
Science of Computer Programming 12 (1989) 151-155

North-Holland

151

AN ALGORITHM FOR TRANSITIVE REDUCTION OF
AN ACYCLIC GRAPH

David GRIES

Computer Science Department, Cornell University, Ithaca, NY 14853-7501, U.S.A.

Alain J. MARTIN

California institute of Technology, Pasadena, CA 91125, U.S.A.

Jan L. A. van de SNEPSCHEUT and Jan Tijmen UDDING

Department of Computing Science, Groningen University, Groningen, Netherlands

Communicated by M. Rem

Received June 1987

Revised March 1988

1. Introduction

We derive a new algorithm for computing the transitive reduction of a directed

acyclic graph. The algorithm was developed by attempting to invert Warshall’s

algorithm for computing the transitive closure of a graph [4]. Thus, the concept of

program inversion (cf. [2, 31) led to the algorithm, although it could not be strictly

used.

The transitive closure of a finite, directed graph is obtained by adding a directed

edge wherever the original graph contains a path from the source to the destination

node of the new edge. The graph thus obtained is called closed. For any graph, its

transitive closure is uniquely determined. Further, the transitive closure of an acyclic

graph is itself acyclic.

The transitive reduction of a finite, directed graph is obtained by removing edges

whose absence do not affect the transitive closure. A graph thus obtained is called

reduced. The intersection of acyclic graphs with the same transitive closure has that

same transitive closure. Hence, the transitive reduction of an acyclic graph is uniquely

determined-as the intersection of all acyclic graphs with the same transitive closure.

On the other hand, the transitive reduction of a cyclic directed graph is not unique

(see [l] for an analysis).

Because of the properties just mentioned, we restrict our attention to directed

acyclic graphs.

In the sequel, we first describe Warshall’s algorithm. We then analyze the algorithm

informally and suggest an invariant for an algorithm for reducing an initially closed

0167.6423/89/$3.50 @ 1989, Elsevier Science Publishers B.V. (North-Holland)

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82581063?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1.52 D. Gries er al.

graph, which is in some sense the inverse of War-shall’s algorithm. Finally, we obtain

an algorithm for the transitive reduction of an acyclic graph.

We use the following notation. For expressions P and e and identifier x, P:
denotes P with all free occurrences of x textually replaced by e.

The graph contains N nodes numbered 0 onwards. For nodes i and j and integer

k, 0 s k G N, predicate i +sk j denotes the presence in the initial graph of a path

from i to j via one or more intermediate nodes, all of which have a number at least

k; predicate i +ckj denotes the presence in the initial graph of a path from i to j

via one or more intermediate nodes, all of which have a number less than k. In the

sequel, we omit the ranges of i, j, and k.

The graph that is being modified is recorded in variable b as an adjacency matrix:

b, is equivalent to the presence of edge (i, j) in the graph. The initial value of

variable b is given by constant a.

We list some properties of predicate i jck j and its “dual” i +j”k j.

(0) V(i,j::b,,=ativi+“j)=(b=a).

(1) V(i,j::bij=a,Ali+“Nj)=(b=a).

(2) V(i,j::bg=a,-vi+ cN j) = (b = closure of a).

(3) V(i,j::b,j=a,j~li+“oj)=(b=reduction of a).

(4) i+<k+‘j=i+ckjv((i+ckkvaik)A(k-+‘kjvakj)).

(5) i~rkj~i,~kt'j~((i~rk+'k~~ik)~(k-,~kfljv~kj)).

2. Warshall’s algorithm for computing transitive closure

Warshall’s algorithm is

TC: k:=O; {C}

do k # N+forall(i, j: bik A bkj: b,:= true); {C~,,}

k:= k-t1 {C}

od.

Its invariant C is

c: bij=avv i eckj.

We have omitted the universal quantification over i and j, as well as the ranges of

i., j, and k. Notice that the forall statement can also be written as

We prefer the latter form in our proofs and the original form in the program text.

C,” is vacuously true on account of (0) and the initial condition b = a. C A k = N

implies, on account of (2), that b is the transitive closure of a.

Transitive reduction of an acyclic graph 153

We must show the invariance of C over the loop body. We investigate the

right-hand side of C:,, .

. <k+l
C&jvt+ J

= ((4))
ati v i +<k j v ((i +<k k v a;k) h (k jckj v &j))

= {Cl

6, V (bik A 6,).

It follows that simultaneous execution of the up-to-N* assignments to 6, maintain

C. The assignments may, however, also be executed in any order since the values

bik and 6, are not changed: for example, bik is assigned the value true if bik A bkk

holds, which implies that bik is already true.

3. From reduced to closed graph and vice versa

We now consider the operational aspects of Warshall’s algorithm. Iteration k of

the loop of Warshall’s algorithm adds edges between nodes that are connected by

a path all of whose intermediate nodes have a number less than k. A corresponding

reduction algorithm will undo the actions of the closure algorithm: edges will be

deleted only between nodes that are connected by a path whose intermediate nodes

are at least k. If we succeed in finding the exact “undoing”, we have two algorithms

with the same invariant. However, this is too strong to hope for, because i +ck j
and i +sk J may hold simultaneously. In the closure algorithm, an edge (i, j) is

added as soon as i +ck j is found to be true, even if i +ak j is also true. Similarly,

in the proposed reduction algorithm, an edge (i, j) is deleted as soon as i +ak j is

found to be true, even if i etk j is also true. Thus, we obtain two distinct invariants,

C for the closure and R for the reduction algorithm.

C: bG=avvi+‘kj.

R: b, c a0 A ii +zk j,

Inspired by the discussion leading to R, we propose the following algorithm for the

transitive reduction of an initially closed graph.

TR: k:= N; {R}

do k#O-+k:= k-l; {R;,,}

forall(i,j: bik A bk,-: 6, :=false) {R}

od.

We need to check the invariance of R in algorithm TR. The initialization establishes

R since R”, holds on account of (I). R A k =0 implies, on account of (3), that b is

the transitive reduction of a. We check the invariance of R over the loop body of

154 0. Gries et al.

TR. We do so by manipulating the right-hand side of R while using the fact that a
is closed.

z/S
aijh7i+ J

= ((5))

atih7(i + 2k+‘jv((i-+2k+’ kvaik)h(k+~k+‘j~akj)))

= {since a is closed i +zk+’ k implies a&}

aijAi(i + ==k+‘jv (aik A abj))

= {calculus}

aoA7i-+ zk+‘j I\ ?(a;k A akj)

= {rewrite aik A akj Using x = (x A y) v (x A iy);

on account of Rk k+, we aim at term of the form ai, A ii + zk+‘jI
f$Ali-,

zk+l
J

Al((&k Ali+3k+' kAayAlk+3k+‘j)

v (aik A akj A (i -+sk+’ k v k +3k+’ j)))
= {since a is closed i +aktl j is implied by

aik A akj A (i +zk+’ k v k +*‘+I j)}

aij h ii + ~k+'j~~(uik~li+bk+l kI\akj~~k+"k+'j)

= Wi+J

b, A l(b, A bkj).

It follows that simultaneous execution of the up-to-N2 assignments to b, maintains

R. Again, the assignments may also be executed in any order: whether an assignment

is executed depends only on the values bik and bki, and these are not changed since

the acyclic nature of the graph enforces bkk = fahe.

4. Transitive reduction of any acyclic graph

Warshall’s algorithm, TC, computes the transitive closure of an arbitrary graph;

it has C as an invariant. The dual of algorithm TC is algorithm TR which reduces

an initially closed, acyclic graph; it has invariant R. The optimist might hope that

a weaker invariant of TR exists that can be used to prove that TR reduces an

arbitrary acyclic graph. The example below shows that this is not the case, for

executio-n of TR with this graph does not eliminate the redundant edge (0,3).

Fortunately there is a way out: algorithm TC; TR computes the transitive close

of an arbitrary acyclic graph and then reduces the closed graph-which has the

same transitive reduction as the original graph. The time complexity of the in-situ

Transitive reduction of an acyclic graph 155

algorithm TC; TR is 0(N3). In [l] it is shown that transitive closure and transitive

reduction have equal time complexity.

References

[l] A.V. Aho, M.R. Garey and J.D. Ullman, The transitive reduction of a directed graph, SIAM J.

Comput. I(2) (1972) 131-137.

[2] E.W. Dijkstra, Selected Writings on Computing: A Persond Perspective (Springer, New York, 1982)

3.51-354.

[3] D. Gries, The Science ofProgramming (Springer, New York, 1981) 265-274.

[4] S. Warshall, A theorem on Boolean matrices, J. ACM 9 (1962) 11-12.

