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Objective: to analyse the relationship between carotid plaque echolucency and cellularity.
Methods: carotid plaques (14 symptomatic and 16 asymptomatic) were snap frozen after endarterectomy and defined on
the basis of their grey-scale-median (GSM), obtained from pre-operative high-definition ultrasonography, as either
echolucent (532) or echogenic (�32). DNA and total soluble protein were determined to assess cellularity.
Results: after correcting for wet weight, symptomatic plaques had significantly more DNA (0.400+ 0.07 vs
0.335+ 0.07 mg/g; p� 0.03) and soluble protein (34.1+ 6.6 vs 29.7+ 3.4 mg/g; p� 0.03) than asymptomatic plaques.
Predominantly echolucent (Grey-Weale classification) plaques had more DNA (0.404+ 0.06 vs 0.332+ 0.08 mg/g;
p� 0.03) than echogenic plaques. Plaques with GSM5 32 also had more DNA (0.386+ 0.08 vs 0.319+ 0.06 mg/g;
p� 0.04) and soluble protein (34.7+ 7.3 vs 29.6+ 4.2 mg/g; p� 0.03) than those with GSM � 32. Inverse relations were
found between GSM and plaque DNA (r�ÿ0.47; p� 0.02) and soluble protein (r� ÿ0.45; p� 0.02) as well as between
age and DNA (r�ÿ0.39; p� 0.04) and soluble protein (r� ÿ 0.50; p� 0.003).
Conclusions: echolucency of carotid plaques as assessed by ultrasonography reflects plaque cellularity. This observation
support the notion that ultrasonography can be used to identify high-risk plaques and evaluate effect of interventions on
plaque structure.
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Introduction

Embolization from ruptured atherosclerotic plaques
is a major cause of ischemic stroke.1 Vulnerable pla-
ques are characterized by a thin fibrous cap covering
areas of necrosis, extracellular lipid deposits and
inflammatory infiltrates.2±4 Several studies suggest
that B-mode ultrasonography may be used not only
to assess the severity of carotid stenosis5±7 but also
to identify vulnerable plaques.4,8,9 Carotid plaques
causing cerebrovascular symptoms and infarction
have been subjectively characterized as echolu-
cent.4,9±14 The recent application of B-mode image
grey scale intensity analysis using digital image pro-
cessing has allowed the objective measurement of
plaque echolucency.15±18 Plaques with a low grey
scale value are more common among symptomatic

patients, correlate with a higher prevalence of cere-
bral infarction on computed tomography and predict
increased risk for future stroke.16,19,20 Histological
analysis of carotid plaques removed at surgery have
shown that plaques with a low grey scale value have
more lipid deposition and haemorrhage. By contrast,
echo-rich plaques contain more fibrous tissue.15,17,21

Moreover, presence of major cardiovascular risk fac-
tors, such as hypertriglyceridemia, low HDL choles-
terol and increased levels of circulating inflammatory
markers, are also associated with echolucent plaques.22

These observations suggest that analysis of carotid
plaque grey scale intensity by B-mode ultrasono-
graphy can be used to assess plaque structure.
This may help to identify high risk patients requir-
ing pharmacological or surgical intervention, and be
used to monitor the effect of non-invasive interven-
tions and pharmacotherapy. The present study
was designed to investigate if plaque cellularity, as
assessed by DNA and soluble protein content, is
related to echostructure.
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Material and Methods

Thirty plaques from 27 patients (21 males) with mean
(SD) age of 67 (�8.5) years were immediately snap
frozen after removal en bloc at carotid endarterectomy
(CEA). Three patients had bilateral CEA. In one both,
in another neither was symptomatic, and in the third
only one plaque was symptomatic. Other causes for
symptoms were excluded by complete neurologic
and cardiologic evaluations, including CT-scan and
echocardiography. Fourteen plaques were associated
with ipsilateral hemispheric symptoms and corre-
sponded to internal carotid artery stenosis greater
than 70% (ECST).23 Plaques removed from asymp-
tomatic patients represented an internal carotid artery
stenosis greater than 80% (ECST).23 The study had
the approval of the local research ethics committee.
Informed consent was taken from each patient.
Cardiovascular risk factors such as hypertension
(systolic blood pressure 4140 mmHg), diabetes,
coronary artery disease, tobacco use (previous or
current) were recorded. Total cholesterol, HDL (high
density lipoprotein) cholesterol, LDL (low density
lipoprotein) cholesterol and triglycerides were
measured. Carotid high-definition ultrasonography
(ATL-HDI3000, 7±10 MHz probe, 60 dB dynamic
range and post-processing linear maps) of 27 plaques
was performed preoperatively in blinded fashion
by one observer. Plaques with an acoustic shadow,
whose morphology could not be fully assessed were
excluded. The severity of carotid stenosis was
assessed by duplex Doppler imaging by the same
observer (intra-observer variability r� 0.89) using
the ECST criteria23 and plaque cross-sectional area
reduction. Images were digitalized, computer-stan-
dardized (Adobe Photoshop 3.01) and the grey-
scale-median (GSM) determined as previously
described.18,19 Plaques were classified according to
Gray-Weale:24 type I, homogenous echolucent; type
II, heterogenous predominantly echolucent; type III,
heterogenous predominantly echogenic; type IV,
homogenous echogenic. Due to the small number of
plaques types I and II (predominantly echolucent)
and types III and IV (predominantly echogenic)
were combined. The plaques were further classified
according to GSM (532 vs �32) as in previous
studies this had provided the optimal discrimination
between symptomatic and asymptomatic plaques.19

Frozen plaques were weighed and homogenized
(5 ml 50 mmol/l tris HCl (pH 7.5), 0.25 mol/l sucrose,
2 mmol/l TCEP HCl (tris(2-carboxyethyl)phosphine),
50 mmol/l NaF, 1 mmol/l Na-orthovanadate, 10 mmol/l
Na-glycerophosphate, 5 mmol/l Na-pyrophosphate,
1 mmol/l EDTA, 1 mmol/l EGTA, protease inhibitor

cocktail (Roche CompleteTM, EDTA-free), 1 mmol/l
benzamidine, and 10 mmol/l PMSF) using a low tem-
perature motorised (1600 rpm) Teflon pestle and a pre-
cooled (ÿ80 �C) Teflon chamber with four pre-cooled
(ÿ80 �C) agate grinding balls, at 3000 rpm (20 s pulses
with cooling toÿ80 �C between pulses), using a Mikro-
Dismembrator S (B. Braun Biotech International).
Homogenate DNA content was measured using Pico-
Green26 ds DNA Quantization Kit (Molecular Probes)
after proteinase K-treatment (Sigma) in 20 mmol/l
Tris, pH 7.8, 0.07% SDS, 0.2% Triton X-100. The quan-
tification was done according to the manufacturer's
instructions in a 96-well fluorescence plate reader. To
avoid background fluorescence, samples without
PicoGreen probe were included in parallel readings.
The instrument was pre-calibrated using reagentblanks
with and without the addition of PicoGreen probe.
Measurement of DNA was taken as a direct assesment
of cellularity within the plaque tissue. Total soluble
protein was determined according to the method of
Lowry.27 Results were corrected for wet weight and a
p5 0.05 was considered significant. Values are pre-
sented as mean+ standard deviation. Chi-squared
analyses or Fisher's exact test analyses were made to
investigate associations with dichotomous variables.
Two-group comparisons were performed using the
unpaired Student's t test. Fisher's r to z test was
used for the correlation analyses. Statistical analysis
was performed using StatView for Windows, version
5.0.1 (SAS Institute Inc., Cary, CA, U.S.A.).

Results

There were no statistically significant differences
between symptomatic and asymptomatic patients,
except for plasma triglycerides (Table 1), which were
higher in symptomatic patients than in asymptomatic
ones. Ultrasound data for 3 samples were accidentally
not saved (Table 2). Symptomatic plaques had higher
DNA (Fig. 1A) and soluble protein (Fig. 1B) contents.
Predominantly echolucent plaques had higher DNA
(Fig. 2A) but not soluble protein (Fig. 2B), contents
than predominantly echogenic plaques. Plaques
with GSM5 32 had higher DNA (Fig. 3A), and sol-
uble protein (Fig. 3B), contents than plaques with
GSM� 32. There was an inverse correlation between
patients age, DNA (Fig. 4A) and soluble protein
(Fig. 4B) contents. There was a positive correlation
between DNA and total protein (r� 0.74; p5 0.0001)
(Fig. 5). There was an inverse correlation between
GSM and both DNA (Fig. 6A) and soluble protein
(Fig. 6B).
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Discussion

Most studies on the composition of atherosclerotic
plaques and its assessment by ultrasound techniques
have relied on histology. Analysis of total levels of
plaque components is, however, more appropriately
done by biochemical assays of whole plaque homoge-
nates, corresponding to total plaque composition.

Non-invasive analysis of plaque structure, for exam-
ple by spiral CT,28±30 MRI31±35 and ultrasound, may
help identify high risk patients and monitor the effects
of pharmacological interventions. Standardized
computer-assisted high-definition ultrasonography
can overcome the error and bias inherent in obtaining
data from different machines, centres and individual
sonographers. It is accepted that echolucent plaques
contain more lipid17,21,22 and, specifically, that there is
an inverse association between GSM and lipid con-
tent.17,21,22 The present study extends these findings
by demonstrating that echolucent plaques (GSM5 32)
are more cellular than echorich plaques. The

Table 1. Cardiovascular risk factors in symptomatic and asympto-
matic patients.

Risk factor Symptomatic Asymptomatic p

Hypertension 8 pts 10 pts NS
Diabetes 2 pts 4 pts NS
Coronary artery disease 7 pts 10 pts NS
Tobacco past use 4 pts 2 pts NS
Tobacco current use 2 pts 5 pts NS

Serum lipids (mg/dL)
Total cholesterol 226.5� 35.3 219.1� 53.1 NS
HDL cholesterol 42.9� 10.7 51.6� 15.4 NS
LDL cholesterol 150.2� 33.1 144.4� 35.8 NS
Triglycerides 171.2� 101.2 102.9� 46.3 0.03

Pts, patients; NS, not significant.

Table 2. Number of plaques in each group, for each variable.

Plaques n

Associated with symptoms vs not associated with symptoms
DNA 14 vs 16
Soluble protein 12 vs 16

Predominantly echolucent vs predominantly echogenic
DNA 12 vs 12
Soluble protein 14 vs 13

With GSM5 32 vs with GSM� 32
DNA 10 vs 13
Soluble protein 10 vs 17
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Fig. 1. (A) Carotid plaques associated with ipsilateral neurological
symptoms have higher amounts of DNA than those from asymp-
tomatic patients (0.400� 0.07 vs 0.335� 0.07 mg/g wet weight pla-
que; p� 0.03). (B) Plaques associated with symptoms have higher
amounts of soluble proteins than those from asymptomatic patients
(34.1+ 6.6 vs 29.7+ 3.4 mg/g plaque wet weight; p� 0.03).
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Fig. 2. Comparison of plaques classified by non-standardized high-
definition carotid ultrasonography into predominantly echolucent
(types I and II of Gray-Wheale classification) and predominantly
echogenic (types III and IV of Gray-Wheale classification) plaques.
(A) Predominantly echolucent plaques have more DNA than pre-
dominantly echogenic ones (0.404� 0.06 vs 0.332� 0.08 mg/g wet
weight plaque; p� 0.03). (B) On the other hand, no statistically
significant difference was found between predominantly echolucent
and predominantly echogenic plaques concerning the amount of
soluble protein (31.2+ 5.3 vs 31.7+ 6.8 mg/g plaque wet weight).
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determination of DNA and soluble protein has both
advantages and disadvantages as compared to histo-
logical analysis.36±40 Although DNA is cell specific
there is a theoretical risk of contamination by micro-
organisms found in plaque.41±44 Most components of
the extracellular fibrous matrix, such as collagen and
elastin, are insoluble and were, therefore, not mea-
sured in the current study. Small proteins associated
with extracellular matrix fibers, extracellular enzymes
and lipoproteins represent part of the soluble proteins
in plaques, but cellular proteins are likely to constitute
the major part of the plaque soluble proteins. This
notion is also supported by the observation of a strong
association between plaque DNA and soluble protein.
We have not found other studies reporting the content
of soluble proteins in atherosclerotic lesions. However,
soluble protein in tumor tissue has been shown to be a
good index of cellularity.45

The major disadvantage with using biochemical
techniques to determine plaque cell content is that they
do not allow identification of different cell types.
Atherosclerotic plaques contain endothelial cells, smooth
muscle cells and inflammatory cells, primarily

macrophages and T cells.46±51 Endothelial cells consti-
tute only a minor fraction of the cells in a plaque and are
not likely to differ significantly between echolucent
and echorich plaques. Smooth muscle cells are located
in the fibrous part of the plaque, where they usually
are sparsely distributed. Fibrous, lipid-poor plaques
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Fig. 4. Relation between cellularity and age. (A) Inverse correlation
between DNA (mg/g plaque wet weight) content in the atheroscler-
otic carotid plaques and the age of the patients (years) (r� ÿ 0.39;
p� 0.04). (B) Inverse correlation between the soluble protein content in
the carotid plaques (mg/g plaque wet weight) and the age of the
patients (years) (r� ÿ 0.50; p� 0.003).
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Fig. 5. Positive correlation between the amount of soluble protein
(mg/g plaque wet weight) and the amount DNA (mg/g plaque wet
weight) in the carotid plaques (r� 0.74; p5 0.0001).
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Fig. 3. Comparison of plaques classified by standardized high-
definition carotid ultrasonography. The gray-scale-median (GSM)
was obtained by standardized computer assisted image analysis.
(A) Plaques with GSM5 32 have higher DNA content than plaques
with GSM � 32 (0.386+ 0.09 vs 0.319+ 0.06 mg/g plaque wet
weight; p� 0.04). (B) Additionally, plaques with GSM 532 also
have higher levels of soluble protein than plaques with GSM �32
(34.7+ 7.3 vs 29.6+ 4.2 mg/g plaque wet weight; p� 0.04).
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contain mostly smooth muscle cells, and cell density
in fibrous plaques has been shown to be lower than in
lipid-rich lesions.52 Macrophages and T cells are more
common in lipid-rich plaques, where they are located
in cell-dense infiltrates.2,49,50,53 Hypercholesterolemia
has been reported to increase the rate of protein
synthesis in rabbit atherosclerotic lesions.54 Increased
levels of soluble protein may therefore reflect either an
increased number of cells or an increased activity of
cells. In the present study, DNA and soluble protein
levels were found to be closely correlated, suggesting
that soluble protein is mainly a measure of cellularity.
This notion is also supported by the observation
that echorich plaques contain lower levels of both
DNA and soluble protein. Atherosclerotic lesions
become more fibrotic with increasing age.55 Accord-
ingly, we found an inverse relation between age and
plaque cell content, with similar results for DNA and
soluble protein. This suggests that plaques from
younger patients, in whom lesions are known to pro-
gress more frequently,11 might be more vulnerable,
possibly demanding closer follow-up or even earlier
intervention.

In summary, this study highlights the value of stan-
dardized B-mode ultrasonography and demonstrates
that there is a significant association between the grey
scale intensity as assessed by B-mode ultrasonography
and the plaque cell content. It has previously been
shown that there is an association between echolucency
and plaque lipids.17,21,22 It is possible that the associ-
ation between echolucency and plaque cellularity
observed in the present study primarily reflects differ-
ences in plaque lipid content. These observations add
further support to the notion that standardized B-mode
ultrasonography could be a useful instrument to iden-
tify patients with vulnerable, high-risk plaques and to
monitor the effect of pharmacological interventions.
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