
Computational Geometry 23 (2002) 53–68
www.elsevier.com/locate/comgeo

Models and motion planning

Mark de Berga, Matthew J. Katzb,1, Mark H. Overmarsa, A. Frank van der Stappena,∗,
Jules Vleugelsa

a Institute of Information and Computing Sciences, Utrecht University, P.O. Box 80089, 3508 TB Utrecht, The Netherlands
b Department of Mathematics and Computer Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

Received 11 December 2000; accepted 24 April 2001

Communicated by J. Matoušek

Abstract

We study the complexity of the motion planning problem for a bounded-reach robot in the situation where the
n obstacles in its workspace satisfy two of the realistic models proposed in the literature, namely unclutteredness
and small simple-cover complexity. We show that the maximum complexity of the free space of a robot with
f degrees of freedom in the plane is�(nf/2 + n) for uncluttered environments as well as environments with
small simple-cover complexity. The maximum complexity of the free space of a robot moving in a three-
dimensional uncluttered environment is�(n2f/3 + n). All these bounds fit nicely between the�(n) bound
for the maximum free-space complexity for low-density environments and the�(nf) bound for unrestricted
environments. Surprisingly—because contrary to the situation in the plane—the maximum free-space complexity
is �(nf) for a three-dimensional environment with small simple-cover complexity. 2002 Elsevier Science B.V.
All rights reserved.

Keywords:Motion planning; Free space complexity; Input models

1. Introduction

It is well known that the maximum complexity of the free space of a robot withf degrees of freedom
moving in a scene consisting ofn disjoint obstacles of constant complexity can be�(nf). Consequently,
exact motion-planning algorithms often have a worst-case running time of at least the same order of

* Corresponding author.
E-mail addresses:markdb@cs.uu.nl (M. de Berg), matya@cs.bgu.ac.il (M.J. Katz), markov@cs.uu.nl (M.H. Overmars),

frankst@cs.uu.nl (A.F. van der Stappen), jules@cs.uu.nl (J. Vleugels).
1 Supported by the Israel Science Foundation founded by the Israel Academy of Sciences and Humanities.

0925-7721/02/$ – see front matter 2002 Elsevier Science B.V. All rights reserved.
PII: S0925-7721(01)00022-0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82581142?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

54 M. de Berg et al. / Computational Geometry 23 (2002) 53–68

magnitude. This is probably one of the reasons that most of the exact algorithms were never implemented.
One exception is Bañon’s implementation [3] of the O(n5) algorithm of Schwartz and Sharir [14] for
a ladder moving in a two-dimensional workspace, which performs surprisingly well, and much better
than the worst-case theoretical analysis predicts. The reason is that the running time of the algorithm is
sensitive to the actual complexity of the free space, and this is in practice far less than the�(nf) worst-
case bound.

These observations inspired research [1,2,4,7–11,13,15,16,19–21] where geometric problems are
studied under certain (hopefully realistic) assumptions on the input—in the case of motion planning:
the environment in which the robot is moving. The goal of this line of research is to be able to predict
better the practical performance of algorithms. For instance, van der Stappen et al. [16] studied the free-
space complexity for abounded-reach robotmoving in environments consisting offat obstacles. (A robot
has bounded reach if it is not too large compared to the obstacles in its workspace; an obstacle is fat if
it has no long and skinny parts.) They showed that in this restricted type of environments the worst-case
free-space complexity is only�(n). Van der Stappen [17,18] also proved that in such environments naive
and slightly adapted versions of Schwartz and Sharir’s ladder algorithm run in O(n2) and O(n logn) time,
respectively, which is more in line with the experimental results of Bañon. Van der Stappen and Overmars
[19] used the linear free-space complexity result to obtain an efficient general approach to robot motion
planning amidst fat obstacles. These results were extended to the more general setting of low-density
environments by van der Stappen et al. [20].

De Berg et al. [5] brought together various of therealistic input modelsthat were proposed in
the literature, namelyfatness, low density, unclutteredness, and small simple-cover complexity—see
Section 2 for formal definitions of these models. They showed that these models form a strict hierarchy
in the sense that fatness implies low density, which in turn implies unclutteredness, which implies small
simple-cover complexity, and that no other implications exist between the models. A natural question
that arises is whether the results of van der Stappen et al. [20] remain valid when, instead of a low-
density scene, we assume a more general setting, like an uncluttered scene or a scene with small simple-
cover complexity. In other words, does the complexity of the free space of a bounded-reach robot with
f degrees of freedom moving in an uncluttered scene (alternatively, in a scene with small simple-cover
complexity) remain O(n)?

The main result of this paper is a negative answer to this question. We prove that the maximum
complexity of the free space of a bounded-reach robot moving in either an uncluttered scene or a scene
with small simple-cover complexity is�(nf/2 + n) when the workspace is two-dimensional. These
bounds fit nicely between the�(n) bound for low-density scenes and the�(nf) bound for general
scenes. For three-dimensional uncluttered scenes the bound becomes�(n2f/3+n). Contrary to the planar
case, small simple-cover complexity doesnot result in a reduced maximum free-space complexity for
three-dimensional workspaces: the maximum complexity is�(nf).

Our upper-bound proofs use the concept of guarding sets [6]. A guarding set for a collection of
objects—in our case the obstacles in the robot’s workspace—is, informally speaking, a set of points
(sometimes referred to as guards) that approximates the spatial distribution of these objects. Guarding
sets allow us to define a simplifying generalization [6] of unclutteredness that implies small simple-cover
complexity in 3D and is even equivalent to it in the plane.

Section 2 recalls the input models that play a role in this paper and briefly reviews the relations between
these models and the concept of guarding sets. Section 3 establishes an upper bound on the number of
large objects intersecting a hypercube given the number of guards in its vicinity. In Sections 4 and 5 we

M. de Berg et al. / Computational Geometry 23 (2002) 53–68 55

use the relations and the bound to obtain tight bounds on the maximum complexity of the free space
for motion planning in uncluttered environments and environments with small simple-cover complexity
in 2D and 3D, respectively. Section 6 concludes the paper.

2. Input models

Before we briefly describe the input models that play a role in this paper we list a few important
assumptions and definitions. The dimension of the (work)space is denoted asd. We shall be dealing a lot
with squares, cubes, rectangles, and so on. These are always assumed to be axis-aligned. All geometric
objects we consider ared-dimensional and open; in particular, if we talk about a point lying in a square
or cube, we mean that the point lies in the interior of the square or cube. Furthermore, all objects we
consider are assumed to have constant complexity. More precisely, each object is a compact connected
set inR

d , bounded by a constant number of algebraic surface patches of constant maximum degree.
Thesizeof a square (more generally, of a hypercube) is defined to be its edge length, and the size of

an object is the size of a smallest enclosing hypercube for the object.
An L-shapeis the geometric difference of a hypercubeσ with a hypercubeσ ′ ⊆ σ of less than half

its size and sharing a vertex with it. An L-shape can be covered by 2d − 1 hypercubes contained in it:
for each vertexv of σ not shared withσ ′, take the hypercube of maximal size withv as a vertex and
contained inσ \ σ ′.

Although this paper concentrates on motion planning in uncluttered environments and environments
with small simple-cover complexity, we also briefly describe the model of low density for the sake of
reference. It is the weakest model for which the free space of a bounded-reach robot is known to have
linear complexity [20]. We leave fatness [5,18,19] out of our discussion as it imposes stronger constraints
on the environment while leading to the same bound as low density.

The model of low density was introduced by van der Stappen et al. [20] and refined by
Schwarzkopf and Vleugels [15]. It forbids any ballB to be intersected by many objects whose minimal-
enclosing-ball radius is at least as large as the radius ofB. In the definition,ρmeb(P) denotes the radius
of the minimal enclosing ball of an objectP .

Definition 2.1. Let O be a set of objects inRd . We say thatO hasλ-low-densityif for any ball B, the
number of objectsPi ∈O with ρmeb(Pi) � radius(B) that intersectB is at mostλ.

We say that a scene haslow densityif it hasλ-low-density for a small constantλ.
Unclutteredness was introduced by de Berg [4]. The model is defined as follows.

Definition 2.2. Let O be a set of objects inRd . We say thatO is κ-cluttered if any hypercube whose
interior does not contain a vertex of one of the bounding boxes of the objects inO is intersected by at
mostκ objects inO.

We call a sceneunclutteredif it is κ-cluttered for a small constantκ .
The following definition of simple-cover complexity is a slight adaptation of the original definition

by Mitchell et al. [12], as proposed by de Berg et al. [5]. Given a sceneO, we call a ballδ-simpleif it
intersects at mostδ objects inO.

56 M. de Berg et al. / Computational Geometry 23 (2002) 53–68

Definition 2.3. Let O be a set ofm objects inR
d , and letδ > 0 be a parameter. Aδ-simple coverfor O

is a collection ofδ-simple balls whose union covers the bounding box ofO. We say thatO has(s, δ)-
simple-cover complexityif there is aδ-simple cover forO of cardinalitysm.

We will say that a scene hassmall simple-cover complexityif there are small constantss andδ such that
it has (s, δ)-simple-cover complexity.

Guarding sets [6] against hypercubes2 provide a generalization of unclutteredness that turns out
useful in our proofs. A guarding set for a collection of objects is, loosely speaking, a set of points that
approximates the distribution of the objects. More precisely, guarding sets are defined as follows.

Definition 2.4. LetO be a set of objects inRd , and letκ be a positive integer. A setG of points is called
a κ-guarding set forO (against hypercubes) if any hypercube not containing a point fromG intersects
at mostκ objects fromO.

We will often call the points inG guards.
We are particularly interested in scenes that admit asmallκ-guarding set for some small constantκ ,

that is, a guarding set of size linear in the number of objects inO. Scenes that admit a linear-size guarding
set fit nicely in the existing model hierarchy: a low-density scene is also an uncluttered scene, which is a
scene that admits a linear-size guarding set, which is a scene with small simple-cover complexity [5,6]. In
the plane admitting a linear-size guarding set is even equivalent to having small simple-cover complexity,
but this is not the case in higher dimensions. A consequence of these hierarchical relations is that upper
bounds for scenes with linear-size guarding sets immediately transfer to planar and 3D uncluttered scenes
as well as to planar scenes with small simple-cover complexity. This conclusion will come to our help in
Sections 4 and 5.

3. Guards and vicinities

Guards provide information on the distribution of the objects in an environment. Let us assume
we are given aκ-guarding set for a collection of objects. A hypercube without any guards is, by
definition, intersected by at mostκ objects. Moreover, a hypercube with exactlyg guards in its interior
is intersected by O(κg) objects [6]. Theorem 3.4 below states another, more surprising, relation between
the distribution of the objects and the distribution of the guards. Again we look at hypercubes, but this
time we only look at objects that are at least as large as the hypercube, and not only consider the guards
inside the hypercube but also the ones in its vicinity.

We define thevicinity of a hypercubeσ to be the hypercube obtained by scalingσ with a factor of 5/3
with respect to its center. Thus, if we partition the vicinity ofσ into 5d equal-sized subhypercubes, then
σ consists of the 3d middle subhypercubes. The planar case is illustrated in Fig. 1.

We will show that the number of objects intersecting a hypercubeσ in R
d and at least as large asσ

cannot be more than (roughly) O(g1−1/d), whereg is the number of guards in the vicinity ofσ .

2 In the paper by de Berg et al. [6] guarding sets are defined against an arbitrary family of ranges. It is sufficient for our
purposes to concentrate on hypercubic ranges.

M. de Berg et al. / Computational Geometry 23 (2002) 53–68 57

Fig. 1. A squareσ and its vicinity. Fig. 2. Illustration of the planar case in the proof of Lemma 3.1.

We first reduce the problem to a simpler problem on so-called 3-blocks. Define a 3-block to be
the hyperrectangle obtained by scaling an axis-parallel hypercube by a factor of 1/3 along one of the
coordinate axes. We say that an objectcrossesa given hyperrectangle if there exists a curve inside the
intersection of the hyperrectangle and the object that connects the two largest (and opposite) faces of the
hyperrectangle. First we prove that if a hypercube is intersected by many larger objects, then there must
be a 3-block in its vicinity that is crossed by many objects.

Lemma 3.1. Let σ be a hypercube intersected by a collectionO of m objects that are at least
as large asσ . Then there is a3-block contained in the vicinity ofσ that is crossed by at least
m/(2d(3d − 1)) objects.

Proof. Partitionσ into 3d equal-sized subhypercubes. Each object intersectingσ must intersect one of
the 3d − 1 subhypercubes that have a common boundary withσ (because it is at least as large asσ).
One of the subhypercubes, sayσ ∗, thus intersects at leastm/(3d − 1) objects. Denote the set of objects
intersectingσ ∗ by O∗. Let Σ∗ be the hypercube obtained by scalingσ ∗ with a factor three with respect
to its center. Consider the 2d outer 3-blocks that are contained inΣ∗, that is, the 3-blocks that have one
of the 2d sides ofΣ∗ as a face—see Fig. 2 for an illustration of the planar case. Note thatΣ∗ and, hence,
all 2d outer 3-blocks, are contained in the vicinity ofσ . We shall argue that one of the outer 3-blocks is
crossed by at leastm/(2d(3d − 1)) objects.

The hypercubeΣ∗ has the same size as the original hypercubeσ . Hence, each object inO is at least
as large asΣ∗. This implies that the objects cannot be fully contained inΣ∗. Thus, each object inO∗ has
a point insideσ ∗ and a point outsideΣ∗. But this means that inside each such object we can find a curve
connecting the two largest faces of one of the 2d outer 3-blocks. Hence, one of the outer 3-blocks must
be crossed by at least|O∗|/2d = m/(2d(3d − 1)) objects. ✷

The next step is to prove a relation between the number of crossing objects and the number of guards
in a 3-block. The following auxiliary lemma will be called for in the proof of Lemma 3.3.

Lemma 3.2. For any given hypercubeσ intersected by a setO of m objects, and any constantb with
0< b � m, we can identify more than
m/(2d+1 − 2)b� disjoint hypercubes insideσ each intersected by
at leastb objects fromO.

58 M. de Berg et al. / Computational Geometry 23 (2002) 53–68

Proof. We construct a tree onσ by recursively identifying between 2 and 2d subhypercubes in the current
hypercube if it is intersected by at least 2db objects. Assume that we have a hypercubeσ ∗ intersected
by at least 2db objects and consider its decomposition into 2d equal-sized subhypercubes (by means of
thed hyperplanes perpendicular to the coordinate axes and cutting the hypercube into two equal halves).
We call a (sub)hypercube crowded if it is intersected by at leastb objects. Note that at least one of the
subhypercubes ofσ ∗ is crowded. Note also that each object intersectingσ ∗ intersects at least one of the
2d subhypercubes (because the objects ared-dimensional and open).

• If the number of crowded subhypercubes ofσ ∗ exceeds one, then each of these crowded
subhypercubes becomes a child ofσ ∗ in our tree. We charge the objects that do not intersect one
of the crowded subhypercubes, toσ ∗. The number of such objects is at most(2d − 2)(b − 1).

• If the number of crowded subhypercubes ofσ ∗ equals one, then this subhypercubeσ ′ is shrunk
towards the vertex it shares withσ ∗ until σ ∗ \ σ ′ is intersected by at least(2d − 1)b objects but
σ ′ is still intersected by at leastb objects. (Note that this is always possible because the objects
ared-dimensional.) Now consider the 2d − 1 hypercubes of maximal size contained inσ ∗ \ σ ′ and
sharing a vertex withσ ∗. Since these hypercubes jointly coverσ ∗ \ σ ′, at least one of them, sayσ ′′,
is crowded. The crowded hypercubesσ ′ andσ ′′ become the children ofσ ∗ in our tree. We charge the
at most(2d − 1)b − b = (2d − 2)b objects that do not intersectσ ′ or σ ′′ to σ ∗.

The leaves of the resulting tree correspond to disjoint hypercubes that are intersected by at leastb objects.
We will see that there are at leastm/(2d+1 − 2)b leaves.

Let L andI be the number of leaves and internal nodes of the resulting tree, respectively. As every
internal node has at least two children the number of leaves is larger than the number of internal nodes,
soL > I . We notice that the number of objects charged to an internal node is at most(2d − 2)b and the
number of objects intersecting a hypercube corresponding to a leaf is at most 2db − 1. Since the number
of objects charged to all internal nodes plus the number of objects intersecting the hypercubes at the
leaves should at least be equal tom we have that

I (2d − 2)b + L(2db − 1) � m.

Using the inequalityL> I we obtain

L>

⌊
m

(2d+1 − 2)b

⌋
. ✷

Lemma 3.3. Let G be aκ-guarding set for a collectionO of m objects inR
d , with d � 2. LetB be a

3-block crossed bym objects fromO, and letκ <m. Then there must be at least

(d − 1)3d−1

⌊
m

d3d−1(2d − 2)(κ + 1)

⌋d/(d−1)

guards fromG insideB.

Proof. We assume, without loss of generality, that the short side ofB has unit length. We splitB into

l :=
⌊

m

d3d−1(2d − 2)(κ + 1)

⌋1/(d−1)

M. de Berg et al. / Computational Geometry 23 (2002) 53–68 59

Fig. 3. A 3-blockB (with a crossing object shown shaded) is cut intol slices; each sliceS contains a certain number of cubes
(sharing a face with the faceg of S) that must contain at least one guard.

slices of height 1/ l by means of hyperplanes parallel to its two largest faces, which are(d − 1)-
dimensional hypercubes of side length 3. The two largest (and opposite) faces of the resulting slices
are again(d − 1)-dimensional hypercubes of side length 3; see Fig. 3 for a three-dimensional 3-block
and thel slices. We observe that each of the objects fromO crossingB also crosses each of thel slices.
Consider a sliceS and letg be one of its two largest faces. The intersections withg of them objects
crossingB are(d − 1)-dimensional objects.

Lemma 3.2 states that we can identify at least
m/(2d − 2)(κ + 1)� disjoint (d − 1)-dimensional
hypercubes insideg, each of which is intersected by at leastκ + 1 objects. Since the(d − 1)-dimensional
volume ofg is 3d−1, the number of(d − 1)-dimensional hypercubes with a side length exceeding 1/ l is
less than(3l)d−1, so at least
m/(2d −2)(κ +1)�− (3l)d−1 (which is positive) of such hypercubes have a
side length of 1/ l or less. For every such hypercubeσ , take thed-dimensional hypercubeσ ′ with σ as a
face and contained in the sliceS; this is possible because the side length ofσ ′ is at most 1/ l (see Fig. 3).
The hypercubeσ ′ is intersected by at leastκ + 1 objects becauseσ is intersected byκ + 1 objects, and
hence it must contain a guard. It follows that we need at least
m/(2d − 2)(κ + 1)� − (3l)d−1 guards per
slice, which sums up to a total of

l

(⌊
m

(2d − 2)(κ + 1)

⌋
− (3l)d−1

)
� (d − 1)3d−1

⌊
m

d3d−1(2d − 2)(κ + 1)

⌋d/(d−1)

guards for the entire 3-blockB. ✷
Combining the lemmas above, we now prove that the number of relatively large objects intersecting a

hypercube cannot exceed (roughly) the number of guards in its vicinity to the power 1− 1/d.

Theorem 3.4. LetG be aκ-guarding set for a setO of objects inRd , withd � 2. Any hypercubeσ whose
vicinity contains exactlyg guards fromG is intersected byO(κ(1+ g1−1/d)) objects fromO that are at
least as large asσ .

Proof. Let m denote the number of objects at least as large asσ intersectingσ . From Lemma 3.1 we
know that there is a 3-blockB in the vicinity of σ that is crossed by at leastm/(2d(3d − 1)) object
curves. Lemma 3.3 now implies that there must be at least

(d − 1)3d−1

⌊
m

2d23d−1(3d − 1)(2d − 2)(κ + 1)

⌋d/(d−1)

60 M. de Berg et al. / Computational Geometry 23 (2002) 53–68

guards inB. SinceB is in the vicinity ofσ , this number must be less than or equal tog, which (together
with the fact thatB can still be intersected byκ objects if it contains no guards) implies the theorem.✷

We now turn our attention to the complexity of motion planning in two-dimensional workspaces that
are either uncluttered or have small simple-cover complexity, and then extend the obtained results to
three dimensions in Section 5.

4. The complexity of motion planning in planar workspaces

Let R be a robot withf degrees of freedom, moving in a two-dimensional workspace amidst a setO
of n obstacles. The robotR can be of any type: it can be a free-flying robot, a robotic arm, and so on.
The only restriction is that it must havebounded reach[16], which is defined as follows. LetpR be an
arbitrary reference point insideR. Then thereachof R, denoted by reach(R), is defined as the maximum
distance that any point ofR can be frompR, taken over all possible configurations ofR. For instance,
if R consists of two links of length 1 that are both attached to the origin, and the reference point is the
tip of one of the links, then the reach ofR is 2. (If the reference point would be the origin then the reach
would be 1. For any two reference points, however, the two values reach(R) can be at most a factor of
two apart.) A bounded-reach robot is now defined as a robotR with

reach(R) � c · min
C∈O

{
size(C)

}
,

wherec is a (small) constant.
In this section we study the complexity of the free space of a bounded-reach robotR under the

assumption that the set of obstacles satisfies one of the models defined above. We prove an�(κf nf/2+n)

worst-case lower bound on the free-space complexity for the most restricted model, namely for
κ-cluttered scenes. Because unclutteredness implies small simple-cover complexity in the hierarchy
of input models [5], this bound carries over to scenes with small simple-cover complexity. Moreover,
we prove an O(κf ((sn)f/2 + sn)) upper bound for scenes with aκ-guarding set of sizes · n. By the
conclusions from Section 2, the upper bound immediately carries over to uncluttered scenes and scenes
with small simple-cover complexity. Hence, in both models we get a tight bound of�(nf/2 + n).

4.1. A lower bound for uncluttered scenes

The robotR in our lower bound example consists off links, which are all attached to the origin. The
links have length 1+ ε, for a sufficiently smallε > 0. ObviouslyR hasf degrees of freedom.

The set ofn obstacles for the case of a 2-cluttered planar scene is defined as follows. (Later we adapt
the construction to get the bound forκ-cluttered scenes for larger but still constantκ .) Recall that our
obstacles are presumed to be two-dimensional. Fix an integer parameterm; it will turn out later that
the appropriate value form is roughly

√
n. For a given integeri, let Ci be the horizontal rectangle of

length 1 and small heightε′ whose lower left corner lies on the unit circle and has ay-coordinate equal
to i/m—see Fig. 4(a) for an example. LetO1 := {Ci | 1 � i � m}; this set forms a subset of the set of
all obstacles. The remaining obstacles, which we describe later, are only needed to turn the environment
into an uncluttered environment.

M. de Berg et al. / Computational Geometry 23 (2002) 53–68 61

Fig. 4. (a) Part of the lower bound construction. (b), (c) Adding bounding-box vertices to make the scene uncluttered.

Consider any subset off rectangles fromO1. It is easy to see that there is a semi-free placement of
R such that each rectangle in the subset is touched by a link ofR. Hence, the free-space complexity
is �(mf). Whenm is large, however, the setO1 does not form an uncluttered environment: the dashed
square in Fig. 4(a) for instance, intersects�(m) obstacles without having a bounding-box vertex of one
of the rectangles in its interior. This problem would disappear if between every pair of adjacent horizontal
rectangles there would be a collection of�(m) equal-spaced bounding-box vertices, as in Fig. 4(b). If
the distance between consecutive vertices is set to 1/2m then no square without a bounding-box vertex in
its interior will intersect more than one obstacle fromO1. Notice that in total we need�(m2) bounding-
box vertices for this. We cannot add tiny obstacles between the rectangles to achieve this, because such
obstacles would be much smaller than the robot, so the robot would no longer have bounded reach.
There is no need, however, to add obstacles between the rectangles; we can also create bounding-box
vertices there by adding obstacles outside the current scene. Suppose that we wish to have a bounding-
box vertex at a given pointp = (px,py), and suppose that the current set of obstacles is contained in the
rectangle[xmin, xmax]×[ymin, ymax]. Then we add the right triangle∆ with vertices(px, ymax+xmax−px),
(xmax+ymax−py,py) and(xmax+ymax−py, ymax+xmax−px) as an obstacle—see Fig. 4(c). The pointp

is a bounding-box vertex of∆, and∆ is disjoint from the current set of obstacles. By iteratively adding
obstacles that generate the necessary bounding-box vertices between the rectangles inO1 we transform
the cluttered environment into an uncluttered one. The added obstacles are collected in a setO2; our
final set of obstacles isO = O1 ∪ O2. It is not difficult to see that these obstacles form a 2-cluttered
environment in this manner: any square without bounding-box vertices intersects at most one obstacle
from O1 or two obstacles fromO2.

We now have a collection of�(m2) obstacles forming a 2-cluttered scene such that the free-space
complexity is�(mf). By choosing a suitable value form (in the order of

√
n), we obtain a collection of

n obstacles such that the free-space complexity is�(nf/2).
To get the general bound we replace each of them rectangles in the setO1 by κ (even thinner)

rectangles of length 1 that are quite close together. The lower left corners of these rectangles still lie on
the unit circle; the new scene isκ-cluttered. It is still possible to choose the valueε, which determines
the length of the links ofR, small enough such that anyf -tuple of rectangles in the new setO1 can be
touched by a semi-free placement. Hence, the number off -fold contacts has increased to�(κfmf). By
again choosingm to be roughly

√
n we get a bound of�(κf nf/2). In the specific case thatf = 1 the

maximum complexity is clearly�(n).

Theorem 4.1. The free-space complexity of a bounded-reach robot withf degrees of freedom moving in
a two-dimensionalκ-cluttered scene consisting ofn obstacles can be�(κf nf/2 + n).

62 M. de Berg et al. / Computational Geometry 23 (2002) 53–68

4.2. An upper bound for scenes with linear-size guarding sets

We want to prove an upper bound on the complexity of the free space of a bounded-reach robot with
f degrees of freedom moving in a scene with a linear-sizeκ-guarding set. The global structure of our
proof will be as follows. We construct a decomposition of the workspace into cells that are not much
smaller than the robot. The decomposition will have the property that none of its cells can have too
many obstacles close to it. This means that the robot cannot have too manyf -fold contacts when its
reference point lies inside any given cell. Summing the number off -fold contacts over all the cells using
Theorem 3.4 yields the desired bound on the number of features of the free space.

The decomposition we use is obtained by adapting (the first stage of) the partitioning scheme described
by de Berg [4]. First we describe the exact properties that we require, and then show how to obtain a
decomposition with the desired properties.

Let ρ := 2 · reach(R). Define theexpansionô of an objecto to be the Minkowski sum ofo with a
square of size 2ρ centered at the origin. Hence,ô contains exactly those points that are at aL∞-distance
of less thanρ from o. Note that the expansion of a squareσ is another square, whose edge length is 2ρ

more than the edge length ofσ . Let Ô := {Ĉ | C ∈O} denote the set of expanded obstacles.

Lemma 4.2. LetO be a set of obstacles inR2 (or R
3), and letG be aκ-guarding set forO. Then there

exists a setS of cells that are either squares(or cubes) or L-shapes with the following properties:

(P1) the cells inS form a decomposition of a sufficiently large bounding square(or cube) of the setÔ
of expanded obstacles;

(P2) the number of cells inS is O(|G|);
(P3) every cell inS whose size is greater than2ρ is intersected byO(κ) expanded obstacles;
(P4) every cell inS whose size is less than or equal to2ρ is a square (or cube) of size at leastρ.

Proof. We prove the lemma for the planar case; the generalization to three dimensions is straightforward.
Let Ĝ denote the set of points obtained by adding to every guardg ∈ G the four corner points of the

square of size 2ρ centered atg. The set̂G contains 5|G| points. We enclosêO (andĜ) by a sufficiently
large square and recursively decompose this square based on the points ofĜ, as follows.

Let Ĝσ denote the subset of points from̂G contained in the interior of a squareσ at some stage in the
(quadtree-like) subdivision process. The squareσ is handled according to the following set of rules.

1. If size(σ) � 2ρ or Ĝσ = ∅ thenσ is one of the cells inS .
2. If size(σ) > 2ρ, Ĝσ �= ∅, and not all points of̂Gσ lie in the interior of a single quadrant ofσ , thenσ

is subdivided into four quadrants, which are handled recursively.
3. If size(σ) > 2ρ, Ĝσ �= ∅, and all points of̂Gσ lie in the interior of a single quadrant ofσ , thenσ is

subdivided as follows. Letσ ′ be the smallest square containing the points fromĜσ in its closure that
shares a vertex withσ .
(a) If size(σ ′) > ρ thenσ ′ is handled recursively, and the L-shapeσ \ σ ′ is a cell inS .
(b) If size(σ ′) � ρ, then letσ ′′ denote a square of sizeρ contained inσ and containingσ ′. The

squareσ ′′ and the L-shapeσ \ σ ′′ are cells inS .

M. de Berg et al. / Computational Geometry 23 (2002) 53–68 63

Fig. 5. A guard fromG insideσ̂ implies a point of̂G in σ .

It follows immediately from the construction that the cells inS satisfy properties (P1) and (P4).
A subdivision according to rule 2 splits the setĜσ into two nonempty subsets; a subdivision according
to rule 3 puts one of the points of̂Gσ onto the boundary of a subcell. Both subdivisions can therefore be
performed at most|Ĝ| times. As a result, the number of cells will be O(|Ĝ|) = O(|G|), which proves (P2).

It remains to prove property (P3). By construction, any cell of size more than 2ρ contains no point
from Ĝ. We now prove that any squareσ of size at leastρ that does not contain any points from̂G
intersects at mostκ expanded obstacles. If the cell under consideration is a square this immediately
proves (P3), and if it is an L-shape then it also proves (P3) because an L-shape of size at least 2ρ can be
covered by three squares of size at leastρ. So consider a squareσ without points fromĜ and whose size
is at leastρ. The fact thatσ contains no points from̂G implies that its expansion̂σ contains no guard
from G—see Fig. 5 for an illustration. This means thatσ̂ is intersected by at mostκ original obstacles,
which implies thatσ is intersected by at mostκ expanded obstacles.✷

Now that we have a suitable decomposition of the workspace, we can use Theorem 3.4 to prove our
main result.

Theorem 4.3. LetR be a bounded-reach robot withf degrees of freedom, withf a constant, moving in
a two-dimensional workspace containing a setO of n obstacles. If the set of obstacles has aκ-guarding
set of sizes · n, then the complexity of the free space isO(κf ((sn)f/2 + sn)).

Proof. If R touches an obstacleC, its reference point must lie in the interior of̂C. (This is true because
we definedρ astwicethe reach ofR.) Therefore we can bound, for any 1� k � f , the number ofk-fold
contacts ofR by bounding the number ofk-tuples of expanded obstacles with a non-empty common
intersection. The idea of the proof is to decompose the workspace according to Lemma 4.2 and then sum
the number ofk-tuples over all cells of the decomposition using Theorem 3.4.

Let G be aκ-guarding set of sizesn for the obstacle setO, and letS denote a decomposition having
the properties stated in Lemma 4.2. To bound the free-space complexity we have to bound the number
of simultaneous contacts involvingk obstacles, fork = 1, . . . , f . By property (P1) this means that the
free-space complexity is bounded by

f∑
k=1

∑
σ∈S

nk
σ ,

wherenσ denotes the number of expanded obstacles intersecting the cellσ . The asymptotic value of this
sum is dominated by the term wherek = f , so we ignore the other terms from now on. LetS1 be the

64 M. de Berg et al. / Computational Geometry 23 (2002) 53–68

subset ofS consisting of the cells of size larger than 2ρ, and letS2 be the subset ofS consisting of the
remaining cells. By properties (P2) and (P3) we have∑

σ∈S1

nf
σ = O

(
snκf

)
.

Now consider the cells inS2. By property (P4) these cells are squares whose size lies betweenρ and 2ρ.
Letσ be such a square. We claim that the number of expanded obstacles intersectingσ is O(κ(1+√

gσ)),
wheregσ is the number of guards fromG in the vicinity of the expansion̂σ . It is important to observe
that 3ρ � size(σ̂) � 4ρ. Furthermore, any expanded obstacle intersectingσ corresponds to an original
obstacle that intersectŝσ . Becauseρ � 2c · min{size(C) | C ∈ O} for a constantc, we can partition̂σ
into O(1) subsquares whose size is smaller than the size of the smallest obstacle. By Theorem 3.4, this
means that the number of original obstacles intersectingσ̂ is O(κ(1+ √

gσ)), wheregσ is the number of
guards in the vicinity of̂σ . Hence, the number of expanded obstacles intersectingσ is bounded by this
quantity as well.

We conclude that the number off -tuples of expanded obstacles with a non-empty common
intersection in a cell ofS2 is bounded by∑

σ∈S2

nf
σ =

∑
σ∈S2

(
κ
(
1+ √

gσ

))f
,

wheregσ is the number of guards in the vicinity of the expansionσ̂ . Since all squares have size at least
ρ by property (P4), the vicinity of an expanded square inS2 intersects O(1) other vicinities of expanded
squares. Hence, a guard fromG lies in O(1) vicinities, and we have∑

σ∈S2

gσ = O(sn),

which leads to∑
σ∈S2

(
κ
(
1+ √

gσ

))f = O
(
κf (sn)f/2

)
.

Therefore the total number off -fold contacts ofR is bounded by∑
σ∈S1

nf
σ +

∑
σ∈S2

nf
σ = O

(
κf

(
(sn)f/2 + sn

))
. ✷

5. The complexity of motion planning in 3D workspaces

Having described the two-dimensional setting in the previous section, we now turn our attention to
a robotR moving in a three-dimensional workspace amidst a setO of n obstacles. As in the two-
dimensional case, the robot is allowed to be of any type—we only require that its reach is bounded. We
prove an�(κ2f n2f/3 + n) worst-case lower bound on the complexity of the free space forκ-cluttered
scenes, and an O(κf ((sn)2f/3+ sn)) upper bound for scenes with aκ-guarding set of sizes ·n. As before,
this results in a tight bound of�(n2f/3 + n) for uncluttered scenes. We also prove an�(nf) worst-case
lower bound on the complexity of scenes with small simple-cover complexity. The maximum free-space
complexity for such scenes is therefore�(nf) and thus equivalent to the complexity for unrestricted
scenes.

M. de Berg et al. / Computational Geometry 23 (2002) 53–68 65

Fig. 6. The lower-bound construction.

5.1. Lower bounds

5.1.1. A lower bound for scenes with small simple-cover complexity
We consider the scene consisting ofn rings,

Ci :=
{
(x, y, z)

∣∣∣∣ i

n
< x <

i

n
+ ε, 1< y2 + z2 < 1+ ε

}
,

with 0 � i < n and smallε shown in Fig. 6. It was shown [6] that a similar scene consisting of unit
circles has small simple-cover complexity but requires aκ-guarding set of size�(n2) for any constantκ .
It is clear that these properties carry over to our scene in which the circles are replaced by thin rings.
Our robotR consists off links, which are all attached to the point(0,2,0). Each link has length 2 and
rotates about the axish = {(x, y, z) | x = 0, y = 2}, causing it to stay inside thexy-plane. Note that the
size of the robot is comparable to the size of the obstacles so it has bounded reach. For any subset off

rings, there is a semi-free placement ofR such that each ringCi in the subset is touched by a link ofR.
As a consequence, the free-space complexity is�(nf).

Theorem 5.1. The free-space complexity of a bounded-reach robot withf degrees of freedom moving in
a three-dimensional scene with small simple-cover complexity consisting ofn obstacles can be�(nf).

5.1.2. A lower bound for uncluttered scenes
Our approach to obtaining a worst-case lower bound for 3Dκ-cluttered scenes is similar to the planar

case. We fix a parameterm and consider the setO1 of m2 thin unit-length rectangloids,

Ci,j =
{
(x, y, z)

∣∣∣∣ i

m
< x <

i

m
+ ε,

j

m
< y <

j

m
+ ε, 0< z < 1

}
,

for 0� i, j < m.
Consider them2 planes through pairs of obstacles and choose a pointq = (xq, yq,1/2) that lies on

none of these planes and satisfies 1/2 < xq, yq < 1/2 + 1/m. Our robotR hasf links, which are all
anchored atq. Each link has length 1 and is able to rotate about the axish = {(x, y, z) | x = xq, y = yq},
causing it to stay inside the planez = 1/2; the choice ofq allows it be placed in contact with each obstacle

66 M. de Berg et al. / Computational Geometry 23 (2002) 53–68

Fig. 7. (a) Cross-section of the environment atz = 1/2. (b) Magnified portion of the scene showing a single obstacle and the
four sequences of points (bounding-box vertices) immediately surrounding it.

in O1. Fig. 7(a) shows the intersection of the scene with the planez = 1/2. The size ofR is comparable
to the size of the obstacles inO1. For any subset off obstacles there is a semi-free placement ofR such
that each obstacleCi,j in the subset is touched by a link ofR. Hence, the complexity of the free space
is �(m2f).

To prevent cubes from intersecting more than one obstacle fromO1 we put sequences of points on
each of the linesl = {(x, y, z) | x = (2i − 1)/2m, y = (2j − 1)/2m} for 0 � i, j � m, see Fig. 7(b)
for one obstacle and the points surrounding it. The distance between two consecutive points on a single
line is again equal to 1/2m. We turn the�(m3) points into bounding-box vertices by iteratively adding
tetrahedral obstacles in a way similar to the planar case. The resulting�(m3) obstacles are collected
in O2, and our final set of obstacles isO = O1 ∪O2. Any cube without bounding box vertices intersects
at most one obstacle fromO1 or two obstacles fromO2.

As a result, we now have a collection of�(m3) obstacles forming a 2-cluttered scene with a free-space
complexity of�(m2f). By choosingm = n1/3, the free-space complexity becomes�(n2f/3) for the set
of n obstacles.

As in the two-dimensional example, we now replace each of them obstacles inO1 by κ obstacles
that are close together and arranged such that each of them can be touched by the links ofR. The
resulting scene isκ-cluttered, and the number off -fold contacts increases from�(m2f) to �(κfm2f).
The theorem follows from again choosingm = 3

√
n. By again choosingm to be roughlyn1/3 we get a

bound of�(κf n2f/3). Again the maximum complexity is�(n) in the case thatf = 1.

Theorem 5.2. The free-space complexity of a bounded-reach robot withf degrees of freedom moving in
a three-dimensionalκ-cluttered scene ofn obstacles can be�(κf n2f/3 + n).

5.2. An upper bound for scenes with linear-size guarding sets

Proving an upper bound on the free-space complexity of a bounded-reach robot withf degrees of
freedom moving in a scene with a linear-size guarding set is entirely analogous to the two-dimensional
case.

M. de Berg et al. / Computational Geometry 23 (2002) 53–68 67

Theorem 5.3. LetR be a bounded-reach robot withf degrees of freedom, withf a constant, moving in
a three-dimensional workspace containing a setO of n obstacles. If the set of obstacles has aκ-guarding
set of sizes · n, then the complexity of the free space isO(κf ((sn)2f/3 + sn)).

Proof. Analogous to the proof of Theorem 4.3, except that∑
σ∈S2

nf
σ =

∑
σ∈S2

(
κ
(
1+ g2/3

σ

))f = O
(
κf (sn)2f/3),

which yields∑
σ∈S1

nf
σ +

∑
σ∈S2

nf
σ = O

(
κf

(
(sn)2f/3 + sn

))
. ✷

6. Conclusion

We have established that the maximum complexity of the free-space of a bounded-reach robot with
f degrees of freedom moving in an uncluttered scene is�(nf/2 + n) in R

2 and�(n2f/3 + n) in R
3;

the planar bound also holds for scenes with small simple-cover complexity. These bounds fit nicely
between the�(n) bound for low-density scenes—which are more restrictive—and the�(nf) bound for
unrestricted scenes. Surprisingly, the maximum complexity of the free space for a robot moving in a
3D scene with small simple-cover complexity is equal to�(nf)—the bound for unrestricted scenes.

Motion planning in low-density environments can be solved in an amount of time that is almost equal
to the maximum free-space complexity [20]. It is interesting to see if a similar result is possible for
uncluttered scenes and scenes with small simple-cover complexity.

References

[1] P.K. Agarwal, M.J. Katz, M. Sharir, Computing depth orders for fat objects and related problems, Computational
Geometry 5 (1995) 187–206.

[2] H. Alt, R. Fleischer, M. Kaufmann, K. Mehlhorn, S. Näher, S. Schirra, C. Uhrig, Approximate motion planning and the
complexity of the boundary of the union of simple geometric figures, Algorithmica 8 (1992) 391–401.

[3] J.M. Bañon, Implementation and extension of the ladder algorithm, in: Proc. IEEE Internat. Conf. Robot. Autom., 1990,
pp. 1548–1553.

[4] M. de Berg, Linear size binary space partitions for uncluttered scenes, Algorithmica 28 (2000) 353–366.
[5] M. de Berg, M.J. Katz, A.F. van der Stappen, J. Vleugels, Realistic input models for geometric algorithms, in: Proc. 13th

Annu. ACM Sympos. Comput. Geom., 1997, pp. 294–303.
[6] M. de Berg, H. David, M.J. Katz, M. Overmars, A.F. van der Stappen, J. Vleugels, Guarding scenes against invasive

hypercubes, Technical Report UU-CS-2000-40, Institute of Information and Computing Sciences, Utrecht University,
Utrecht, The Netherlands, 2000.

[7] A. Efrat, M.J. Katz, On the union ofκ-curved objects, Computational Geometry 14 (1999) 241–254.
[8] A. Efrat, M.J. Katz, F. Nielsen, M. Sharir, Dynamic data structures for fat objects and their applications, Computational

Geometry 15 (2000) 215–227.
[9] M.J. Katz, 3-D Vertical ray shooting and 2-d point enclosure, range searching, and arc shooting amidst convex fat objects,

Computational Geometry 8 (1997) 299–316.
[10] M.J. Katz, M.H. Overmars, M. Sharir, Efficient hidden surface removal for objects with small union size, Computational

Geometry 2 (1992) 223–234.

68 M. de Berg et al. / Computational Geometry 23 (2002) 53–68

[11] J. Matoušek, J. Pach, M. Sharir, S. Sifrony, E. Welzl, Fat triangles determine linearly many holes, SIAM J. Comput. 23
(1994) 154–169.

[12] J.S.B. Mitchell, D.M. Mount, S. Suri, Query-sensitive ray shooting, Internat. J. Comput. Geom. Appl. 7 (1997) 317–347.
[13] M.H. Overmars, A.F. van der Stappen, Range searching and point location among fat objects, J. Algorithms 21 (1996)

629–656.
[14] J.T. Schwartz, M. Sharir, On the “piano movers” problem I: The case of a two-dimensional rigid polygonal body moving

amidst polygonal barriers, Commun. Pure Appl. Math. 36 (1983) 345–398.
[15] O. Schwarzkopf, J. Vleugels, Range searching in low-density environments, Inform. Process. Lett. 60 (1996) 121–127.
[16] A.F. van der Stappen, D. Halperin, M.H. Overmars, The complexity of the free space for a robot moving amidst fat

obstacles, Computational Geometry 3 (1993) 353–373.
[17] A.F. van der Stappen, The complexity of the free space for motion planning amidst fat obstacles, J. Intell. Robotic Syst. 11

(1994) 21–44.
[18] A.F. van der Stappen, Motion planning amidst fat obstacles, Ph.D. Thesis, Department of Computer Science, Utrecht

University, Utrecht, The Netherlands, 1994.
[19] A.F. van der Stappen, M.H. Overmars, Motion planning amidst fat obstacles, in: Proc. 10th Annu. ACM Sympos. Comput.

Geom., 1994, pp. 31–40.
[20] A.F. van der Stappen, M.H. Overmars, M. de Berg, J. Vleugels, Motion planning in environments with low obstacle density,

Discrete Comput. Geom. 20 (1998) 561–587.
[21] J. Vleugels, On fatness and fitness—Realistic input models for geometric algorithms, Ph.D. Thesis, Department of

Computer Science, Utrecht University, Utrecht, The Netherlands, 1997.

