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Abstract

We derive uniform asymptotic expressions of some Abel sums appearing in some problems in
coding theory and indicate the usefulness of these sums in other -elds, like empirical processes,
machine maintenance, analysis of algorithms, probabilistic number theory, queuing models, etc.
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1. Introduction

The following sums, recently studied by Szpankowski [28], appear in a number of
applications:

Sn; k =
∑

06j6n−k

(
n − k

j

)(
j
n

)j(
1 − j

n

)n−j

(n¿0; 06k6n); (1)

where 00 is interpreted as 1. (Note that our Sn; k di<ers from his by 1.) For obvious
reasons, sums of type (1) will be referred to as an Abel sum.

When k = 0, Sn; 0 − 1 is the so-called Ramanujan Q-function (cf. [1])

Sn;0 − 1 = Q(n) =
∑

16j6n

n!
(n − j)!nj (2)

(cf. [28] or [5]). A general form of this identity for Sn; k , k¿1, is given in (12).
The Q(n) function was encountered in a number of problems in the analysis of

algorithms and combinatorial probability: hashing schemes [18, 31], random mappings
[22, 11], union--nd algorithms [21], optimum caching [19], deadlock in multiprocessing
systems [3], the birthday paradox [7, 8], and pseudo-random sequence [23].
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We describe yet another one in empirical process: n=2+Q(n)=2 is the expected value
of the index j for which the maximum in

D+
n := max

16j6n

(
j
n
− Uj

)
=:

j∗

n
− Uj∗ (3)

is reached, where U1¡U2¡ · · ·¡Un is an ordered sample of a random variable with
uniform distribution in (0; 1); (see [27, Chapter 9]). Note that by conjugacy, the dis-
tribution of j∗ is identical to that of the number of nonnegative elements among
{j=n − Uj}16j6n; see, for instance, [30, p. 373].

For general k, Sn; k − 1 was used to estimate the average worst-case probability of
undetected error (over all systematic q-ary [n; k] codes); see [24, 17, 28].

Szpankowski showed that, for 16k = O(1),

Sn; k =
1
4k

(
2k
k

)√
�n
2

+
1
3

+ O(n−1=2) (4)

as n→∞. His approach proceeds along generating functions and the singularity anal-
ysis of Flajolet and Odlyzko [11] using an inductive argument.

In this paper, we give two approximate expressions for Sn; k which completely char-
acterize the asymptotic behaviors of Sn; k for 16k6n, as n→∞. The -rst expression
extends the domain of validity of (4) to 16k = o(n1=4). Our proof follows a similar line
of generating functions but with an appeal to Mellin transforms (cf. [9]). This approach
is computationally simpler. We then propose another uniform asymptotic expression for
Sn; k for k →∞ and k6n, as n→∞ using an elementary argument.

It should be noted that uniform asymptotic expressions are especially useful for
practical purposes since in reality it is not obvious if the second parameter k is, say,
O(log n) or O(n1=100).

Our general approach is also useful for uniform asymptotics of the following partial
Abel sum

Pn; k :=
1
n

∑
16j6k

1
j

(
n

j − 1

)(
j
n

)j−1(
1 − j

n

)n−j

(16k6n); (5)

which is the probability distribution of j∗ in (3):

Pn;k = P(j∗ = k):

The Lambert W -function, or more precisely, the tree function T (z) = −W (−z), plays
a central rôle in our discussions:

T (z) =
∑
j¿1

jj−1

j!
zj (|z|6e−1):

The function T satis-es T (z) = zeT (z) and admits analytic continuation into the whole
cut-plane C\[e−1;∞). Properties together with a large number of applications of the
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W -function were recently surveyed by Corless et al. [5]. Some other applications were
stated in [10]. We add some other ones:
(1) Asymptotics of the Dickman function in the study of the distribution of integers

free from large prime factors; see [15] for a survey of the subject. We note that the
Dickman function also appears in the distribution of the largest cycle in random
permutations and the largest degree of an irreducible factor in a random polynomial
over a -nite -eld; see [2, 14].

(2) Asymptotics of the coeLcients of 1=�(z); see [6].
(3) The Borel distribution in probability theory is de-ned by

P(X = j) =
jj−1

j!
e−j (j = 1; 2; : : :):

Note that
∑

j¿1 P(X = j) = 1 or T (e−1) = 1. This distribution, together with its
generalizations by Tanner, proved useful in many problems in queuing models,
branching process, empirical process, etc., see [4] for a detailed account.

(4) Naor’s distribution (cf. [16, p. 447]) is de-ned by

P(Xn = j) =
(n − 1)!
j!nn−j (n − j) ( j = 0; 1; : : : ; n − 1);

a distribution arising in some machine interference problems 1 (cf. [25]). One can
also devise an urn-model interpretation of this law (cf. [16]) which in turn has
applications to algorithmic analysis of some problems in the theory of markets;
see [13]. The mean of Xn is easily seen to be n − Q(n) and the variance 2n −
Q2(n) − Q(n), etc.

For completeness, we mention that the following sums:

D∗
n (m) :=

n!
nn [zn](B(z)(B(z) − 1)m−1); Dn(m) :=

n!
nn [zn]

B(z)(Bm(z) − 1)
B(z) − 1

for 16m6n, appear as solutions of some recurrences in multi-alphabet universal cod-
ing (cf. [29]), where B(z) = 1=(1 − T (z)). Uniform asymptotics of these sums can be
obtained by appropriate application of the saddle-point method using the more conve-
nient expressions (by Lagrange inversion formula)

D∗
n (m) =

n!
nn [zn−m+1]

enz

(1 − z)m−1 ; Dn(m) =
1

n + 1
+

n!
nn [zn]

enz

(1 − z)m−1 :

Notation. Throughout this paper, the symbol [zn]f(z) represents the coeLcient of zn in
the Taylor expansion of f. Following a number-theoretic convention, the Vinogradov
symbol � is used as a synonym of Landau’s O(:) symbol. The symbols � and �′

always denote arbitrarily small but -xed quantities whose values may vary from one

1 The normal approximation in [25] is actually a Rayleigh distribution, as corrected by Salia and
Shashiashvili [26]. See also [22, p. 153] for the number of cyclic points in a random mapping, which
is nothing but n − Xn.



148 Hsien-Kuei Hwang / Theoretical Computer Science 263 (2001) 145–158

occurrence to another. All limits, including O, o, ∼, 
 and �, whenever unspeci-ed,
will be taken as n→∞.

2. Uniform asymptotics of Sn; k

Before the statement of each result, we will give a rough and heuristic derivation.
Although these heuristics may be rigorously justi-ed along the same line, we will
instead adopt a di<erent method of proof for more methodological interests.

Since Sn; k is essentially a Cauchy convolution, we have (cf. [28])

Sn; k =
(n − k)!

nn [zn]B(z)Bk(z); (6)

where

B(z) =
1

1 − T (z)
=
∑
j¿0

jj

j!
zj (|z|¡e−1)

and

Bk(z) = zkB(k)(z) =
∑
j¿k

jj

(j − k)!
zj (|z|¡e−1):

It is well known that (cf. [5])

T (z) = 1 −
√

2(1 − ez) + O((1 − ez)) (z → e−1; z =∈ (e−1;∞)):

Accordingly,

B(z) =
1√

2(1 − ez)
+ O(1) (z → e−1; z =∈ [e−1;∞)):

By (6) using Cauchy’s integral formula, we have

Sn;k =
(n − k)!k!
(2�i)2nn

∮
z−n+k−1B(z)

∮
w−k−1B(w + z) dw dz

≈ (n − k)!k!
2(2�i)2nn

∮
z−n+k−1(1 − ez)−1=2

∮
w−k−1(1 − ez − ew)−1=2 dw dz

≈ (n − k)!k!
2(2�i)2nn

∮
z−n+k−1 ek

(1 − ez)k+1

∮
v−k−1(1 − v)−1=2 dv dz;

where we used the change of variables w = (1 − ez)v=e in the penultimate line. But

1
2�i

∮
v−k−1(1 − v)−1=2 dv =

(
2k
k

)
4−k (k¿0);
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from this and Stirling’s formula, it follows that

Sn; k ≈ (n − k)!k!
4�inn

(
2k
k

)
4−k

∮
z−n+k−1ek(1 − ez)−k−1 dz

∼ (n − k)!
2nn ennk

(
2k
k

)
4−k

∼
(

2k
k

)
4−k

√
�n
2

:

A formal statement follows.

Theorem 1. If 16k = o(n1=4) then

Sn;k =
1
4k

(
2k
k

)√
�n
2

+
1
3
− (−1)�k;1

√
�
(

2k
k

)
(2k2 − 4k + 1)

12(2k − 1)4k
√

2n

+ (−1)�k;1
2(2k − 1)

135n
+ O(k3n−3=2) (7)

uniformly in k; where �a;b is Kronecker’s symbol.

In particular, if k →∞ and k = o(n1=4) then

Sn;k =

√
n
2k

(1 + O(k−1)):

Note that, asymptotically, we can incorporate the third term on the right-hand side of
(7) into the -rst by adding a slight perturbation to n:

Sn;k ∼ 1
4k

(
2k
k

)√
�
2

(
n − (−1)�k;1

2k2 − 4k + 1
6

)
+

1
3

:

When k becomes large, the singularity of Bk(z) is much “heavier” than that of B(z).
We may therefore expand B(z) at z = r and compute the corresponding residues:

Sn;k ≈ B(r) + B′(r)
((

1 − k
n

)
�n−1

1 − r
)

+
B′′(r)

2

((
1 − k

n

)(
1 − k + 1

n

)
�n−2

2 − 2r�n−1
1

(
1 − k

n

)
+ r2

)
;

where, for simplicity, �1 = 1 − 1=n and �2 = 1 − 2=n. Thus a good choice for r is

r =
(

1 − k
n

)
�n−1

1 =
(

1 − k
n

)(
1 − 1

n

)n−1

; (8)
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so that the second term disappears:

Sn;k ≈ B(r) +
B′′(r)

2

(
1 − k

n

)((
1 − k + 1

n

)
�n−2

2 −
(

1 − k
n

)
�2n−2

1

)

= B(r) + O(B′′(r)(1 − k=n)kn−2):

Note that when k = n, r = 0 and the above “≈” is actually an identity.

Theorem 2. If k →∞ and k6n then

Sn;k = B(r) + O(B′′(r)(1 − k=n)kn−2) (9)

uniformly in k; where r is de2ned in (8).

The asymptotic nature of (9) will be clearer from the following corollaries.

Corollary 1. If k →∞ and k = O(n1=3) then

Sn;k =
√

n
2k − 1

(1 + O(k−1)):

Corollary 2. For n1=3�k = o(n);

Sn;k =
√

n
2k − 1

+
1
3

+ O

(√
n

k3=2 +

√
k√
n

)
:

Corollary 3. If �n6k6(1 − �′)n then

Sn;k = B(r)
(

1 + O
(

1
�n

+
�′

n

))
:

Corollary 4. If n − k = o(n) and k6n then

Sn;k = 1 +
n − k

n
e−1

(
1 + O

(
n − k

n

))
:

It should be noted that, from a computational point of view, the B function is easily
computed by the relation B(r) = 1=(1 + W (−r)), where W is a standard function in
Maple (LambertW in Maple V, R5). The approximation of Sn; k by B(r) is very precise
even for small values of n, when k becomes slightly large. See Tables 1 and 2 for
numerical examples.

An application of our results is that Massey’s bound (cf. [24]) for the average worst-
case probability of undetected error is asymptotically equivalent to KlHve’s one (cf.
[17]) as n→∞ and k →∞, k6n; see [28].
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Table 1
Absolute and relative errors when approximating Sn; k by B(r) for n = 10

k 1 2 3 4 5 6 7 8 9 10

B(r) − Sn; k 1.086 0.277 0.126 0.068 0.040 0.024 0.014 0.008 0.003 0
(B(r) − Sn; k)=Sn; k 0.466 0.152 0.080 0.049 0.031 0.020 0.013 0.007 0.003 0

Table 2
Absolute errors of approximating Sn; k by B(r) for n = 20

k 1 2 3 4 5 6 7 8 9 10

B(r) − Sn; k 1.603 0.436 0.213 0.128 0.085 0.059 0.044 0.033 0.0252 0.0196
k 11 12 13 14 15 16 17 18 19 20
B(r) − Sn; k 0.015 0.012 0.009 0.007 0.005 0.0038 0.0027 0.0016 0.0007 0

3. Proof of the theorems

Before proving the theorems, we briePy discuss some elementary properties of Sn; k

and Bk(z).
By induction, we have

Bk(z) =
T k(z)!k(T (z))
(1 − T (z))2k+1 (k¿0); (10)

where !0(v) = !1(v) = 1 and

!k(v) = (3k − 2 − (k − 1)v)!k−1(v) + (1 − v)!′
k−1(v) (k¿2):

From this last recurrence, it follows that

!k(1) =
(2k)!
2kk!

; !′
k(1) = −k − 1

3
!k(1); !′′

k (1) =
k(k − 1)(k − 2)

9(k − 1=2)
!k(1);

!′′′
k (1) =

(k − 2)(k − 3)(5k2 + 1)
135(k − 1=2)

!k(1)

and, in general,

!(m)
k (1) = (2k − 1 − m)!(m)

k−1(1) − m(k − 1)!(m−1)
k−1 (1) (m¿1);

!(m)
k (1)� km!k(1) (m¿1): (11)

Also the exponential generating function of !k(v) satis-es

∑
k¿0

!k(v)
k!

uk =
1 − v

1 − T (ue−v(1 − v)2 + ve−v)
:
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If we write

!k(v) =
∑

06j¡k

�k;jvj;

then Sn; k satis-es

Sn;k =
∑

k6j6n

(n − k)!j
(n − j)!nj+1

∑
06‘¡k

�k;‘

(
k + 1 + j − ‘

2k + 1

)
: (12)

This generalizes (2). In particular, we have

Sn;1 =
∑

16j6n

(n − 1)!j
(n − j)!nj+1

(
j + 2

3

)
;

Sn;2 =
∑

16j6n

(n − 2)!j
(n − j)!nj+1

(
4
(

j + 3
5

)
−
(

j + 2
5

))
;

Sn;3 =
∑

16j6n

(n − 3)!j
(n − j)!nj+1

(
27
(

j + 4
7

)
− 14

(
j + 3

7

)
+ 2

(
j + 2

7

))
: (13)

The proof of (12) follows from (6), (10) and the formal identity

∑
j¿1

ajT j(z) =
∑
j¿1

ajj
∑
m¿j

mm−j−1

(m − j)!
zj

=
∑
m¿1

mm−1

m!
zm

∑
16j6m

jajm!
mj(m − j)!

[by Lagrange inversion formula]; see [5].
Still more complicated identities for Sn; k can be derived by integration by parts:

B(z)B(k)(z) dz = d(B(z)B(k−1)(z)) − z−1B2(z)(B(z) − 1)B(k−1)(z) dz;

giving

Sn;k = Sn;k−1 − (n − k)!
nn [zn](B2(z)(B(z) − 1)Bk−1(z)):

Thus for k¿1

Sn;k = Sn;k−1

− 1
n − k + 1

∑
16j6n−k+1

(
n − k + 1

j

)(
j
n

)j(
1 − j

n

)n−j

Q(j)Sn−j;k−1;

since Q(n) = (n!=nn)[zn]B(z)(B(z) − 1). In particular, we have

Sn;1 =
1
2

Sn;0 = Sn;0 − 1
n

∑
16j6n

(
n
j

)(
j
n

)j(
1 − j

n

)n−j

Q(j)Sn−j;0;
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where the -rst identity follows from an integration by parts. For a closely related
recurrence, see [20].

From the relation Sn;1 = Sn;0=2 and (13), we have the identity

1
3

∑
16j6n

(n − 1)!j2

(n − j)!nj+1 (j + 1)(j + 2) =
∑

06j6n

n!
(n − j)!nj

for n¿1.

3.1. Proof of Theorem 1

From (6), we have, by a change of variables,

Sn;k =
(n − k)!

nn

1
2�i

∮
|z|=�

z−n+k−1B(z)B(k)(z) dz (0 ¡ � ¡ e−1)

=
(n − k)!en

2�inn

∫ c+i�

c−i�
en%B(e−1−%)Bk(e−1−%) d% (c ¿ 0):

Analytic continuation of Bk(z) follows from that of B(z) which in turn is obtained from
that of T (z); see [12] or [5]. We now make explicit the local behavior of Bk(e−1−%)
as %→ 0. From the Mellin inversion formula (cf. [9])

e−w =
1

2�i

∫ a+i∞

a−i∞
�(s)w−s ds (Rw ¿ 0; a ¿ 0);

it follows, by absolute convergence, that

Bk(e−1−%) =
1

2�i

∫ a+i∞

a−i∞
�(s)%−sYk(s) ds

(
a ¿ k +

1
2

)
;

where

Yk(s) =
∑
j¿k

jje−j

(j − k)!js

(
R s ¿ k +

1
2

)
:

The singularities of Yk(s) will be determined by the asymptotic behavior of jje−j=
(j − k)! as j →∞. By Stirling’s formula

jje−j

(j − k)!js =
jk−s−1=2
√

2�

(
1 − 6k2 − 6k + 1

12j

+
36k4 − 120j3 + 120j2 − 26j + 1

288j2 + O(k6j−3)
)

;

it follows that Yk(s) admits meromorphic continuation into the whole plane with simple
poles at s = k+1=2; k−1=2; : : : : The corresponding residues are given by the coeLcients
in the above expansion. Note that �(s) has simple poles at s = 0;−1;−2; : : : : By
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standard arguments of Mellin transform, we deduce that, for k¿2,

Bk(e−1−%) =
�(k + 1=2)√

2�
%−k−1=2 − 6k2 − 6k + 1

12
√

2�
�(k − 1=2)%−k+1=2

+
36k4 − 120j3 + 120j2 − 26j + 1

288
√

2�
�(k − 3=2)%−k+3=2

+ O(k6�(k − 5=2)%−k+5=2)

and

B1(e−1−%) = (2%)−3=2 − 1
12

(2%)−1=2 − 4
135

+ O(%1=2):

These expressions hold a priori as %→ 0 in R%¿0. But it is easily seen using (10)
that it is still valid as %→ 0 in the cut-plane C\(−∞; 0].

In a similar manner, we have

B(e−1−%) = (2%)−1=2 +
1
3

+
1
12

(2%)1=2 +
4%

135
+ O(%3=2)

as %→ 0 and % =∈C\(−∞; 0]. By arguments similar to the singularity analysis, we
obtain, for k¿2,

Sn;k =
(n − k)!

nn ennk
(

�(k + 1=2)
2
√
��(k + 1)

+
n−1=2

3
√

2�
− �(k − 1=2)(k − 1)(3k − 1)

12
√
��(k)

n−1

− 90k2 − 106k + 23

540
√

2�
n−3=2 + O(k7=2n−2)

)

and for k = 1

Sn;1 =
n!en

nn

(
1
4
− 1

3
√

2�n
− 23

540
√

2�n
+

23

6048
√

2�n3=2
+ O(n−2)

)
:

From the asymptotic formula

(n − k)!
nn ennk =

√
2�n

(
1 +

6k2 − 6k + 1
12n

+ O(k4n−2)
)

for k = o(
√

n), the result (7) follows.
We note that (7) can also be derived by (10) and estimate (11) using singularity

analysis. This is the approach used by Szpankowski [28].

3.2. Proof of Theorem 2

Recall that r = (1 − k=n)(1 − 1=n)n−1. We observe -rst that the terms in Sn; k are
decreasing functions of j and that for n − k = o(n) and k6n, the sum de-nition (1)
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of Sn; k is itself an asymptotic expansion:

Sn;k = 1 +
n − k

n

(
1 − 1

n

)n−1

+ O
(

(n − k)2

n2

)

= 1 + r + O
( r

n

)
:

This last expression is asymptotically equivalent to (9). It remains to prove (9) for the
case k →∞ and k6(1 − �)n. The proof is divided into two parts: we -rst show that
for all n and k

Sn;k6B(r); (14)

then we show that

Sn; k¿B(r) + O
(

B′′(r)
k

n(n − k)

)
: (15)

The error term on the right-hand side is asymptotically equivalent to that in (9) when
k →∞ and k6(1 − �)n, thus completing the proof.

Consider -rst (14). Write

Sn; k =
∑

06j6n−k

jj

j!

(
1 − k

n

)j(
1 − 1

n − k

)
· · ·
(

1 − j − 1
n − k

)(
1 − j

n

)n−j

:

We need only prove that

(
1 − 1

n − k

)
· · ·
(

1 − j − 1
n − k

)(
1 − j

n

)n−j

6
(

1 − 1
n

)j(n−1)

:

By monotonicity, it suLces to show that

bn;j :=
(

1 − 1
n − 1

)
· · ·
(

1 − j − 1
n − 1

)(
1 − j

n

)n−j (
1 − 1

n

)−j(n−1)

61:

Now

bn; j

bn; j+1
=
(

1 − 1
n

)n(
1 − 1

n − j

)n−j

¿1:

Inequality (14) follows from the fact that bn;0 = 1.
For the proof of (15), we -rst show that

Sn;k =
∑

06j6(n−k)=2

jj(n − k) · · · (n − k − j + 1)
j!nj

(
1 − j

n

)n−j

+ O
(

n

k
√

n − k
e−k(n−k)=(2n)

)
:
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For,

∑
j¿(n−k)=2

jj(n − k) · · · (n − k − j + 1)
j!nj

(
1 − j

n

)n−j

6
∑

j¿(n−k)=2

jj

j!

(
1 − k

n

)j

e1−j
(

1 − j − 1
n − 1

)−n+j (
1 − j

n

)n−j

6
e√
2�

∑
j¿(n−k)=2

j−1=2
(

1 − k
n

)j(
1 − j

n

)n−j

�
∫ ∞

(n−k)=2
x−1=2 e−kx=n dx� n

k
√

n − k
e−k(n−k)=(2n):

Now (
1 − j

n

) ∏
06‘¡j

(
1 − ‘

n − k

)
¿e−j+j=(2n)−Y ;

where

Y =
∑
‘¿1

j‘+1

‘(‘ + 1)
((n − k)−‘ − n−‘)

6
kj2

n(n − k)

∑
‘¿1

1
‘

(
j

n − k

)‘−1

6 2 log 2
kj2

n(n − k)

for j6(n − k)=2.
On the other hand,

(
1 − 1

n

)j(n−1)

6 e−j+j=(2n):

Accordingly,

(
1 − j

n

) ∏
06‘¡j

(
1 − ‘

n − k

)
¿
(

1 − 1
n

)j(n−1)(
1 − 2 log 2

n(n − k)
kj2
)

:

Thus,

Sn;k¿
∑

06j6(n−k)=2

jj

j!
rj
(

1 − 2 log 2
n(n − k)

kj2
)

+ O
(

n

k
√

n − k
e−k(n−k)=(2n)

)
:
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It is easily seen that

∑
06j6(n−k)=2

jj

j!
rj = B(r) + O

(
n

k
√

n − k
e−k(n−k)=(2n)

)

and that this error term is absorbed by that in (9) when k →∞ and k6(1 − �)n.
This proves (15) and completes the proof of Theorem 2.

The corollaries follow from the estimates

B(z) =
1√

1 − ez
+

1
3

+ O(
√

1 − ez);

B′′(z)� (1 − ez)−5=2;

as z → e−1, and

r = e−1
(

1 − 2k − 1
2n

+ O(kn−2)
)

:
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