

Discrete Mathematics 157 (1996) 79-90

DISCRETE MATHEMATICS

Enumération de polyominos convexes dirigés

J.P. Dubernard, I. Dutour*

LaBRI¹, Université Bordeaux I, 33405 Talence Cedex, France

Received 10 July 1994; revised 14 December 1994

Abstract

We give an enumerating formula for convex directed polyominoes according to their width, height, area and number of corners. Hence, we propose a unifying formula for a set of subfamilies of convex directed polyominoes (Ferrers diagrams, stack, parallelogram and convex directed polyominoes). Most of the known results on each of these sub-families may be deduced from the formula through suitable specializations.

Résumé

Nous proposons dans cet article une formule d'énumération pour les polyominos convexes dirigés selon les paramètres largeur, hauteur, aire et nombre de coins. Nous obtenons ainsi une unification des formules des sous-familles de polyominos convexes dirigés (diagrammes de Ferrers, polyominos tas, parallélogrammes et convexes dirigés). Pour chacune d'entre elles, notre formule générale fournit une fonction génératrice incluant la plupart des résultats connus jusqu'alors.

1. Introduction

Les polyominos sont des objets connus et étudiés depuis longtemps en combinatoire. Ils interviennent également dans l'étude de certains modèles de physique statistique sous une forme équivalente, les *animaux* [10, 19].

Considérons le plan $\mathbb{R} \times \mathbb{R}$. Une cellule élémentaire est un carré unitaire du plan. Un polyomino est une union finie de cellules élémentaires, d'intérieur connexe et définie à translation près. On définit plusieurs paramètres relatifs à un polyomino. L'aire est le nombre de cellules élémentaires qui le composent, la *largeur* (resp. *hauteur*) est le nombre de colonnes (resp. lignes) du polyomino, *le périmètre de lien* est le nombre

^{*} Corresponding author. E-mail: [dubernar, dutour]@labri.u-bordeaux.fr.

¹ Unité associée au C.N.R.S. no. 1304.

⁰⁰¹²⁻³⁶⁵X/96/\$15.00 © 1996 Elsevier Science B.V. All rights reserved SSDI 0012-365X(95)00256-1

de segments unitaires de son pourtour et le périmètre de site le nombre de cellules élémentaires adjacentes au moins par un segment à son pourtour (voir Fig. 1).

Etablir une formule exacte pour l'énumération de polyominos dans le cas général reste à l'heure actuelle un problème ouvert. En revanche, de nombreux résultats ont été démontrés concernant l'énumération de certaines classes particulières de polyominos, voir par exemple les articles [3, 13, 22]. On trouvera des articles de synthèse dans [5, 18, 27]. La plupart de ces classes se définissent à l'aide de contraintes de convexité et de direction de croissance. Un polyomino est verticalement (resp. horizontalement) convexe si son intersection avec chaque ligne verticale (resp. horizontale) est convexe. On dit qu'un polyomino est convexe s'il est à la fois verticalement et horizontalement convexe. Un polyomino est dirigé si chacune de ses cellules peut être atteinte à partir d'une cellule distinguée, la racine, par un chemin formé de pas Nord et Est.

On s'intéresse ici à l'énumération des polyominos convexes dirigés et de leurs trois sous-familles classiques: les diagrammes de Ferrers, les polyominos parallélogrammes et les polyominos tas. Comme le montre la Fig. 2, chacune des sous-familles peut être caractérisée, dans l'ensemble des polyominos convexes, par le fait que deux ou trois des sommets du rectangle minimal qui contient le polyomino appartient au polyomino lui-même. De plus, un polyomino convexe est dirigé si et seulement s'il contient le sommet sud-ouest du rectangle minimal le contenant.

Concernant les résultats classiques sur les diagrammes de Ferrers, on pourra se reporter à Andrews [1], et pour les polyominos tas à Wright [28], par exemple. Les polyominos parallélogrammes ont été énumérés selon les périmètres de site et de lien par Delest, Gouyou-Beauchamps et Vauquelin [8]. Leur énumération selon l'aire a été étudiée par Gessel [17], Polya [23], et leur fonction génératrice exprimée par Klarner et Rivest [20], puis Delest et Fédou [7] ont rattaché cette fonction génératrice selon la largeur et l'aire au rapport de deux q-analogues de fonctions de Bessel J_0 et J_1 , résultat étendu par Bousquet-Mélou et Viennot [4] en ajoutant le paramètre hauteur. Lin et Chang [22] ont montré un résultat étonnamment simple: le nombre de polyominos convexes dirigés de périmètre 2n + 4 est égal au coefficient binomial $\binom{2n}{n}$. Plus récemment, Bousquet-Mélou et Viennot [4] ont énuméré les polyominos convexes dirigés selon la hauteur, la largeur et l'aire simultanément.

Fig. 1. Un polyomino.

Fig. 2. Les polyominos convexes dirigés.

Parmi les méthodes d'énumération mises en œuvre, la méthodologie de Schützenberger [24,25] a été abondamment utilisée. Son principe consiste à établir une bijection entre les objets que l'on cherche à énumérer et les mots d'un langage algébrique généré par une grammaire non ambiguë. On en déduit un système d'équations algébriques satisfait par la série génératrice des objets étudiés. Les articles [8] et [9] présentent des exemples d'utilisation de cette méthode. Lorsqu'on analyse le principe de la méthode de Schützenberger, on remarque que le plus important ne réside pas dans la bijection entre les objets et les mots, mais plutôt dans la décomposition des objets qu'elle induit, voir par exemple [6]. D'où l'idée de déduire directement l'équation fonctionnelle vérifiée par la série génératrice à partir d'une description visuelle, récursive des objets. Ceci fait l'objet d'un travail en cours sur les "grammaires d'objets" [12] qui tend à formaliser des "équations d'objets", telle celle présentée Fig. 3.

En utilisant une décomposition en colonnes des polyominos verticalement convexes, Bousquet-Mélou [2] a obtenu récemment de nouveaux résultats dans le domaine de l'énumération de classes de polyominos verticalement convexes. Elle donne dans [2] une résolution systématique des q-équations associées. Feretić et Svrtan [15,16] ont développé une technique similaire permettant d'obtenir des q-équations à partir d'une décomposition en colonnes des polyominos verticalement convexes.

Dans le cas des polyominos parallélogrammes, Delest, Gouyou-Beauchamps et Vauquelin [8] ont remarqué que le périmètre de site s'exprime simplement en fonction du périmètre de lien en introduisant un paramètre supplémentaire, le *nombre de coins*. Dubernard, dans [11], a proposé une caractéristation de la fonction génératrice de ces polyominos selon la largeur, l'aire et le nombre de coins sur le chemin gauche. En généralisant la notion de coin, la relation entre périmètre de site et périmètre de lien s'étend naturellement à la classe des polyominos convexes dirigés toute entière. Le périmètre de site d'un polyomino convexe dirigé est égal à la différence entre son périmètre de lien et son nombre total de coins.

Un polyomino convexe dirigé peut contenir trois différents types de coins:

- type I : double pas Est-Nord sur le chemin gauche allant de O à A,
- type II : double pas Nord-Est sur le chemin droit allant de O à B,
- type III : double pas Sud-Est sur le chemin allant de A à B.

On peut noter que les diagrammes de Ferrers ne possèdent que des coins de type II, les polyominos tas que des coins de type II et III, et les polyominos parallélogrammes que des coins de type I et II.

La Section 2 donne une rapide présentation de la méthode due à Bousquet-Mélou [2] sur la résolution de certaines q-équations appliquée à l'énumération des polyominos verticalement convexes. Dans la Section 3, nous appliquons cette technique pour calculer explicitement la fonction génératrice des polyominos convexes dirigés selon la largeur, la hauteur, l'aire, le nombre de coins de type I, le nombre de coins de type II et le nombre de coins de type III (Théorème 3.1). Enfin, dans la Section 4, nous déduisons de ce théorème central la fonction génératrice (selon les mêmes paramètres) des différentes sous-familles de polyominos convexes dirigés, ainsi que celle selon l'aire et le périmètre de site.

2. Description de la méthode utilisée

L'idée de base de la méthode rejoint le cadre des "grammaires d'objets" développé par Dutour et Fédou [12]. Ils formalisent des descriptions visuelles récursives d'objets à partir d'objets de base et d'opérations sur les objets. Les équations fonctionnelles vérifiées par les séries énumératrices se déduisent alors automatiquement lorsque les décompositions sont non ambiguës. L'équation présentée Fig. 3 est un exemple représentatif de cette méthode.

Un polyomino verticalement convexe peut être défini récursivement en "collant une colonne" devant un autre polyomino verticalement convexe. Cette décomposition en colonnes est classique en physique statistique et connue sous le nom de "méthodologie de Temperley" [26]. Dans [2], Bousquet-Mélou utilise cette description des polyominos verticalement convexes grâce à laquelle elle obtient des équations fonctionnelles qui ont la même forme quelle que soit la classe de polyominos verticalement convexes étudiée. Elle prouve alors un lemme résolvant de façon systématique ce type de q-équations.

Notations et définitions. Soient $\Re = \mathbb{R}[[s, t, x, y, c_1, c_2, c_3, q]]$ l'algèbre des séries formelles en les variables $s, t, x, y, c_1, c_2, c_3, q$ à coefficients réels, et \mathscr{A} une sous-algèbre de \Re dont les séries, et leurs dérivées par rapport à s, convergent pour s = 1. Si $X(s, t, x, y, c_1, c_2, c_3, q)$ est une série de \mathscr{A} , nous la noterons souvent X(s). Sa dérivée par rapport à s sera notée $\partial X/\partial s(s)$.

Soit P un polyomino. Sa hauteur-gauche (resp. hauteur-droite) est la hauteur de sa colonne la plus à gauche (resp. droite). On note:

- sa hauteur-gauche (resp. hauteur-droite) l(P) (resp. r(P)),
- le nombre de pas horizontaux (resp. verticaux) de son périmètre 2h(P) (resp. 2v(P)),
- son aire a(P).

Si P est un polyomino convexe dirigé, on note $n_1(P)$ (resp. $n_2(P)$, $n_3(P)$) le nombre de coins de type I (resp. II, III) dans P.

Soit \mathcal{P} un ensemble de polyominos convexes dirigés. Sa *fonction génératrice* est la série formelle suivante:

$$\sum_{P\in\mathscr{P}} s^{l(P)} t^{r(P)} x^{h(P)} y^{v(P)} c_1^{n_1(P)} c_2^{n_2(P)} c_3^{n_3(P)} q^{a(P)}.$$

2.1. Equation et résolution

Les différentes manières de coller une colonne devant un polyomino pour en créer un de la même classe font que l'on obtient des équations affines exprimant X(s) en fonction de X(sq), X(1), et $\partial X/\partial s(1)$. La fonction X(sq) intervient lorsque l'on duplique la première colonne du polyomino; en effet, l'aire du polyomino est augmentée du nombre de cellules de la première colonne, et on a xX(sq) (voir par exemple les quatre cas de la Fig. 3). La fonction X(1) intervient lorsque l'on duplique une unique cellule de la première colonne, la cellule du bas; la hauteur de la première colonne devient égale à 1, et on a xsqX(1) (voir par exemple les cas (2) et (4) de la Fig. 5). Enfin, la fonction $\partial X/\partial s(1)$ intervient lorsque l'on duplique une unique cellule de la première colonne, n'importe laquelle; la hauteur de la première colonne devient égale à 1, et on a $xsq\partial X/\partial s(1)$.

Pour plus de précisions, on pourra se référer à l'article [2].

Etudiant seulement des polyominos dirigés, nous ne rencontrerons pas ici de dérivée partielle; nous énonçons donc le lemme, démontré dans [2], qui donne la solution de telles équations sous sa version simplifiée.

Lemme 2.1. Soit $X(s,t,x,y,c_1,c_2,c_3,q)$ une série formelle dans \mathcal{A} . Supposons que:

$$X(s) = xe(s) + xf(s)X(1) + xg(s)X(sq),$$

où e(s), f(s) et g(s) sont des séries formelles données dans A. Alors

$$X(1) = \frac{E(1)}{1 - F(1)},$$

оù

$$E(s) = \sum_{n \ge 0} x^{n+1} g(s) g(sq) \dots g(sq^{n-1}) e(sq^n),$$

et

$$F(s) = \sum_{n \ge 0} x^{n+1} g(s) g(sq) \dots g(sq^{n-1}) f(sq^n).$$

De plus:

$$X(s) = \frac{E(s) + E(1)F(s) - E(s)F(1)}{1 - F(1)}.$$

Fig. 3. Décomposition des polyominos tas.

2.2. Application: les polyominos tas

On note $S(s, t, x, y, c_1, c_2, c_3, q)$ la fonction génératrice des polyominos tas. On différencie le cas des polyominos tas de largeur 1 (réduit à une seule colonne) et le cas de ceux de largeur > 1. Clairement, la série énumératrice des polyominos tas de largeur 1 est xstyq/(1 - styq). Les polyominos tas de largeur > 1 sont obtenus en collant une colonne devant des polyominos tas de largeur ≥ 1 .

Notation. On suppose que le plan $\mathbb{R} \times \mathbb{R}$ est muni d'un repère cartésien; alors on note h (resp. b) l'ordonnée du sommet (resp. de la base) de la première colonne du polyomino, et on note h' (resp. b') l'ordonnée du sommet (resp. de la base) de la nouvelle colonne que l'on colle devant le polyomino.

Il y a quatre manières différentes de coller cette nouvelle colonne (Fig. 3):

(1) h' coïncide avec h, et b' avec b, alors aucun coin n'est créé,

(2) h' coïncide avec h, et b' est strictement inférieur à b, alors seulement un coin de type II est créé,

(3) h' est strictement supérieur à h, et b' coïncide avec b, alors seulement un coin de type III est créé,

(4) h' est strictement supérieur à h, et b' est strictement inférieur à b, alors à la fois un coin de type II et un coin de type III sont créés.

On peut alors déduire directement à partir de la décomposition des polyominos tas décrite Fig. 3, une équation vérifiée par leur fonction génératrice.

Lemme 2.2. Soit $S(s,t,x,y,c_1,c_2,c_3,q)$ la fonction génératrice des polyominos tas. Alors

$$S(s) = \frac{xstyq}{1 - styq} + xS(sq) + (c_2 + c_3)\frac{xsyq}{1 - syq}S(sq) + c_2c_3\frac{xs^2y^2q^2}{(1 - syq)^2}S(sq).$$

Notation. Soit a une indéterminée. Alors: $(a)_n = \prod_{i=0}^{n-1} (1 - aq^i)$.

En appliquant le Lemme 2.1, on obtient:

Lemme 2.3. La fonction génératrice des polyominos tas $S(s,t,x,y,c_1,c_2,c_3,q)$ est donnée par:

$$S(s, t, x, y, c_1, c_2, c_3, q) = sty \sum_{n \ge 1} \frac{x^n q^n \left((1 - c_2) syq \right)_{n-1} \left((1 - c_3) syq \right)_{n-1}}{(syq)_{n-1}^2 \left(1 - styq^n \right)}$$

Remarque. Cette formule fait apparaître clairement le rôle symétrique de c_2 et c_3 .

3. Formule d'énumération générale des polyominos convexes dirigés

Soit $DC(s, t, x, y, c_1, c_2, c_3, q)$ la fonction génératrice des polyominos convexes dirigés. Pour leur énumération, on doit considérer trois cas différents:

cas 1: les polyominos convexes dirigés de largeur 1. Il sont énumérés par xstyq/(1-styq).

cas 2: les polyominos convexes dirigés de largeur > 1 qui ont le sommet de la première colonne strictement plus haut que celui de la seconde colonne. Ce sont en fait des polyominos tas qui sont obtenus en collant une nouvelle colonne devant des polyominos tas de largeur ≥ 1 des deux façons suivantes (Fig. 4):

(1) h' est strictement supérieur à h, et b' coïncide avec b, alors seulement un coin de type III est créé,

(2) h' est strictement supérieur à h, et b' est strictement inférieur à b, alors à la fois un coin de type III et un coin de type II sont créés.

Leur série génératrice est alors

$$c_3 \frac{xsyq}{1-syq} S(sq) + c_2 c_3 \frac{xs^2 y^2 q^2}{(1-syq)^2} S(sq) = c_3 \frac{xsyq((1-c_2)syq)_1}{(1-syq)^2} S(sq),$$

où S(s) est la fonction génératrice des polyominos tas donnée au Lemme 2.3.

cas 3: les polyominos convexes dirigés de largeur > 1 qui ont le sommet de la première colonne plus bas que celui de la seconde colonne. Ils sont obtenus en collant une nouvelle colonne devant des polyominos convexes dirigés de largeur ≥ 1 des quatre

Fig. 4. Décomposition des polyominos convexes dirigés de largeur > 1 (cas 2).

Fig. 5. Décomposition des polyominos convexes dirigés de largeur > 1 (cas 3).

façons suivantes (Fig. 5):

(1) h' coïncide avec h, et b' avec b, alors aucun coin n'est créé,

(2) h' est strictement inférieur à h, et b' coïncide avec b, alors seulement un coin de type I est créé,

(3) h' coïncide avec h, et b' est strictement inférieur à b, alors seulement un coin de type II est créé,

(4) h' est strictement inférieur à h, et b' est strictement inférieur à b, alors à la fois un coin de type I et un coin de type II sont créés.

Lemme 3.1. La fonction génératrice $DC(s, t, x, y, c_1, c_2, c_3, q)$ des polyominos convexes dirigés vérifie l'équation fonctionnelle:

$$DC(s) = \frac{xstyq}{1 - styq} + c_3 \frac{xsyq((1 - c_2)syq)_1}{(1 - syq)^2} S(sq) + xDC(sq) + c_1 \frac{x}{1 - sq} (sqDC(1) - DC(sq)) + c_2 \frac{xsyq}{1 - syq} DC(sq) + c_1 c_2 \frac{xsyq}{(1 - sq)(1 - syq)} (sqDC(1) - DC(sq)).$$

En appliquant le Lemme 2.1, on obient :

Théorème 3.1. La fonction génératrice $DC(s, t, x, y, c_1, c_2, c_3, q)$ des polyominos convexes dirigés satisfait:

$$DC(1, t, x, y, c_1, c_2, c_3, q) = ty \frac{M_1(1)}{J_0(1)},$$

avec

$$J_0(s) = 1 - c_1 s \sum_{n \ge 1} \frac{x^n q^n \left((1 - c_2) s y q \right)_n \prod_{i=1}^{n-1} (1 - c_1 - s q^i)}{(sq)_n (syq)_n}$$

et

$$M_1(s) = s \sum_{n \ge 1} \frac{x^n q^n \left((1 - c_2) s y q \right)_{n-1}}{(s y q)_{n-1} (1 - s t y q^n)} M_n$$

$$M_{n} = \frac{\prod_{i=1}^{n-1} (1 - c_{1} - sq^{i})}{(sq)_{n-1}} + c_{3}sy \sum_{m=1}^{n-1} \frac{q^{m} ((1 - c_{3})syq^{m+1})_{n-m-1} \prod_{i=1}^{m-1} (1 - c_{1} - sq^{i})}{(sq)_{m-1} (syq^{m})_{n-m}}$$

De plus,

$$DC(s, t, x, y, c_1, c_2, c_3, q) = ty \frac{M_1(s)J_0(1) - M_1(1)J_0(s) + M_1(1)}{J_0(1)}.$$

4. Conséquences

La formule d'énumération calculée dans la section précédente (Théorème 3.1) est la formule centrale de cet article, et nous mettons ici en avant ses principales conséquences: une unification des sous-familles de polyominos convexes dirigés, avec un raffinement des résultats connus, ainsi qu'un corollaire intéressant, leur énumération selon l'aire et le périmètre de site simultanément.

La première conséquence importante du Théorème 3.1 est illustrée par le schéma de la Fig. 6. Les fonctions génératrices des sous-familles de polyominos convexes dirigés s'obtiennent toutes très simplement à partir du Théorème 3.1; il suffit de remarquer que les polyominos parallélogrammes n'ont pas de coin de type III, les polyominos tas pas de coin de type I, et les diagrammes de Ferrers pas de coin de type I ni de type III.

Corollaire 4.1. La fonction génératrice $P(s,t,x, y,c_1,c_2,q)$ des polyominos parallélogrammes s'obtient en remplaçant c_3 par 0 dans la formule du Théorème 3.1. Elle satisfait:

$$P(1, t, x, y, c_1, c_2, q) = ty \frac{J_1(1)}{J_0(1)},$$

Fig. 6. Relation entre les fonctions génératrices des polyominos convexes dirigés.

avec

$$J_0(s) = 1 - c_1 s \sum_{n \ge 1} \frac{x^n q^n \left((1 - c_2) s y q \right)_n \prod_{i=1}^{n-1} (1 - c_1 - s q^i)}{(sq)_n (syq)_n}$$

et

$$J_1(s) = s \sum_{n \ge 1} \frac{x^n q^n \left((1 - c_2) syq \right)_{n-1} \prod_{i=1}^{n-1} (1 - c_1 - sq^i)}{(sq)_{n-1} (syq)_{n-1} (1 - styq^n)}$$

De plus,

$$P(s,t,x,y,c_1,c_2,q) = ty \ \frac{J_1(s)J_0(1) - J_1(1)J_0(s) + J_1(1)}{J_0(1)}$$

Remarque 1. Parallèlement à nos travaux, Fédou et Rouillon [14] ont calculé cette même fonction génératrice avec une méthode différente basée sur une bijection entre des couples de chemins du plan. La formule qu'ils obtiennent est différente de la notre, elle fait intervenir à la fois q et 1/q.

Remarque 2. Les polyominos (v, λ) -bordés (ou polyominos parallélogrammes à franges) sont une sous-classe des polyominos parallélogrammes introduite par Lalanne [21] qui a montré que leur fonction génératrice selon l'aire et la largeur s'exprime à l'aide du rapport d'un q-analogue des fonctions de Bessel $J_{v,\lambda}$ et $J_{v+1,\lambda}$. On peut, par la même méthode que les polyominos convexes dirigés à la section précédente, raffiner ce résultat en rajoutant les paramètres hauteur et nombre de coins. La série génératrice obtenue est, à quelques facteurs multiplicatifs près, celle des polyominos parallélogrammes où x est changé en xq^{λ} et y en yq^{v} .

Corollaire 4.2. La fonction génératrice $S(s,t,x, y, c_2, c_3, q)$ des polyominos tas s'obtient en remplaçant c_1 par 0 dans la formule du Théorème 3.1. Elle est donnée par:

$$S(s, t, x, y, c_2, c_3, q) = sty \sum_{n \ge 1} \frac{x^n q^n \left((1 - c_2) syq \right)_{n-1} \left((1 - c_3) syq \right)_{n-1}}{(syq)_{n-1}^2 \left(1 - styq^n \right)}$$

Corollaire 4.3. La fonction génératrice $DF(s, t, x, y, c_2, q)$ des diagrammes de Ferrers s'obtient en remplaçant c_1 et c_3 par 0 dans la formule du Théorème 3.1. Elle est donnée par:

$$DF(s, t, x, y, c_2, q) = sty \sum_{n \ge 1} \frac{x^n q^n \left((1 - c_2) s y q \right)_{n-1}}{(s y q)_{n-1} (1 - s t y q^n)}.$$

Toutes les fonctions génératrices que nous venons de voir sont un raffinement des résultats déjà connus sur les polyominos convexes dirigés, et pour les retrouver, il suffit de remplacer c_1 , c_2 , c_3 par 1 dans chacune de ces fonctions.

88

La deuxième conséquence importante du Théorème 3.1 est que l'on peut déduire l'énumération des sous-familles des polyominos convexes dirigés selon l'aire et le périmètre de site. En effet, le périmètre de site d'un polyomino convexe dirigé est égal à la différence entre son périmètre de lien et son nombre total de coins. Ainsi, on a:

Corollaire 4.4. Soit $X(s,t,x, y,c_1,c_2,c_3,q)$ la fonction génératrice d'une des classes de polyominos convexes dirigés. Alors la fonction génératrice selon l'aire et le périmètre de site Y(q, p) se déduit de X par le simple changement de variables suivant:

$$s,t \longrightarrow 1 q \longrightarrow q x, y \longrightarrow p^2 c_1, c_2, c_3 \longrightarrow p^{-1},$$

où l'exposant de q compte l'aire et celui de p le périmètre de site.

References

- G.E. Andrews, The Theory of Partitions, Vol. 2, Encyclopedia of Maths. and its Appl. (Addison-Wesley, Reading, MA, 1976).
- [2] M. Bousquet-Mélou, A method for the enumeration of various classes of column-convex polygons, Rapport LaBRI no. 378-93, Université Bordeaux I, 1993, soumis à publication.
- [3] M. Bousquet-Mélou and J.M. Fédou, The generating function of convex polyominoes: the resolution of a q-differential system, à paraître dans Discrete Math.
- [4] M. Bousquet-Mélou and X.G. Viennot, Empilements de segments et q-énumération de polyominos convexes dirigés, J. Combin. Theory Ser. A 60 (1992) 196-224.
- [5] M.P. Delest, Polyominoes and animals: some recent results, J. Math. Chem. 8 (1991) 3-18.
- [6] M.P. Delest and S. Dulucq, Enumeration of directed column-convex animals with a given perimeter and area, Croatica Chemica Acta 66 (1993).
- [7] M.P. Delest and J.M. Fédou, Enumeration of skew Ferrers diagrams, Discrete Math. 112 (1993) 65-79.
- [8] M.P. Delest, D. Gouyou-Beauchamps and B. Vauquelin, Enumeration of parallelogram polyominoes with given bond and site perimeter, Graphs Combin. 3 (1987) 325-339.
- [9] M.P. Delest and X.G. Viennot, Algebraic languages and polyominoes enumeration, Theoret. Comput. Sci. 34 (1984) 169–206.
- [10] D. Dhar, Equivalence of two-dimensional directed animal problem to a one-dimensional path problem, Adv. Appl. Math. 9 (1988) 959-962.
- [11] J.P. Dubernard, q-Grammaires et polyominos parallélogrammes, Thèse de l'Université Bordeaux I, 1993.
- [12] I. Dutour and J.M. Fédou, Grammaires d'objets, prépublication.
- [13] J.M. Fédou, Enumeration of skew Ferrers diagrams and basic Bessel functions, J. Statist. Plann. Inference 34 (1993) 107-123.
- [14] J.M. Fédou and N. Rouillon, Polyominos et q-analogues des fonctions de Bessel, une preuve combinatoire, prépublication.
- [15] S. Feretić and D. Svrtan, On the number of column convex polyominoes with given perimeter and number of columns, Actes du Colloque SFCA'93, Florence (1993) 201-214.
- [16] S. Feretić and D. Svrtan, Combinatorics of diagonally convex directed polyominoes, Actes du Colloque SFCA'94, Rutgers (1994) 163-172.
- [17] I. Gessel, A noncommutative generalization and q-analog of the Lagrange inversion formula, Trans. Amer. Math. Soc. 257 (1980) 455-482.
- [18] A.J. Guttmann, Computer-aided statistical physics, AIP Conference Proceedings, Vol. 248, Taipei, Taiwan, 1991; printed 1992.
- [19] V. Hakim and J.P. Nadal, Exact result for 2D directed lattice animals on a strip of finite width, J. Phys. A: Math. Gen. 16 (1983) L213-L218.
- [20] D.A. Klarner and R.L. Rivest, Asymptotic bounds for the number of convex n-ominoes, Discrete Math. 8 (1974) 31-40.

- [21] J.C. Lalanne, Polyominos parallélogrammes à franges et fonctions de Bessel, Discrete Math. 115 (1993) 217-230.
- [22] K.Y. Lin and S.J. Chang, Rigourous results for the number of convex polygons on the square and honeycomb lattices, J. Phys. A: Math. Gen. 21 (1988) 2635-2642.
- [23] G. Polya, On the number of certain lattice polygons, J. Combin. Theory 6 (1969) 102-105.
- [24] M.P. Schützenberger, Certain elementary families of automata, Proc. Symp. on Mathematical Theory of Automata, Polytechnic Institute of Brooklyn (1962) 139–153.
- [25] M.P. Schützenberger, Context-free langages and pushdown automata, Inform. and Control 6 (1963) 246-264.
- [26] H.N.V. Temperley, Combinatorial problems suggested by the statistical mechanics of domains and of rubber-like molecules, The Physical Review, second series, Vol. 103, No. 1 (1956) 1-16.
- [27] X.G. Viennot, A survey of polyominoes enumeration, Actes du Colloque SFCA'92, Montréal (1992) 399-420.
- [28] E.M. Wright, Stacks, Quart. J. Math. Oxford (2) 19 (1968) 313-320.