cauchy problem for the completem-th order equation∂
m
t u −

m−1
j=0

aj(t)λ(t)m−j∂
j
t∂

m−j
x u +


j+k≤m−1

bj,k(t)λ(t)k∂
j
t∂

k
xu = 0,

∂
j
tu(0, x) = uj(x), j = 0, . . . ,m − 1,

(A.1)

we shouldmanage very carefully the new terms, since their influence is not easily controlled in Zpd(N) (see (77) in Section 6).
In particular, here we state a rough condition which allows to exclude any influence coming from them to the energy
estimate. Nevertheless, it is reasonable to expect that in some cases the λ-energy in (3) should be modified to obtain good
results (for instance, if we consider the Klein–Gordon equation).



M. D’Abbicco, M.R. Ebert / J. Math. Anal. Appl. 395 (2012) 747–765 763

If we consider the Cauchy problem (A.1), then we can follow the proof of Theorem 1, but we should replace (77) with the
following:

|βj(t, ξ)| ≤ C |ξ |λ(t)η(t)m−1−j
+ |bj,0(t)|. (A.2)

We now look for three functions q(t), φN(τ , ξ), ψ(τ), with q(t) bounded, such that (69) and (71) hold together with

g♯(t, τ , ξ) ≤ q(t) (φN(τ , ξ)+ ψ(τ)) , for any t ≤ θ|ξ |, (A.3)

q(t) exp
 t

0
q(τ )ψ(τ) dτ


≤ C, for any t ≤ θ|ξ |. (A.4)

In fact, thanks to (69)–(A.3) and (71)–(A.4), using again Lemma 1 in Section 6, the boundedness of E♯m−1,k(t, ξ)would follow
from (68). We remark that q(t) and ψ(τ) are independent of the parameter N , as well as the constant C > 0 in (A.4).

If we prove that E♯m−1,k(t, ξ) is bounded, then the boundedness of E♯ℓ,k(t, ξ) still follows from (26) for any ℓ = 1, . . . ,m− 2,
whereas (76) holds if we replace (27) with the stronger condition:

f (t)+ bm−1,0(t) ≥(a) ϵ η(t). (A.5)

Indeed, thanks to (20) and (A.2), it is sufficient to estimate

γ (t)
√
d(t)


1 +

 t

0

√
d(σ )
γ (σ )

η(σ ) dσ


≤ C . (A.6)

In order to construct the new functions q(t), φN(τ , ξ), ψ(τ) we should take into account the influence of |bj,0(t)| in (A.2)
on the functions Θ♯

ℓ,j(t, s, ξ). Moreover, we should consider all constants in our estimates since, in general, the product
q(τ )ψ(τ) in (A.4) would be not integrable. We will compensate the possible increasing behavior of the exponential in (A.4)
with the decreasing behavior of the function q(t).
Let us assume that η(t) is monotonic or, more in general (see Remark 7) that

lim sup
t→∞

η′(t)
η(t)2

≤ 0. (A.7)

Let p > 0 be such that

p ≥ − lim inf
t→∞


η′(t)+ bm−1,0(t)η(t)

η(t)2


. (A.8)

LetMj ≥ 0 be defined by

Mj := lim sup
t→∞

|bj,0(t)|
η(t)m−j

. (A.9)

Thanks to Hypothesis 4, p and Mj are finite numbers. Conditions (A.7)–(A.9) imply that for any ϵ > 0 there exists
T = T (ϵ) ≥ 0 such that

η′(t)
η(t)

≤ ϵη(t),
η′(t)
η(t)

+ (p + ϵ)η(t)+ bm−1,0(t) ≥ 0, |bj,0(t)| ≤ (Mj + ϵ) η(t)m−j,

for any t ∈ [T ,∞). We remark that if (A.8) holds for some p ∈ (0, 1) then the left-hand side of (23) holds for any
r ∈ [0, 1 − p). Otherwise, we assume that the left-hand side of (23) holds for r = 0, that is,

η′(t)
η(t)

+ η(t)+ bm−1,0(t) ≥(a) 0. (A.10)

In both cases, in the following it will be p ≥ 1 − r .
The subzone Zpd(N) ∩ {0 ≤ t ≤ T } is compact, therefore we can assume with no loss of generality t ≥ T in Zpd(N). We can
now estimate

η(s)Λ(s)p+ϵγ (s)−1
 t

s
γ (τ) dτ ≤

 t

s
η(τ)Λ(τ )p+ϵ dτ ≤

1
p + ϵ

Λ(t)p+ϵ,

for any t ≥ s ≥ T , that is,

Θ
♯

1,j(t, s, ξ) ≤ CN |ξ |1−(r+δ) η(s)m−1−jΛ(s)−δΛ(t)1−r
+

Mj + ϵ

p + ϵ
η(s)m−1−jΛ(s)−(p+ϵ)Λ(t)p+ϵ .
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Thanks to (A.7) we can estimate t

s
η(τ)kΛ(τ )−(p+ϵ) dτ ≤ η(s)k−1Λ(s)−ϵ

 t

s
η(τ)Λ(τ )−p dτ ≤

1
p
η(s)k−1Λ(s)−(p+ϵ),

for any k ≥ 1, therefore

Θ
♯

ℓ,m−1−ℓ(t, τ , ξ) ≤ Cm,δ,N |ξ |1−(r+δ)Λ(t)1−rη(τ)Λ(τ )−δ +
Mm−1−ℓ + ϵ

pℓ
η(τ)Λ(τ )−(p+ϵ)Λ(t)p+ϵ,

for any ℓ = 1, . . . ,m − 2, and

Θ
♯

ℓ,j(t, 0, ξ) ≤ NCm,δΛ(t)δ + Cp,mΛ(t)p+ϵ,

for any ℓ = 2, . . . ,m − 1 and j = 0, . . . ,m − 1 − ℓ. Since p ≥ 1 − r , if we define

Mp :=

m−2
ℓ=1

Mm−1−ℓ

pℓ
,

then we have proved that we can estimate

g♯(t, τ , ξ) ≤
η(t)

√
d(t)


d(τ )Λ(t)p+ϵ


Cm,δ,N |ξ |1−(r+δ)Λ(τ )−(p+ϵ+r+δ−1)

+ (Mp + ϵ1)Λ(τ )
−(p+ϵ) ,

for any ϵ1 > 0. Therefore, if we take

q(t) =
η(t)

√
d(t)

Λ(t)p+ϵ,

ψ(τ) = (Mp + ϵ1)

d(τ )Λ(τ )−(p+ϵ),

φN(τ , ξ) = Cm,δ,N


d(τ ) |ξ |1−(r+δ)Λ(τ )−(p+ϵ+r+δ−1),

then conditions (A.3), (69) and (71) are satisfied. Moreover, q(t) is bounded and condition (A.4) holds if we replace the
right-hand side of (23) with the stronger condition

f (t) ≥(a)
η′(t)
η(t)

+ (p + Mp + ε)η(t) (A.11)

for some ε > 0. Indeed, it holds:

q(t) exp
 t

T
q(τ ) ψ(τ) dτ


≤

η(t)
√
d(t)

Λ(t)p+ϵ exp

(Mp + ϵ1)

 t

T
η(τ) dτ


≤

η(t)
√
d(t)

Λ(t)p+Mp+ϵ+ϵ1 .

We remark that (A.5) follows from (A.8) and (A.11).
Summarizing we have the following.

Theorem 2. Let us assumeHypotheses 1–4 together with (A.7). Let us assume (A.10) and let M be theminimumof the sum p+Mp
over the parameters p > 0 which satisfy (A.8). Let f : [0,∞) → R be a function with constant sign which satisfies (22). If f (t)
satisfies

f (t) ≥(a)
η′(t)
η(t)

+ (M + ϵ)η(t), (A.12)

for some ϵ > 0, then the solution to (A.1) satisfies the energy estimate (24).
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