
Electronic Notes in Theoretical Computer Science �� No� � ������
URL� http���www�elsevier�nl�locate�entcs�volume���html �� pages

Distribution and Mobility with Lexical Scoping
in Process Calculi

Vasco T� Vasconcelos a�� Lu��s Lopes b�� Fernando Silva b��

a Department of Computer Science� University of Lisbon� Portugal

b Department of Computer Science� University of Porto� Portugal

Abstract

We propose a simple model of distribution for mobile processes� independent of

the underlying calculus� Conventional processes compute within sites� inter�site

computation is achieved by message sending and object migration� both obeying

a lexical scope� We focus on the semantics of networks� on programming practice�

and on physical realization with current technology�

� Introduction

Milner� Parrow� and Walker�s ��calculus ���� has provided a formal frame�

work for most of the research on concurrent� communication based systems�

Several forms and extensions of the asynchronous ��calculus ��� have since

been proposed to provide for more direct programming styles� and to improve

e	ciency and expressiveness �
������� The ��calculus has also been used as

a basis to reason about distributed computations� Introducing distribution�

code mobility� and failure detection and recovery into ��computations is a fast

growing research eld� with immediate applications in mobile computing� web

languages� cryptography� to name a few�

We propose a simple model of distribution for mobile processes� The fol�

lowing major constraints guided its design�

�i� the model must be a simple extension of the calculi we have today�

�ii� must be independent of the base calculus chosen�

�iii� must meet realistic expectations of current distributed systems�

�iv� must be e	ciently implementable in current hardware�

�
Partially supported by Project Escola PRAXIS�������MAT�������

�
Partially supported by Project Dolphin PRAXIS ������TIT���������

c����� Published by Elsevier Science B� V� Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82581004?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/

Vasconcelos� Lopes� and Silva

No distributed system can be conceived without the notion of site �or

location� where conventional �name�passing� in this case� computations take

place� So we have sites� and we have site identiers� distinct from the usual

names� Our processes are network aware� names can be local or remote� the

distinction is explicit in the syntax� Local names are those of the base calculus�

remote names are pairs site�name� called located names�

Sites abstract nodes in a network� They are composed of located processes

� processes paired with site identiers � denoting the execution of the pro�

cess in the site� which is similar to most proposals to date �������������� Lo�

cated processes can be put to run in parallel� Furthermore� since name�passing

calculi are capable of extruding the scope of a �local� name� our networks are

equipped with a located name restriction operation� In summary� networks

are located processes equipped with a composition and a restriction operator�

yielding a �at organization of sites quite close to Distributed�� ����� and in

contrast with the tree structure of Mobile Join ���� and the nested structure

of Ambients ����

The model encompasses two levels� processes and networks �cf� ����������

Local computations happen at located processes� as prescribed by the se�

mantics of the base calculus� What do we want for remote computations�

For the moment we only allow the communication of prexed processes be�

tween di�erent sites� These include remote message invocation �messages in

the asynchronous ��calculus ���� Join ���� or TyCO ������ the migration of

procedures �input�prex processes in ��calculus and resources in the Blue cal�

culus �
�� replicated or not�� the migration of objects �in TyCO�� and the

migration of messages with continuations �output�prex processes in the ��

calculus�� The transport of prexed processes is deterministic� point to point�

and asynchronous� synchronization only happens locally� at reduction time�

We adhere to the lexical scoping in a distributed context of Obliq ���� The

free names of any �piece of code� transmitted over the network are bound

to the original location� Network transmission implies the translation of the

free names in the code in order to re�ect the new site where the code is to be

executed�

An important design decision related to points �iii� and �iv� above is the

incapacity of the model to create remote names and the inability to spawn

processes at remote sites� thus providing for site protection against arbitrary

uploads� Section
�� shows how this can be circumvented with the collabora�

tion of the remote site�

As a rst proposal� our site identiers are not rst class objects� they

cannot be sent in messages� we deliberately eschew the possibility of checking

whether a site is alive and of killing a site ��������� of checking whether two

remote names reside at the same site ����� of comparing site identiers� of

dynamically constructing a located name given a name and a site identier�

The outline of the paper is as follows� The next section introduces the

network model� its syntax and semantics� section
 presents several program�

�

Vasconcelos� Lopes� and Silva

ming examples that attest the �exibility of our proposal� section � discusses

implementation� and section � includes a comparison with related work� The

last section presents ideas for future development�

� The Model

The ideas presented in the previous section can be embodied in any name�

passing calculus� The model is two level� on the rst level we have the processes

in the base calculus� on the second level we build networks�

We have said that our model is independent of the base calculus� There

are however a few conditions that it must fulll�

�i� the base calculus may incorporate values in general� and should provide

for names in particular� For the purpose of this exposition� we let a range

over names� and v over values�

�ii� it should allow to create a new name visible only in a given process�

obeying the lexical scoping convention� We write �xP � as usual�

�iii� it should have processes prexed on some name� Examples are output

and input prexes �avP � a�x�P � �a�x��P � in the ��calculus ����� messages

and objects �a�m� a�M� in TyCO ����� requests for session initiation

�accept a�k� in P � request a�k� in P � in Structured Communication�

Based Programming ����� and names and resources �a� a � P � a � P � in

the Blue calculus �
�� All the above examples are prexed at name a� for

the purpose of this exposition we write them aC�

�iv� it should have a parallel composition operator and the corresponding

neutral element� We write them j and �� respectively�

�v� it should incorporate a notion of substitution of names by values in a

process� avoiding the capture of the names substituted� If P is a process

and � a total function from names to values� we denote by P� the process

resulting from applying � to P �

We nd these requirements mild� most calculus to date �
������������ fulll

these constraints� A possible exception is the Join calculus ��� and item �iii�

above�

We start by introducing a new class of identiers� sites� distinct from names

or any other class of identiers the base calculus may include� Located names

are site�name pairs� We let s range over sites� and e over located names� A

name a located at site s is denoted by s�a� We then allow located names to

occur in any position in the base calculus where �non�binding occurrences of�

names can� The calculus thus obtained constitutes the �rst level of the model�

Since site identiers are introduced anew� there must be no provision in the

base calculus for binding located names� As such� at this level� a located name

behaves as any other constant in the base calculus�

The second level is composed of site�process pairs called located processes

Vasconcelos� Lopes� and Silva

�denoted s � P �� composed via conventional parallel �N k N� and �located
name� restriction ��eN� operators� The set of networks is given by the fol�
lowing grammar�

N ��� s � P j N k N j �eN j �

The bindings in networks are as expected� a located name e occurs free in
a network if e is not in the scope of a �eN � otherwise e occurs bound� The set
of free located names in a network N � notation fn�N�� is dened accordingly�

Structural congruence allows us to abstract from the static structure of
networks� it is dened as the least relation closed over composition and restric�
tion� that satises the monoid laws for composition� as well as the following
rules taken from Hennessy�Riely ���� �

�Nil� s � � � �

�Split� s � P� k s � P� � s � �P� j P��

�New� s � �aP � �s�a�s � P �

�Extr� N� k �eN� � �e�N� k N�� if e �� fn�N��

Rule Nil garbage collects terminated located processes� When used from
left to right� the rule Split gathers processes under the same location� allowing
reduction to happen� the right to left usage is for isolating prexed processes
to be transported over the network �see rule Move in the reduction relation
below�� The remaining rules allow the scope of a name local to a process to
extrude �rule New� and encompass a network with several located processes
�rule Extr��

Non�located names in processes are implicitly located at the site the pro�
cess occurs at� a name a occurring in a network s � P is implicitly located at
site s� When sending names over the network� the implicit locations of names
need to be preserved� if we are to abide by the lexical scoping convention�
As such� a name a moving from site r to any other site must become r�a�
Similarly a located name s�a arriving at site s may drop its explicit location�
The remaining names and values need no translation� A translation of values

from site r to site s is a total function �rs dened as follows� �

�rs�a�
def
� r�a �rs�s�a�

def
� a �rs�v�

def
� v

Processes prexed at located names play a crucial role in the model� by
moving towards the location of the located name� a process s�aC is meant to
move to site s� If aC is a message �say av in the asynchronous ��calculus�� then
s�aC denotes a remote message send� if on the other hand aC includes �some
code� �say a�x�P in the ��calculus�� then s�aC denotes a process migration

� Rules Nil	 Split	 and Extr are present in Sewell et al�
��� as well�
� The last rule should be applied last�

�

Vasconcelos� Lopes� and Silva

operation� We thus see that conceptually there is not much di�erence between

a remote message send and a process migration� in section � we show that from

an implementation point of view the di�erence is not abysmal either�

The reduction relation for networks is given by the following axiom and

rule� plus the familiar rules for composition� restriction� and structural con�

gruence which we omit�

�Move� r � s�aC � s � a�C�rs� �Local�
P � Q

s � P � s � Q

If prex s�aC is located at site r� then� in order to keep the lexical scope

of names� the free names in C must translated according to C�rs� So� when

sending s�aC from r to s we actually transmit �s�aC��rs � aC�rs� This is the

essence of the axiom Move� Rule Local allows processes in sites to evolve

locally�

As an example let us try a remote procedure call in the ��calculus� The

client at site s invokes the procedure p at site r with a local argument v� waits

for the reply and continues with P � The procedure accepts a request and

answers a local name u �somewhere in the body Q of the procedure��

s � �a�r�p�va� j a�y��P � k r � p�xc��Q � �New�Extr�

�s�a�s � r�p�va� k s � a�y��P k r � p�xc��Q� � �Move�

�s�a�r � p�s�v s�a� k s � a�y��P k r � p�xc��Q�� � �Split�

�s�a�s � a�y��P k r � �p�s�v s�a� j p�xc��Q�� � �Local�

�s�a�s � a�y��P k r � Q�s�v s�a�xc�� �
�

�s�a�s � a�y��P k r � s�a�u�� �� �Move�Split�Local�

�s�a�s � P �r�u�y�� � s � �aP �r�u�y� �New�

We thus see that a remote communication involves two reduction steps�

one to get the message�object to the target site and the other to consume the

message�object at the target �cf� ����� the former is an asynchronous operation�

the latter requires a rendez�vous� This re�ects actual implementations�

� Programming

Pick your favorite name�passing programming language� and simply add two

new declarations�

export name in process

import name from site in process

There is no need to change the syntax of the base language whatsoever� In

particular we never write located names explicitly� The translation into the

�

Vasconcelos� Lopes� and Silva

base calculus extended with located names is quite simple�

��export a in P ��
def
� ��P ��

��import a from s in P ��
def
� ��P �s�a�a���

We thus see that the export declaration is really unnecessary� Since pro�

grams are to be closed� we could take the view that every free name in a

program is to be exported� From a programming point of view we however

feel that the dual import�export declarations impose a more disciplined pro�

gramming style� avoiding� for example� the automatic exporting of names that

the programmer forgot to protect with a new�

The remainder of this section is devoted to the presentation of several pro�

gramming examples that attest the �exibility of the model� The new ideas are

embodied in our favorite name�passing programming languages� TyCO �����

and Structured Communication�Based Programming �����

��� Java applet server

Our rst example illustrates code transmission over the network� The idea is

from Fournet et al� ���� but we have taken advantage of objects in TyCO to

allow for the downloading of di�erent applets�

In order to set the context for the example we brie�y review TyCO ��������

TyCO is a name�passing calculus in the line of the asynchronous ��calculus ���

that incorporates� in place of �unlabeled� messages and receptors �av� a�x��P ��

labeled messages and objects composed of methods�

a�l��v� a�fl���x�� � P�� � � � � ln��xn� � Png message�object

In the syntax above� a is a name� �v� �x�� � � � � �xn are sequences of names� and

l� l�� � � � � ln are labels� Labels constitute a syntactic category distinct from

names� Labels l�� � � � � ln� and names in each �xi� are pairwise distinct� A mes�

sage a�li��v� selects the method li in an object a�fl���x�� � P�� � � � � ln��xn� � Png�
the result is the process Pi where names in �v replace those in �xi� These primi�

tives are further combined by the following standard constructs in concurrent

programming�

P� j P� concurrent composition

new x P name hiding

def X���x�� � P� and � � � and Xn��xn� � Pn in P recursion

X��v� instantiation

Contrary to the conventional practice in name�passing calculi� we let the

�

Vasconcelos� Lopes� and Silva

scope of a new extend as far to the right as possible� We single out a label �

val� to be used in objects with a single method� This allows to abbreviate

messages and objects� The let constructor is quite useful in getting back

results� the syntax is taken from Pict ��
��

a���v� abbreviates a�val��v�

a���x� � P abbreviates a�fval��x� � Pg

let x � a�l��v� in P abbreviates new r a�l��vr� j r��x� � P

This nishes the introduction of all language constructs we shall use in

this section� we may now go into our example� An applet server provides for

the downloading of k di�erent applets through the k methods of an object�

The server locates applet Pj at the name p provided with the invocation of

method appletj� Here is the code to be run at site sumatra�

def AppletServer �self� �

self � f
applet��p� � p��x��P� j AppletServer�self��

� � �

appletk�p� � p��x��Pk j AppletServer�self�g
in export appletserver

in AppletServer�appletserver�

Each client creates a fresh name where the applet server is supposed to

locate the applet� then invokes the server with this name and� in parallel�

triggers the applet�

import appletserver from sumatra

in new p appletserver�appletj �p� j p��v�

Let us see how the server and the client interact� We start by translating

the import�export clauses to obtain

sumatra� def � � � in AppletServer�appletserver� k
client� new p sumatra�appletserver�appletj �p� j p��v�

Then� the message sumatra�appletserver�appletj �p�moves to the server �yield�

ing the message appletserver�appletj �client�p�� with one Move reduction step�

one local reduction at the server invokes the appletj method� and one nal

Move step migrates the applet client�p��x��Pj back to the client� yielding

the process� �

sumatra� def � � � in AppletServer�appletserver� k
client� new p p��x��Pj�sumatra client j p��v�

Notice how the structural congruence rules New and Extr are used �from

� Incidentally	 three is the number of reduction steps that Mobile Join
�� takes to perform

the same operation�

�

Vasconcelos� Lopes� and Silva

left to right� to allow name p at client to encompass both sites� and then �from

right to left� to bring p local to the client again� Notice also that the applet

body gets translated to re�ect its new site� if P refers to some name a local

to the applet server� then Pj�sumatra client refers to the remote name sumatra�a�

It should be obvious that a client does not need to download the applet to

its site� a message appletserver�appletj �s�p� will load the applet at site s�

��� Compute server

The next example� inspired by Cardelli ���� distinguishes local from remote

computation� A compute server provides two operations� lexec and rexec�

allowing the execution of a given parameterless procedure P at the client site

and at the server site� respectively� Here is the code to be run at site borneo�

def ComputeServer �self� replay� �

self � f

lexec�p� �

p��� j ComputeServer�self� p��

rexec�replyTo� �

new p replyTo��p� j p��� j ComputeServer�self� p�g

in export computeserver

in ComputeServer�computeserver� �

The method for local execution triggers the procedure located at name p�

Once again� exactly where the procedure runs depends on where p is located�

and that is in the hands of the client� The method for remote execution

provides for the migration of the procedure to the server by creating a new

name p �local to the server� and by sending it back to the client� The client

is then supposed to locate the procedure at this name while� as in the applet

example� the server triggers the procedure� As in the original example ���� the

server cheats on clients by storing the latest client procedure in �this time� a

local variable� �

Here is a possible client�

import computeserver from borneo

in new p p����P j computeserver�lexec�p� j 	 local execution

let p � computeserver�rexec�� in p����P 	 remote execution

For the local execution� the client creates a new name p where it locates

the procedure� and invokes lexec with argument p� For the remote execution

the client waits for a name from the server and locates the procedure at this

name� In both cases the triggering is done by the server� We can see that

the di�erence between the two kinds of execution is centered on where the

procedure identier p is located�

� Since the variable replay is local to the server	 there is not much use to it� We could

however add a replay method to ComputeServer� replay�� � replay��� j ComputeServer�self�

replay��

�

Vasconcelos� Lopes� and Silva

While in the previous example� the applet server denes the procedures

�applets� and provides for the uploading� in this example it is the client that

denes the procedures to be run� The local execution takes three reduction

steps until P is ready to be triggered� the remote execution takes ve steps

to accomplish the same� The two extra steps involve asking for and getting a

name p local to the server� where the procedure is to be located�

��� Spawning processes

An important design decision is that �remote channel creation is only possible

with a remote friend�� Hence �new name at site� is something we cannot

write� � The knowledge of a site name must not award the possibility of

directly accessing the site�s memory� The consequences would be far reaching�

In particular� such a construct would allow the spawning of arbitrary processes

regardless of the willingness of the server to accept the processes� Spawning

a process P at site s without s�s consent could be easily written as �

new a at s a����P j a���

Instead� to model arbitrary migration� we require the collaboration of some

friend in the remote location to provide a remote name� Friends can be written

as follows�

Friend�self� � self�fnewName�replyTo� � new a replyTo��a� j Friend�self�g

Thus� spawning a process P in a location where we have aFriend can be modeled

as

spawn P at aFriend
def
� let p � aFriend�newName�� in p����P j p���

We have already used this technique in the remote execution method of the

compute server �section
��� only that there the migrating process is triggered

by the server�

An immediate application of this technique allows us to send a computation

to a remote server and to get the results �cf� ����� Here the client denes the

request� the request moves to the server� runs there� and sends the result back

to the client� Suppose that R is a request that eventually issues a message

a��v� with the result v� and e is the name of a friend at the server� Then� we

may send R to the remote server� get the result in x and continue with P� by

simply writing�

new r spawn R at e j a��x��P

We can specialize remote friends� Here is one that accepts the migration of

arbitrary processes �with the necessary collaboration of the client� see method

rexec of the compute server� section
���� and invokes them�

� We stick to the idea of not writing located names explicitly� The counterpart in the

extended� base calculus would be �s�aP � Sewell et al�
��� write new a�s�P �
� Amadio writes spawns� P �
��� Hennessy�Riely write s �� P
��	 and also gotos� P �
����

�

Vasconcelos� Lopes� and Silva

Friend�self� � self�fmigrate�replyTo� � new a replyTo��a� j a��� j Friend�self� g

Since the procedure is triggered at the server� this version saves one remote

message passing when compared to the method newName� We could go one

step forward and stipulate a gateway for each site providing for all the services

we could anticipate for the site� as in Amadio ���� The gateway name would

then represent the site itself and we could work with gateway names as if we

were dealing directly with sites�

There is also an implementation related reason why we do not want remote

name creation� All our remote primitives �but export�import� are accom�

plished with a single �asynchronous� remote message passing� To implement

remote name creation we would need two remote messages �one asking for the

creation� the other replying the name created��

��� Migrating a bu�er cell

This example uses the friends discussed above� Inspired on Amadio�s �migra�

tion stack� ���� we have down sized the stack into a one�place bu�er cell in

order to simplify the migration of the state� Our cell provides for read � write�

and move operations� The last operation allows the migration of the whole

cell �that is� the cell itself and its value� to a new site� The invoker of the

move operation must provide for a friend at the remote location� in return it

gets the new location of the cell� We assume that the value the cell is holding

possesses a move method as well�

def Cell �self� value� �

self � f
write�newVal� �

Cell�self� newVal��

read�replyTo� �

replyTo��value� j Cell�self� value��

move�aFriend� replyTo� �

let newSelf � aFriend�newName��

in let newVal � value�move�aFriend�

in replyTo��newSelf� j Cell�newSelf� newVal�g

��� FTP server

Our nal example is written in Structured Communication�Based Program�

ming ���� extended with import�export declarations� thus showing that the

ideas of this paper can be embodied into di�erent languages� Before we go

into the example we brie�y review the syntax of the language�

The idea central to the idiom is a session� A session is a series of recip�

rocal interactions between two parties� possibly with branching and recursive

structures� and serves as a unit of abstraction for the structure of interaction�

Communications which belong to a session are done via a port specic to that

��

Vasconcelos� Lopes� and Silva

session� A fresh channel is generated when initiating each session� for the use

in communications in the session� To initiate a session we use request and

accept commands�

request a�k� in P accept a�k� in P initiation of a session

A request rst requests� via a name a� the initiation of a session as well as

the generation of a fresh channel k� then P would use the channel for later

communications� An accept� on the other hand� receives the request for the

initiation of a session via a� generates a new channel k� which would be used

for communications in P � The parenthesis �k� and the keyword in shows

the binding and its scope� Via a channel of a session� three kinds of atomic

interactions are performed� value passing �including name passing�� branching�

and channel passing �or delegation��

k��e� � � � en��P k��x� � � � xn� in P data sending�receiving

k � l�P k � fl� � P�� � � � � ln � Png label selection�branching

throw k�k
�
��P catch k�k

�
� in P channel sending�receiving

Data sending	receiving is the standard synchronous message passing� Here

ei denotes an expression such as arithmetic�boolean formulae as well as names�

The branching	selection is the minimization of method invocation in object�

based programming� l� l�� � � � � ln are labels� Similarly to TyCO� variables

x�� � � � � xn and also labels l�� � � � � ln are pairwise distinct� The channel send

ing	receiving� which we often call delegation� passes a channel which is being

used in a session to another process� thus radically changing the structure of a

session� Sessions are combined via concurrent composition� name hiding� and

recursion� as described in section
�� for TyCO�

Our example� taken from Honda et al� ����� is composed of an FTP server

and a pool of threads� The FTP server establishes a session with a client and�

after authenticating the client �code not shown�� delegates the session to some

idle thread� The server is then free to take another client request� The novelty

of the example is that threads may be located at a di�erent machine�

def Ftpd �self� ready� �

accept self�aClient�

in accept ready�aThread�

in throw aThread�aClient� j Ftpd�self� ready�

in export ftp

in import ready from threadSite

in Ftpd�ftp� ready�

Site ftpServer runs the above code while importing name ready from the

site providing for the threads� and exporting name ftp to potential clients�

��

Vasconcelos� Lopes� and Silva

def Thread �ready� �

accept ready�ftp�

in catch ftp�aClient�

in def Actions�� �

aClient � f
put� aClient��aFile� in � � � Actions���

get� aClient��aFilename� in � � � Actions���

quit� Thread�ready�g
in Actions��

in export ready

in Thread�ready�

Threads run at threadSite� exporting name ready to potential ftp�servers�

Idle threads accept service from the ftp�server and catch client�s sessions� The

session with the client is then initiated by means of the loop Actions� Here is

a client that requests a session with the ftp server� puts a le and quits�

import ftp from ftpServer

in request ftp�aSession�

in aSession�put� aSession��myFile�� aSession�quit

� Implementation

The model discussed in section � can be easily incorporated in the TyCO

programming environment�

For the implementation of base processes we rely on the technology we have

developed� the TyCO abstract machine ����� TyCOAM for short� Programs

in TyCO are rst compiled into an intermediate assembly language and then

assembled into byte�code les� which in turn are emulated by the TyCOAM�

To emulate a byte�code program� a TyCOAM relies on two distinct address

spaces� a heap and a program area� The program area contains static data

and the byte�code� The heap is used for dynamic allocation of frames �blocks

of contiguous machine words� for data�structures such as messages� objects

and channels� Message frames contain the label and the arguments of the

message� object frames contain the address of the object�s method table in

the program area� and the values for the object�s free variables� Channels are

queues of either messages or objects �or empty� waiting for reduction�

Sites are abstract �places� where computations evolve� We associate a

unique TyCOAM with each site� To take advantage of multiprocessors� we

do not map sites one�to�one with IP addresses� Instead we allow several sites

to coexist at a given IP node� Therefore� a site identier is a pair ip
location

where location is a small natural number selecting a site within the IP node�

To handle communication between distinct sites we endow each IP node with a

communication daemon� TyCOd for short� Thus each IP node is formed by an

arbitrary number of TyCOAMs plus a TyCOd� Sites at the same IP node run

��

Vasconcelos� Lopes� and Silva

in parallel �if the architecture allows�� or interleaved �in mono�processors�� In

either case� the scheduling of the TyCOAMs is left either to a thread package

or to the local OS kernel� Within and IP node� each site has its own address

space in a global shared memory� the TyCOd has access to each of these

address spaces� Figure � illustrates the architecture of an IP node�

Network

Outgoing
Site

Message
or Object

Message
or Object

Site

SiteTyCOd

Incoming

Incoming

Incoming

Fig� �� IP Node Architecture

Each TyCOd maintains a symbol table relating exported names with local

channels� All export�import declarations in a program are processed at launch

time� an �export name� declaration updates the symbol table with the channel

associated with name� an �import name from site� clause enquires site for the

channel of name and binds the result locally�

For remote messages� the TyCO compiler generates a specialized assem�

bly instruction remote�message� instead of the usual try�reduce�message

which is used for local communication� Similarly� for object migration� a spe�

cialized remote�object instruction is generated in place of the usual try�

reduce�object�

A TyCOAM �a site in the gure� executes a remote�message instruction

by sending to the local TyCOd a request with the target site identier and the

address of the message�frame currently in the heap� The request is placed in a

outgoing queue maintained by the TyCOd� The daemon eventually processes

the request by translating the names in the message frame as dened in sec�

tion �� packing the translated frame into an appropriately formated bu�er� and

then sending the bu�er through the network� If the target site is within the

same IP node� signicant optimizations can be performed� The same approach

is taken for remote�object instructions� The TyCOd receives a request with

the target site identier and the address of the object�frame� The daemon

translates the values �of the free variables of the object� in the frame� uses the

address of the object�s method table in the frame to extract the byte�code for

the object� and sends the translated frame and the byte�code to the TyCOd

at the target IP address�

�

Vasconcelos� Lopes� and Silva

When a remote message or object arrives� the local TyCOd unpacks the

bu�er into a freshly allocated frame from the heap space of the appropriate

site� and places it in the site�s incoming queue� In the case of an object the

byte�code for the methods and the method�table is copied and dynamically

linked to the program currently running at the site� Before running a new

thread the site checks its incoming queue and processes all messages and

objects in it�

� Related Work

Sewell et al� build� on top of the ��calculus� a system that identies sites�

and that allows agents �processes located at a given name� to be themselves

located at sites ����� The runtime system takes care of the current location of

agents� The model includes primitives to create a new agent at the current

site� to migrate an agent to a site� and to check whether two agents reside at

the same site� Our model does not contemplate the notion of agents in this

sense�

Fournet et al� introduce a migration primitive that allows a whole running

location to move into a new position in the tree of locations �and to trigger

some process upon arrival� ���� In contrast to our proposal where remote

names have an explicit syntax� the syntax of Join ensures that names have a

unique site at which they are serviced�

Amadio identies congurations composed of locations� messages� and pro�

cesses running at locations ���� Messages include conventional remote messages

plus three primitives� to stop a location� to spawn a process at a location� and

to check whether a location is alive� As mentioned in the introduction� we

have decided not to incorporate these primitives�

Riely and Hennessy identify a CCS based calculus in which processes run

at locations� �The language provides operators to kill locations� test the status

�dead or alive� of locations� and to spawn processes at remote locations� �����

Hennessy and Riely�s distributed ��calculus ��� is probably the project

closest to ours� Among the dissimilarities� D� allows the arbitrary spawning

of processes at remote locations� and is incapable to send a message directly

to a remote location �instead a process that sends the message locally must

be spawned at the location��

� Conclusion

We have presented a model of distribution for process�calculi� The proposal

includes among its virtues� the possibility of being embodied in most process

calculi �section � discusses the assumptions on the base calculus�� the extreme

simplicity of networks� and the feasible implementation in current hardware�

All these features come with a price�

��

Vasconcelos� Lopes� and Silva

�i� Sites are not rst class citizens� Site identiers� constituting a class dis�
tinct from names� need a whole set of operations� There is no point in
allowing site names to be passed in messages if we cannot at least perform
one the following operations� to create sites locally� to compare sites for
equality�inequality� to dynamically form a located name given a site and
a name� to test whether a site is alive� to kill a site�

�ii� The model is unable to move a running process �or a whole site� to a
di�erent location �cf� �������� We can launch a process at a remote site�
but after the process is running there is no means to have it migrated� In
particular� we can send a computation to a remote server and get back
the result� but not the computation itself �see section
�
��

We identify four lines for future research�

�i� Enhancing the expressiveness of the language taking into consideration
the points identied above�

�ii� The study of the semantic properties of the model proposed�

�iii� The study of type systems to discipline remote computations� It is our
believe that a form of distributed subject�reduction is attainable� Also�
mixing static with dynamic checking is a promising research direction
�cf� ������

�iv� The actual implementation of the model into two available hardware
architectures� � Quad�Pentium Pro machines interconnected with Fast
Ethernet� and � Dual Pentiums interconnected with Myrinet ����

Acknowledgments� The rst author would like thank Matthew Hennessy�
Julian Rathke� and Kohei Honda for fruitful discussions�

References

��� Roberto M� Amadio� An asynchronous model of locality� failure� and process
mobility� In COORDINATION���� volume ���� of LNCS� pages 	
��	��
Springer�Verlag� �
� Full version as Rapport Interne� LIM Marseille� and
Rapport de Recherche RR�	��� INRIA Sophia�Antipolis� �
�

��� Nanette J� Boden et al� Myrinet� A gigabit per second local area network�
IEEE�Micro� ��������	�� February ���

�	� G�erard Boudol� The pi�calculus in direct style� In ��th ACM Symposium on

Principles of Programming Languages� pages �������� ACM Press� �
�

��� Luca Cardelli� A language with distributed scope� Computing Systems� ������
�
�� January ���

��� Luca Cardelli and Andrew D� Gordon� Mobile ambients� In FoSSaCS����
volume �	
� of LNCS� pages �������� ���

��

Vasconcelos� Lopes� and Silva

��� C�edric Fournet and Georges Gonthier� The re�exive chemical abstract machine
and the join�calculus� In ��rd ACM Symposium on Principles of Programming

Languages� pages 	
��	��� ACM Press� ���

�
� C�edric Fournet� Georges Gonthier� Jean�Jacques L�evy� Luc Maranget� and
Didier R�emy� A calculus of mobile agents� In Ugo Montanari and Vladimiro
Sassone� editors� Proceedings of CONCUR ��	� volume ��� of LNCS� pages
�������� Springer� ���

��� Matthew Hennessy and James Riely� Resource access control in systems of
mobile agents� Technical Report �� Computer Science� University of Sussex�
February ���

�� Kohei Honda and Mario Tokoro� An object calculus for asynchronous
communication� In
th European Conference on Object�Oriented Programming�
volume ��� of LNCS� pages �������� Springer�Verlag� ���

���� Kohei Honda� Vasco T� Vasconcelos� and Makoto Kubo� Language primitives
and type disciplines for structured communication�based programming� In
ESOP���� volume �	�� of LNCS� pages �����	�� Springer�Verlag� ���

���� Lu��s Lopes� Fernando Silva� and Vasco T� Vasconcelos� Compiling process
calculi� DCC ��	� DCC�FC � LIACC� Universidade do Porto� March ���

���� Robin Milner� Joachim Parrow� and David Walker� A calculus of mobile
processes� I and II� Information and Computation� ������

� ���

��	� Benjamin C� Pierce and David N� Turner� Pict� A programming language based
on the pi�calculus� CSCI Technical Report �
�� Indiana University� March �
�

���� James Riely and Matthew Hennessy� Distributed processes and location
failures� In Pierpaolo Degano� Roberto Gorrieri� and Alberto Marchetti�
Spaccamela� editors� Proceedings of ICALP ���� volume ���� of LNCS� pages
�
������ Springer� �
� Full version as Report ��
� University of Sussex�
Brighton�

���� James Riely and Matthew Hennessy� Trust and partial typing in open systems
of mobile agents� Technical Report �� Computer Science� University of Sussex�
July ���

���� P� Sewell� P� Wojciechowski� and B� Pierce� Location independence for mobile
agents� In Workshop on Internet Programming Languages� ���

��
� Vasco T� Vasconcelos and Rui Bastos� Core�TyCO� the language de�nition�
version ���� DI�FCUL TR ��	� Department of Computer Science� University
of Lisbon� March ���

���� Vasco T� Vasconcelos and Mario Tokoro� A typing system for a calculus of
objects� In �st ISOTAS� volume
�� of LNCS� pages �����
�� Springer�Verlag�
November �	�

��

