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Abstract

In the framework ofZN orbifolds, we discuss effects of heterotic string backgrounds including discrete Wilson lines
Yukawa matrices and their connection to CP violation.
 2003 Published by Elsevier B.V. Open access under CC BY license.
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1. Introduction

The heterotic string [1] compactified on an orbifo
[2] has a number of phenomenologically attract
features. These include the possibility of obtain
realistic gauge groups and a small number of ch
generations at low energies [3,4]. Also, the Yuka
couplings of the twisted states exhibit a hierarc
[5,6] which is a highly desirable feature from th
phenomenological perspective.

Realistic models require the presence of ba
grounds [3,4]—the Wilson lines [7] and the antisym
metric background field. The former are required if
are to obtain a realistic gauge group and 3 chiral g
erations, while the latter is suggested by the obse
CP violation. In this Letter, we study the connecti
between CP violation and the backgrounds. In par
ular, we analyze the effects of the backgrounds on
Yukawa couplings and whether these effects may l
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to physical CP violation. We build on earlier work [
9] and now include the effects of discrete Wilson lin
and theU -moduli. We also discuss certain subtlet
appearing in the definition of the CP symmetry from
higher-dimensional perspective.

The relevant to the discussion of CP violation p
of the low energy Lagrangian is given by

(1)�L= YuijHuQiU
c
j + Y dijHdQiD

c
j ,

whereYu,dij are the Yukawa matrices andi, j are the
generational indices labeling the three chiral famili
Here we exhibit the Yukawa interactions in the tw
Higgs doublet model, while for the Standard Mod
the two doublets are related:Hu ∼ (Hd)c. When
the Higgses develop vacuum expectation values, t
interactions are responsible for generating the qu
mass matrices. These may have complex pha
which can be absorbed into the definition of the qu

fields if Yuij = |Yuij |ei(αi+β
u
j ), Y dij = |Y dij |ei(αi+β

d
j ), but

otherwise lead to observable CP violation. We w
study the Yukawa matrices inZN orbifolds which are
defined by dividing a 6D torus by a space group wh
nse.
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consists of theZN twists and lattice shifts. We wil
focus on the Yukawa couplings among twisted sta
which reside at the orbifold fixed pointsf defined by

(2)θf = f + l,
whereθ is the orbifold twist andl is a torus lattice
shift. The untwisted couplings are moduli indepe
dent and do not lead to CP violation. We will de
mostly with renormalizable couplings although so
statements about nonrenormalizable couplings wil
made as well.

The Letter is organized as follows. In the ne
section, we define the CP symmetry and discuss u
what circumstances it is violated by the backgroun
In Section 3, we present the full moduli dependenc
the heterotic Yukawa couplings. Section 4 is devo
to the effects of discrete Wilson lines. Section
presents our conclusions.

2. CP symmetry and the string action

The bosonic part of the heterotic string action in
presence of constant backgrounds is given by1

S = 1

2π

∫
dτ dσ

(
Gij ∂

αXi∂αX
j −Bij εαβ∂αXi∂βXj

(3)+AiI εαβ∂αXi∂βXI
)
.

HereXi , i = 1, . . . ,10 are the space–time coordinat
XI , I = 1, . . . ,16 are the gauge space left-movi
coordinates, andGij , Bij , andAiI are the backgroun
metric, the antisymmetric field, and the Wilson lin
respectively.

In what follows we will discuss CP properties
the twisted Yukawa couplings which presumably
the source of the observed CP violation in the qu
sector. CP violation in the Yukawa couplingsYαβγ is
directly related to CP properties of the string act
since

(4)Yαβγ = const×
∑
Xcl

e−Scl,

whereXcl are solutions to the string equations
motion in the presence of the twist fields,Scl is the
Euclidean action, andα,β, γ label the twisted sectors

1 We omit the pure gauge part of the action which does
pertain to our considerations.
Further, we will study a class of theZN orbifold
compactifications of theE8 × E8 heterotic string
which admit the decompositionT 2 ⊕ T 2 ⊕ T 2 such
that the backgrounds have a block-diagonal fo
To discuss the CP symmetry, one introduces
orthogonal coordinatesX′ = O−1X in which the
metric is diagonal

(5)G→OTGO = η,
with η being the Minkowski metric. Henceforth, w
will work in this basis and will omit the prime. Th
bosonic part of the CP transformation can be defi
as [10,11]2

XI → −XI , I = 1, . . . ,16,

Xi →Xi, i = 1,5,7,9,

(6)Xi → −Xi, i = 2,3,4,6,8,10.

This is a combination of the conventional reflecti
of the three spatial coordinates, a reflection of th
of the compactified coordinates, and a reversa
the gauge charges. Although a four-dimensionaP
operation is not a proper Lorentz transformation
becomes one when supplemented by the reflectio
the compactified coordinates. In terms of the comp
coordinates of the internal manifold, this amounts
the complex conjugationZi → Zi∗ [10]. The reversa
of the gauge charges is an automorphism of theE8 ×
E8 group and therefore is also a symmetry of
system (when no backgrounds are present).

The above definition does not appear to be uni
in the sense that one can extend a conventionaP

operation to a proper Lorentz transformation in
number of ways, for instance, through a reflect
of only one of the compactified coordinates. Su
“truncated CP” appears as a well-defined symme
at the classical bosonic action level, but it isnot a
symmetry of the theory as a whole. In particul
since it acts in the 6D subspace, it is not a ga
symmetry in the fermionic sector [11]. Also, it
not a symmetry of the compactification: it transform
the twist (θ1, θ2, θ3) into (θ∗

1 , θ2, θ3) which does not
belong to a subgroup ofSU(3) (unlessθ1 = eiπ ),
which leads to a non-supersymmetric orbifold. Sim
arguments apply to Calabi–Yau compactifications.

2 See also [12,13].
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The presence of string backgroundsBij andAiI
generally violates the CP symmetry as defined
Eq. (6). First, consider the antisymmetric backgrou
Bij . Under our factorization assumption, it can
written as

(7)B = B(1) ⊕B(2) ⊕B(3),

whereB(i) corresponds to theith compactified plane
The invariance of the action under twisting

(8)θTBθ = B,
whereθ is the orbifold twist, and the antisymmet
require

(9)B(i) =
(

0 b(i)

−b(i) 0

)
.

Then, clearly ifb(i) �= 0, the symmetry (6) is violated
On the other hand, this background preserves
block-diagonal part of the (proper) Lorentz symme
Indeed, the orbifold twist splits as

(10)θ = θ(1) ⊕ θ(2) ⊕ θ(3),

where

(11)θ(i) = ±
(

cosθi sinθi
−sinθi cosθi

)
rotates theith plane byθi . This is a proper Lorentz
transformation, so Eq. (8) signifies the invarian
of the B-background under this class of Loren
transformations. However, the reflection symmetry
the background-free action

(12)S0 = 1

2π

∫
dτ dσ ∂αXi∂αX

i

is lost. Note that this action is invariant under t
full Lorentz group including orientation changin
transformations

(13)Xi → −Xi
for anyi.

This observation raises the question “What is
higher-dimensional symmetry that ensures that
low-energy 4D Yukawa couplings conserve CP?”
answer this question, let us first note that 4D fi
theory tells us that complex Yukawa couplings bre
conventional CP (if the phases cannot be rota
away) while real ones conserve it. From Eq. (4)
is clear that CP is broken when the Euclidean ac
has a nonvanishing imaginary part. The∂αXi∂αXi

piece always gives a real contribution, while theBij
contribution is imaginary. The difference arises fro
theτ -dependence combined with the Wick’s rotatio
a quadratic∂τ dependence gives a real result while
linear one produces a factor ofi, i.e., we have

∂α∂α vs εαβ∂α∂β.

The εαβ -piece leads to antisymmetric with respect
the Lorentz (or Lorentz-gauge) indices contributio
to the action. Such contributions necessarily br
some reflection symmetries (13). We thus concl
that theparity symmetry (13) ensures that the Yukaw
couplings conserve CP. Under our factorizationT 2 ⊕
T 2⊕T 2 assumption, this is equivalent to requiring t
CP symmetry (6).

Now, it is clear that, from the bosonic actio
perspective, the “truncated CP” does not reduce to
conventional 4D CP symmetry. Consider, for instan
Bij �= 0 in the third plane only. This configuratio
conserves “pseudo-CP” defined with the reflect
of one axis in the first plane only. Yet, the Yukaw
couplings violate CP in the usual sense.

NonvanishingBij does not necessarily result
observable CP violation since at isolated points in
parameter space the effect ofBij may simply amoun
to S → S + 2πin. Further constraints come from3

(i) flavor-dependence,
(ii) modular invariance.

The first of them means that, if we associate qu
flavors with orbifold fixed points, the CP violatin
phases produced byBij should depend on the rela
tive positions of the fixed points in such a way th
they could not be eliminated by a redefinition of t
quark fields [16]. This amounts to nonvanishing
the Jarlskog invariant4 [14]. The second requireme
(which is related to the first one) means that the
phases cannot be eliminated by a modular transfor
tion whenever the system possesses a modular

3 Apart from producing CP violating Yukawa couplings,Bij
(with 4D indices) also couples toFµνF̃µν which violates CP. This
term is constrained to be extremely small experimentally leadin
the notorious strong CP problem.

4 In supersymmetric models, CP violation is governed by a c
of K- andL-invariants in addition to the Jarlskog invariant [15].
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metry [16,17]. Whether these requirements are sa
fied or not depends on the orbifold and the relev
moduli, but in principle observable CP violation c
be achieved even at the renormalizable level ifBij �= 0
[16].

The discussion of the Wilson lines proceeds
first) along similar lines. Consider the case of contin
ous Wilson lines. A continuous Wilson line is realiz
through the correspondence between the space g
and rotations and shifts of the gaugeE8×E8 lattice [4]

(14)(θ, l)→ (Θ,a),

whereθ is a point group element,Θ is a rotation of
theE8 ×E8 lattice, andl anda are related by

(15)li =
∑
α

nαe
i
α, aI =

∑
α

nαA
I
α.

Here nα are some integers,eiα are the torus basi
vectors, andAIα are the Wilson lines.

For thestandard embedding (θ =Θ), we have

(16)A=A(1) ⊕A(2) ⊕A(3),

whereA(i) are 2× 2 blocks. The twist invariance

(17)θTAθ =A
requires

(18)A(i) =
(
a(i) b(i)

−b(i) a(i)

)
.

A priori, a(i) �= 0 orb(i) �= 0 violate the symmetry (6)
However, embedding of the space group into the ga
group imposes additional constraints. In particular,
shell, effectively we have [9]

(19)∂αX
i
L ∼ ∂αXI

for each of the 2× 2 blocks (one can, for instanc
takei = I ), whileXiR decouple from the Wilson lines
This identification restores the CP invariance so t
Scl gives a CP conserving contribution to the Yuka
couplings. These arguments equally apply to a clas
nonstandard embeddings for which an orbifold twis
associated with a rotation of more than one plane
the gauge space. The explicit formulae will be giv
in the next section.

The case of discrete Wilson lines is more comp
cated and will be dealt with separately in one of
subsequent sections.
Similar discussion applies to the nonrenormaliza
couplings. The relevantn-point amplitude is given by
[18]

(20)A∝
∑
Xcl

∂Xicl · · ·e−Scl .

The classical solutionsXicl are not affected byBij and
AiI since they enter neither the equations of mot
nor the boundary conditions. Thus CP violation ari
throughe−Scl and the arguments above apply. We n
that these couplings are exponentially suppresse
the radii of the compactified dimensions in symme
orbifolds [18].

3. Moduli dependence of the Yukawa couplings

To make our arguments more explicit, here
present the full moduli dependence of the heter
Yukawa couplings. The Yukawa couplings are cal
lated via pairing two real coordinates in each pla
into a complex one (see [19] and [8] for details). T
action is then written as

Scl = 1

2π

∫
d2z

(
∂Zi∂̄�Zi + ∂̄Zi∂�Zi)

− Bi,i+1

2π

∫
d2z

(
∂Zi∂̄�Zi − ∂̄Zi∂�Zi)

+ 1

2π

∫
d2z

[
AiI

(
∂Zi∂̄ZI − ∂̄Zi∂ZI )

+A′
iI

(
∂Zi∂̄�ZI − ∂̄Zi∂�ZI )

(21)− h.c.
]
,

wherez = e−2(τ+iσ ), Zi = Xi + iXi+1, i = 1,3,5;
ZI =XI + iXI+1, I = 1,3, . . . ,15; and

AiI = 1

4
(AiI −Ai+1,I+1 − iAi+1,I − iAi,I+1),

(22)A′
iI = 1

4
(AiI +Ai+1,I+1 − iAi+1,I + iAi,I+1).

Here h.c. replaces a quantity with the correspond
barred one and conjugatesA,A′. We omit the pure
gauge contribution to the action since it vanishes
shell.

The classical solutions are completely determin
by their singular behavior at the twist operator ins
tion points and the boundary conditions. If the tw
field of orderk/N is placed at the pointz1 on the world
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sheet, another twist field of orderl/N is placed atz2,
etc., the solution to the equations of motion has
form

∂Z = c(z− z1)−(1−k/N)(z− z2)−(1−l/N)

× (z− z3)−k/N−l/N ,
∂̄�Z = c̄(z̄− z̄1)−(1−k/N)(z̄− z̄2)−(1−l/N)

× (z̄− z̄3)−k/N−l/N ,
∂̄Z = d(z̄− z̄1)−k/N (z̄− z̄2)−l/N

× (z̄− z̄3)−(1−k/N−l/N),
∂�Z = d̄(z− z1)−k/N (z− z2)−l/N

(23)× (z− z3)−(1−k/N−l/N)

for each complex plane. The constantsc, d are to be
determined by the followingmonodromy conditions

�Zi =
∫
C

dz ∂Zi +
∫
C

dz̄ ∂̄Zi = vi,

(24)��Zi =
∫
C

dz ∂�Zi +
∫
C

dz̄ ∂̄�Zi = v̄i ,

with the complex lattice vectorvi defined byvi =
v(i)+ iv(i+1) andv̄i = v(i)− iv(i+1). Here the contou
C is chosen such thatZi gets shifted but not rotate
upon going aroundC. These equations allow to solv
for c, d in terms of the winding vectorsvi .

In the case of the standard embedding,∂̄�Zi and
∂̄�ZI have the same structure [9]. In particular, th
have the same singular behavior at the twist oper
insertion points:

∂̄�ZI = c̄′(z̄− z̄1)−(1−k/N)(z̄− z̄2)−(1−l/N)

(25)× (z̄− z̄3)−k/N−l/N ,

while ∂�ZI = ∂ZI = 0 sinceXI are left moving. The
constantc′ is determined by the monodromy conditio
for ZI :

(26)
∫
C

dz̄ ∂̄�ZI = ū.

Hereu is the gauge space representation of the sp
group elementv which appears in the monodrom
condition forZi (see [9] for a detailed discussion).

It has been shown [5,6] that the Yukawa couplin
are determined by the holomorphic instantons,
classical solutions with holomorphicZi and antiholo-
morphic�Zi (i.e.,d = 0). Omitting the intermediate de
tails, let us give the final result [9,20]

Yαβγ = const×
∑

ni ,mi∈Z

exp

[
−

∑
i=1,3,5

Ti +AiĀi
ReUi

× (
n2
i − 2nimi ImUi +m2

i

)

(27)

× π |sin(kiπ/N)||sin(liπ/N)|
2 sin2(ki liπ/N)|sin((ki + li )π/N)|

]
.

Here we have used the following definitions of t
moduli [20]

T =
√

detg

2π2
(1− ib),

U = 1

g11

(√
detg − ig12

)
,

(28)AĀ=
√

detg

4π2 |a + ib|2

for each of the three planes. Here the integersni,mi
are determined by the space group selection rule.
background parametersa, b are given by Eqs. (9)
(18). The orbifold metricgab is

(29)gab = ea · eb
and we assumee2

1 = e2
2 = R2 ande1 · e2 = R2 cosφ,

whereR is the compactification radius andφ is an
angle betweene1 ande2.

A comment about theU -dependence is in orde
Although we display theU -dependence explicitly, in
all relevant cases the value of theU -modulus is fixed
once the orbifold is specified (U = −ieiφ). It is a
continuous modulus only if the orbifold possesse
Z2 plane. In this case the allowed Yukawa coupl
is of the formθθθ2 in this plane, which reduces t
a 2-point twist–antitwist correlator. This gives just
multiplicative constant irrelevant to our discussion.

It is clear from Eq. (27) that the only potenti
source of CP violation is theT -moduli (apart from,
possibly, discrete Wilson lines which will be discuss
in the next section). TheU - andA-moduli only affect
the magnitudes of the Yukawa couplings. In particu
the presence of continuous Wilson lines always ma
the hierarchy among the Yukawa couplings stronge

The flavor-dependence necessary for physical
violation comes from the dependence ofni,mi on the
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positions of the fixed points (for analogous discuss
of type I models, see [21]). The space group selec
rule requiresne1 + me2 = (1 − θkl)(f1 − f2 + Λ)

in each plane, wheref1,2 are the fixed points wher
the fields are placed andΛ is a lattice vector. If the
fixed points do not coincide,n or m do not start
from zero and the coupling is suppressed by
distance between the fixed points. The consequen
phases depend on the relative positions of the fi
points. Given a favorable configuration, observa
CP violation can result at the renormalizable le
[16]. This only occurs in the even order orbifol
where the space group selection rule is not diago
In the odd order orbifolds, CP violation, if it occu
at the renormalizable level, has to result from eit
“mixing” of the fixed points due to an anomalousU(1)
or a nonminimal Higgs sector (e.g., 6 Higgs double
etc.). Of course, it can also come entirely from no
renormalizable operators in which case not much
be said quantitatively.5

Concerning the effect of the target space modu
symmetries, one can show that, due to the axio
shift invarianceTi → Ti + i, the CP phases can b
rotated away if ImTi = ±1/2 [16]. No CP violation
occurs in this case. We note that the axionic s
symmetry is unbroken by the presence of Wils
lines, unlike the duality symmetry, so it is a symme
of many realistic models. Thus, under the abo
assumptions, theT -moduli have to be stabilized awa
from the lines ImTi = ±1/2 which include the fixed
points of the modular group. This imposes nontriv
constraints on realistic models [23] since the mod
are often stabilized at the fixed pointsT = 1, e±iπ/6
(as suggested by symmetries of the scalar potentia

4. Discrete Wilson lines and CP violation

A priori, the presence of discrete Wilson lin
violates CP. In this section, we show that thisdoes
not occur at least at the renormalizable level if the l
energy physics is described by the Standard Mode
its minimal supersymmetric version).

A discrete Wilson line is realized through a
Abelian embedding of the space group into the ga

5 See [22] on related subjects.
group of the orbifold [3]:

(30)(θ, l)→ (1, v+ a),
where v is a shift of theE8 × E8 lattice, and l
and a are related by (15). If we associate a Wils
line a1 with e1, then the same Wilson line is als
associated withθe1. This can be seen as follow
to respect the group multiplication rules, one has
associate(θ, e1)(θ−1, e1)= (1, e1 + θe1) with (1, v+
a1)(1,−v + a1) = (1,2a1) from which the above
statement follows. Thus we have

(31)aI (ei)= aI (θei),
up to a gauge lattice vector. Further, since(θ, l)N =
(1,0), such Wilson lines have to bediscrete:

(32)NaI = 0

up to a lattice vector.
Consider an example of theZ3 orbifold. Denote

the two SU(3) root vectors bye1 and e2. The twist
θ rotates them as follows:

(33)θe1 = e2, θe2 = −e1 − e2.
Then the Wilson lines satisfy the following condition

(34)a1 = a2, 3a1 = 0,

up to a lattice vector. Here we use the shorth
notationai ≡ aI (ei).

Similarly, one can study constraints on discr
Wilson lines for other orbifolds [24,25]. The resu
are presented in Table 1. The second column sh
the orbifold twists, while the third column gives a
example of a 6D Lie lattice which realizes the orbifo
twist by its Coxeter element (in general, there are m
than one 6D lattices realizing the same orbifold twis
The constraints on the discrete Wilson lines dep
on which 6D lattice is used. The 6D lattice shown
the third column is the one leading to most degree
freedom for the discrete Wilson lines (see [24,25]
other lattices). The constraints are shown in the fou
column, where each equation is meant to be satis
up to a gauge lattice vector.

To discuss the discrete Wilson lines further,
will need some facts about the selection rules
the Yukawa couplings. With every fixed point let
associate a space group element(θk, nie

i) according
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Table 1
Allowed discrete Wilson lines

Orbifold Twist 6D Lie lattice Wilson line Further constraints

Z3 (1,1,−2)/3 SU(3)3 3a1,3,5 = 0 ai+1 = ai (i = 1,3,5)
Z4 (1,1,−2)/4 SO(5)2 × SU(2)2 2a2,4,5,6 = 0 a1 = a3 = 0
Z6-I (1,1,−2)/6 SU(3)×G2

2 3a1 = 0 a1 = a2, a3−6 = 0

Z6-II (1,2,−3)/6 SU(3)× SU(2)2 ×G2 3a1 = 2a3,4 = 0 a1 = a2, a5,6 = 0
Z7 (1,2,−3)/7 SU(7) 7a1 = 0 a1 = a2−6
Z8-I (1,2,−3)/8 SO(9)× SO(5) 2a4,6 = 0 a1,2,3,5 = 0
Z8-II (1,3,−4)/8 SO(9)× SU(2)2 2a4−6 = 0 a1−3 = 0
Z12-I (1,4,−5)/12 SU(3)× F4 3a1 = 0 a1 = a2, a3−6 = 0

Z12-II (1,5,−6)/12 SU(2)2 × F4 2a1,2 = 0 a3−6 = 0
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(35)θkfk,niei = fk,niei + niei,
where ni is an integer. Henceforth, we will deno
a fixed point by its space group element(θk, niei).
The fixed points(θp, <iei + (1− θp)Λ) with different
Λ are equivalent to each other. The twisted sta
of the orbifold are located at the fixed points (
even orbifolds a physical state corresponds to a lin
combination of the fixed points in the same twist
sector [25,26]).

The Yukawa couplings among the three states
responding to the fixed points(θp, <iei), (θq,miei)
and (θr , niei) are allowed only if certain selectio
rules are satisfied. In particular, the space group
variance requires that(
θp, <ie

i
)(
θq,mie

i
)(
θr, nie

i
)

(36)=
(

1,
∑

s=p,q,r

(
1− θs)Λ)

.

We note that the right-hand side of this equation
equivalent to(1,0).

As an example, consider this selection rule
the Z3 orbifold. Each 2DZ3 orbifold has three
fixed points 0,e1/3 + 2e2/3, and 2e1/3 + e2/3, or
in our notation,(θ,0), (θ,−e1 − e2), and (θ,−e1),
respectively. Since the fixed points shifted by(1 −
θ)Λ= ne1+(3m−n)e2 are equivalent, we can deno
these fixed points by(θ, ke1) with k = 0,1,2. Then
the Yukawa coupling of the states corresponding to
fixed points(θ, <e1), (θ,me1) and(θ, ne1) is allowed
if

(37)<+m+ n= 0 mod3,
and similarly for the other 2D planes. This select
rule implies that once< and m are specified,n is
fixed uniquely (mod 3). This sort of a selection ru
is diagonal in the sense that the positions of the tw
the fixed points determine the third one uniquely. T
resulting quark Yukawa matrices are diagonal. N
that this orbifold allows for nontrivial Wilson line
(Table 1).

The space group selection rule is not always di
onal [25,27]. Consider theG2 plane with the twist
e2πi/6 of the Z6-I orbifold. Denote the lattice basi
vectors ase3 ande4. Theθ twist has one fixed poin
(θ,0), θ2 has three fixed points(θ2,pe3) (p= 0,1,2),
andθ3 has four fixed points(θ3, ne3) (n= 0,1,2,3).
It is easy to show that the coupling(θ,0)(θ2,pe3)×
(θ3, ne3) is allowed for anyp andn. That means tha
the positions of the two fixed points do not determ
the position of the third one uniquely and the Yuka
matrices can have off-diagonal elements. On the o
hand, discrete Wilson lines in this plane are not
lowed (Table 1).

These two examples suggest that whenever
diagonal Yukawa matrix elements are allowed,
discrete Wilson lines areforbidden. This is indeed
true as can be checked by inspecting all orbifo
The reason for that is as follows. A space gro
element(θp,niei) is embedded into the gauge spa
as(1,pv+ niai). The selection rule (36) then implie(
1,pv + <iai

)(
1, qv+miai

)(
1, rv + niai

)
(38)= (1,ΛE8×E8).

Sincep+ q + r = 0 modN andNv is a lattice vector
we have

(39)(<i +mi + ni)ai =ΛE8×E8.
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93)
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Suppose now that<1 = 0,1 are both allowed such tha
the selection rule is not diagonal. Taking the differen
of (39) with <1 = 0 and<1 = 1, we obtain

(40)a1 =ΛE8×E8

which is equivalent to zero.
This result has important implications. Suppo

that the presence of discrete Wilson lines results
CP phases in the Yukawa couplings. Since in t
case the Yukawa matrices are bound to be diago
these CP phases can always be rotated away
redefinition of the right handed quarks. Thus, at
renormalizable level, discrete Wilson lines do not le
to CP violation.6

This result may be altered by the presence of n
renormalizable operators contributing to the Yuka
matrices. Although they involve exponentially sm
factors [18], they are not necessarily small numeric
[29] and thus can have a nonnegligible effect. T
difficulty with an explicit calculation of the discret
Wilson line contribution is that the standard acti
(3) is not invariant (or does not transform asS →
S + 2πn) under anE8 ×E8 lattice shift of the Wilson
line for arbitrary ∂Xi . For the same reason, it is n
generally twist-invariant. This problem remains ope

5. Conclusion

We have studied a connection between heter
string backgrounds and CP violation in the Yuka
couplings. We find that only the antisymmetric bac
ground fieldBij is a viable candidate for the sour
of the observed CP violation. The continuous Wils
lines and theU -moduli conserve CP, whereas the d
crete Wilson lines do not lead to physical CP phase
least at the renormalizable level.
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