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Small Extended Generalized Quadrangles 

P. J. CAMERON AND P. H. FISHER 

We consider extensions of generalized quadrangles with parameters (s, t), and establish 
lower bounds (in terms of sand t) for the number of points, sometimes under additional 
hypotheses. We also study the structure of geometries attaining these bounds, give several 
constructions and some uniqueness proofs, and examine the question of further extensions. 

1. INTRODUCTION 

An extended generalized quadrangle (EGQ) is a Buekenhout geometry with 
diagram 

c 
Of---~O):::! ===0 

Alternatively, it is a connected point-block incidence structure with the property that, 
for any point P, the points collinear with P and the blocks incident with P form a 
generalized quadrangle. EGQs include both locally polar spaces of polar rank 2 
(Buekenhout and Hubaut [6]) and 2-designs whose derived designs are generalized 
quadrangles (Thas [14]). 

In this paper, we prove some lower bounds for the number of points of an EGQ 
(sometimes under additional hypotheses), and investigate EGQs which attain these 
bounds. We give several constructions, and show the uniqueness of some of the small 
examples. We also consider the question of further extensions. 

2. PRELIMINARIES 

An incidence structure consists of a set of points and a set of blocks with a relation of 
incidence between them. None of our incidence structures will have 'repeated blocks', 
and we will freely identify a block with the set of points incident with it. 

The point graph of an incidence structure C§ has as vertices the points of C§, two 
vertices adjacent if there is a block containing both. The residue of C§ with respect to a 
point P consists of the points adjacent to P and the blocks incident with P; incidence is 
the same as in C§. If the point graph is connected and the residues with respect to all 
points are of the same type T, we refer to C§ as an extended T. 

A generalized quadrangle GQ(s, t) of order (s, t) (s, t ~ 1) is an incidence structure 
(the blocks of which are called lines) satisfying: 
(i) each point is on t + 1 lines, and two distinct points are on at most one line; 
(ii) each line contains s + 1 points, and two distinct lines meet in at most one point; 
(iii) if I is a line and P is a point with P It I, then there is a unique line containing P 
with meets I. 
(With one small exception, we never deal with infinite or non-regular GQs.) A 
GQ(s, t) is a Buekenhout geometry with diagram 

o 0 
5 I 

A set of st + 1 pairwise non-collinear points in a GQ(s, t) is called an ovoid. We use 
the following result, the easy proof of which is omitted: 

LEMMA 2.1. If S is a set of points in a GQ(s, t) which meets every line, then 
lsi ~ st + 1, with equality iff S is an ovoid. 
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The order (s, t) of a GQ satisfies a number of restrictions. among them are the 
condition s + t I st(st + 1) and the inequalities t :s:; S2 (if s > 1) and s :s:; t2 (if t > 1). 

For a general survey and list of the known GQs, with information on whether they 
contain ovoids, see Payne and Thas [10]. 

An extended generalized quadrangle (EGQ) is a connected incidence structure all of 
whose (point) residues are GQs. It is easy to see that all these GQs have the same 
order (s, t), and we speak of an EGQ(s, t). Moreover, the following properties are 
easily deduced: 
(i) every point is on (t + 1)(st + 1) blocks; 
(ii) every block contains s + 2 points; 
(iii) two distinct points are on 0 or t + 1 blocks; 
(iv) two distinct blocks meet in at most 2 points. 
An EGQ(s, t) is a Buekenhout geometry with diagram 

c 
OI---~O):::==:::jO 

S f 

where the three types of varieties are points, edges of the point graph, and blocks, with 
the extra condition 'no repeated lines'. 

Applying property (iii) in the definition of a GQ gives the following useful result 
(Buekenhout [5]): 

LEMMA 2.2. Let P be a point and x a block of an EGQ(s, t), with P fI x. Then the 
number of points on x adjacent to P is even. Moreover, there is a pairing on these 
points, each pair lying on a unique block containing P. 

This lemma gives rise to a divergence between the cases s even and s odd, as we shall 
see. 

Further extensions are defined analogously, and are Buekenhout geometries whose 
diagrams are obtained by adjoining additional c strokes on the left. 

Throughout this paper, we use v to denote the number of points of an EGQ(s, t). 

3. THE CASE SEVEN 

We consider first the minimal case where the EGQ is also a 2-design; we call this a 
one-point extension. The point graph of a one-point extension is complete. By (2.2), 
this can only happen if s is even. Now the number 

v = 1 + (1 + s )(1 + st) 

of points, and hence the number of blocks, are known; this yields a divisibility 
condition. Thas [14] has considered the known GQs: 

THEOREM 3.1 (Thas). If C§ is a one-point extension of a known GQ(s, t), then f(s, t) 
is one of the following: 
(i) (q - 1), q + 1), where q is an odd prime power; 
(ii) (2,1), (2,2), (2, 4), (4,2), (4, 8), (6,4), (8,4), (8, 8), (8, 64), (10,8), or (64, 512). 

EXAMPLE 3.2. There exist one-point extensions of GQs of orders (2,1), (2,2) and 
(2,4), each of which is unique. 
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CONSTRUCTION. Let C§ be a GQ(2, t) and 00 a new point. Let the points of the 
extension C§' be those of C§ together with 00. The blocks are of two types: 
(i) if x is a line of C§, then x U {oo} is a block of C§'; 
(ii) if x and yare intersecting lines of C§, then their symmetric difference x t,. y is a 
block of C§'. 

UNIQUENESS. A one-point extension of a GQ(2, t) must come from the above 
construction. For if blocks x and y meet in two points,. then any three points of x t,. y 
lie in a unique block,. and these blocks are either all equal or all different; but in the 
latter case, the three such blocks containing a point P of x t,. y form a triangle in the 
residue of P. Our claim now follows from the classification of GQs with s = 2 (see [10] 
or [11]). (An earlier existence proof is in Buekenhout [5].) 

Note that the set of triples of points contained in blocks of the EGQ is a regular 
two-graph in each case (Seidel [12]). (Indeed, it is easy to show directly that this must 
be so, and then the uniqueness follows from similar results of Seidel for two-graphs.) 
With a regular two-graph is associated a distance-regular double cover of the complete 
graph; in each of these three cases, this double cover is the point graph of another 
EGQ, having twice as many points as the one-point extension. 

EXAMPLE 3.3 (Thas [14]). There exist one-point extensions of the GQs AS(q) of 
order (q -1, q + 1) for any odd prime power q. 

Thas [14] has also considered further extensions, which are necessarily one-point 
extensions. We quote his result for the second extensions, and refer to his paper for 
further results: 

THEOREM 3.4 (Thas). Suppose that C§ is a connected incidence structure, the residues 
of which are one-point extensions of known GQ(s, t)s. Then s = q -1, t = q + 1, where 
q is a prime power congruent to ±1 (mod 6). 

We turn now to extensions with additional points. 

LEMMA 3.5. Let P and Q be non-adjacent points of an EGQ(s, t) with s even. Then 
the number of points joined to both P and Q is at most s(st + 1). If equality holds, then 
the set of points joined to P but not Q is an ovoid in the residue of P. 

PROOF. Let S be the set of points joined to P but not Q. For each block x 
containing P, Q is non-adjacent to an even number of points of x, by Lemma 2.2; so x 
meets S. By 2.1, lSI ~st + 1, with equality iff it is an ovoid. Since (s + 1)(st + 1) points 
are joined to P, the result follows. 

COROLLARY 3.6. Suppose that an EGQ(s, t), with s even, is not a one-point 
extension. Then 

v ~ (s + 2)(st + 1) + 2. 

PROOF. Counting, P, Q, the residue of P, and the set of points joined to Q but not 
P, we have 

v ~ 1 + 1 + (s + 1)(st + 1) + (st + 1). 

We do not know any examples attaining this bound. (If it is met, then the set of 
points not equal or joined to P is a clique in the point graph; so the complement of the 
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point graph has valency st + 2 and contains no triangles.) However, we can do better 
under an extra hypothesis: 

THEOREM 3.7. Suppose that an EGQ(s, t), with s even, has the property that, if a 
point P is not on a block x, then some point of x is not adjacent to P. Then 

v;;;. (s + 2)(st + t + 1). 

If equality holds, then t = 1 or t = 2. When t = 1, the point graph is the complement of a 
square lattice graph; when t = 2, it is the complement of a triangular graph. 

(The hypothesis of (3.7) holds in all known EGQs which are not one-point 
extensions. ) 

PROOF. Let P be a point and x a block with P ft x. By (2.2), P induces a pairing of 
the points on x joined to P, of which there are at most s. The number of pairs of points 
on x is !(s + 2)(s + 1); each of these lies in t further blocks, each containing s points not 
on x. On the other hand, each point Q not on x induces at most !s pairs on x, each 
pair lying in a unique block with Q. SO there are at least (s + 2)(st + t) points not on x. 
Adding the s + 2 points on x gives the result. 

When equality holds, it is easy to check that the point graph of the EGQ is strongly 
regular. Its valency is (s + 1)(st + 1); two adjacent points have s(st + 1- t) common 
neighbours, and two non-adjacent points have s(st + 1) common neighbours. This 
graph has an eigenvalue 1, so the complementary graph has least eigenvalue - 2. Now 
applying Seidel's classification of such graphs [l1J, we find that the point graph is the 
complement of a cocktail party graph, a triangular graph, a square lattice graph, or one 
of seven exceptions (the Petersen, Clebsch, Shrikhande, SchHifti, and three Chang 
graphs). 

The cocktail party graphs are trivially ruled out as their complements are 
disconnected, and the seven exceptions are excluded by ad hoc arguments. But in the 
other cases, consideration of parameters shows that t = 1 for the square lattice graphs, 
and t = 2 for the triangular graphs. 

Finally we note that, when t = 1, there is no further restriction (other than the parity 
of s), whereas for t = 2, the inequality s:s:; t2 shows that s = 2 or 4. 

EXAMPLE 3.8. An EGQ(s, 1) attaining the bound in (3.7) exists whenever s = q - 2, 
where q is a power of 2. The example with s = 2 is unique. 

CONSTRUCTION. Let Jr = PG(2, q), where q is a power of 2. Let P and Q be points 
of Jr, 1 the line PQ, C a hyperoval (a (q + 2)-arc) containing P and Q, and T the group 
of all central collineations with centre P and axis containing Q. Then ITI = q(q - 1), 
and T fixes all lines on P and is sharply 2-transitive on the lines on Q other than 1; so T 
is sharply transitive on pairs of affine points on fixed lines through P and not collinear 
with Q. 

The EGQ is then formed by taking the point set to consist of the points of Jr not on 
1, and the block set to consist of the lines of Jr not containing P or Q and the images of 
C\{P, Q} under T. 

To prove that the construction works, note that two points lie on a block iff the line 
joining them does not contain P or Q, so the point graph is the complement of a 
square lattice. Two adjacent points lie on a unique line and also in a unique translate 
of C (by the transitivity property mentioned above). Also, two blocks of the same type 
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through a point R have no further common point, whereas blocks of different types 
meet in one further point; so the residue of R is a grid. 

Note that PG(2, q) is not really required; all we need is a projective plane with an 
appropriate hyperoval and collineation group. 

UNIQUENESS. Let A be any set. For a permutation g of A, let B(g) be the graph of 
g, the set {(a, ag): a E A} of Ax A. Any subset of A x A which is a transversal for 
both rows and columns of the square grid is of this form. An EGQ(s, 1) attaining the 
bound of (3.7) consists of 2(s + 1)(s + 2) sets B(g), where IAI = s + 2. In the case s = 2, 
we have 2(s + 1)(s + 2) = (s + 2)! and so the blocks of the EGQ are all possible sets 
B(g). 

EXAMPLE 3.9. There exists a unique EGQ(4, 1) attaining the bound of (3.7); and it 
is unique. 

CONSTRUCTION. In the notation of the uniqueness of proof of (3.8), let A be the 
projective line over GF(5), and take as block set {B(g): g E PSL(2, 5)}. Since 
PSL(2, 5) x PSL(2, 5), acting on the two copies of A, is an automorphism group which 
is transitive on points, it suffices to consider the residue of (00,00). The blocks of this 
residue are the sets B(g), with g in the dihedral group of order 10. They fall into two 
families, corresponding to the cosets of the cyclic group of order 5; two blocks have 
just one further point in common if they lie in different families, and not otherwise. So 
the residue is a grid GQ(4, 1). 

This example cannot arise from any construction resembling (3.8), since there is no 
projective plane of order 6. Moreover, there are no further examples of this type. For 
the construction requires a 2-transitive permutation group, in which a 2-point stabiliser 
has order 2 and fixes just two points; and the only such groups are S4 and PSL(2, 5). 

UNIQUENESS. Any 36-point EGQ(4, 1) arises from a set S of 60 permutations of a 
6-set A such that, for any a, bE A, 

{B(g): ag = b} 

forms a 5 x 5 grid. This property is unaffected by left or right multiplication by any 
permutation; so we may assume that S contains the identity permutation 1. We have to 
show that S = PSL(2, 5). 

Step 1. For each a EA, S contains a cyclic group P(a) of order 5 fixing a, together 
with a non-trivial coset of P(a) in its normaliser. 

For, in the residue of (a, a), we have a net with four parallel classes, consisting of 
the lines of the residue together with the rows and columns not containing a of the 
6 x 6 grid. This net has deficiency 2, and so, by Bruck [3], can be completed to an 
affine plane. The uniqueness of the affine plane of order 5 sbows that the lines are two 
cosets of a cyclic group P(a) or order 5. Since 1 E S, one coset is P(a). 

Step 2. The elements of order 5 in S are all those of a group G permutation 
isomorphic to PSL(2, 5). 

For any subgroup P(a) of order 5 lies in a unique subgroup isomorphic to PSL(2, 5). 
For b =1= a, S contains a unique non-trivial element t of the normaliser of P(a) fixing b, 
and a unique non-trivial element u of the normaliser of P(b) fixing a. But S contains 
only two elements fixing a and b, and one of them is 1; so t = u. Moreover, there are 
only two subgroups of order 5 normalised by t and fixing b, and one of them is 
excluded since it contains such elements agreeing in three places with elements of P(a). 
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Thus P(a) determines P(b). In the known example, P(a) and P(b) lie in the same 
subgroup PSL(2, 5); so this holds in general. 

Step 3. For all n, the product of any n elements of order 5 in S lies in S. 
We prove this by induction on n; the claim is clear for n ~ 1. Suppose that n;;;' 2 and 

that the claim holds for products of fewer than n elements; let gl1 ... ,gn E Shave 
order 5. Since g2' .. gn E S, the set Sg;;l ... g21 satisfies the same conditions as S 
(including containing 1) and contains (g3'" gn)(g;;l ... g21) = g21; so it contains 
the same elements of order 5 as S. So gl E Sg;;l ... g21, whence gl ... gn E S. 

Now, since G is generated by its elements of order 5, we have G t;;; S, and so (by 
comparing orders) G = S. 

EXAMPLE 3.10. There is an EGQ(2,2) attaining the bound of (3.7); and it is 
unique. 

The point set consists of all 2-subsets of an 8-set; blocks are all sets of 4 pairwise 
disjoint 2-sets. The residue of a point is the analogously defined structure whose points 
are the 2-subsets of a 6-set; this is a well known representation of the GQ(2,2). 
Uniqueness is immediate from the facts that a block is a 4-coclique in the triangular 
graph T(8) and that the numbers of blocks and 4-cocliques are equal (viz. 105). 

Cameron and Hughes [7] have recently shown the non-existence of an EGQ(4, 2) 
meeting the bound in (3.7). 

Regarding further extensions, the following results are known: 

EXAMPLE 3.11. The EGQ(2, 1) of (3.8) can be extended infinitely often. 

The nth extension has as blocks all sets B(g), where IAI = n + 4. 

EXAMPLE 3.12. The EGQ(2, 2) of (3.10) can be extended infinitely often. 

The points of the nth extension are the 2-subsets of a (2n + 8)-set; the blocks are all 
sets of n + 4 pairwise disjoint 2-sets. 

4. THE CASE S ODD 

LEMMA 4.1. Let P and Q be adjacent points of an EGQ(s, t) with s odd. Then the 
number of points joined to both P and Q is at most s(st + 1). Equality implies that, if S 
is the set of points joined to P but not Q, then {Q} US is an ovoid in the residue of P. 

The proof is almost identical to that of (3.5). 

THEOREM 4.2. For any EGQ(s, t) with s odd, we have 

v;;;. (s + 2)(st + 1). 

If equality holds, then the point set is the disjoint union of s + 2 'groups' of size st + 1, 
and each block is a transversal for the 'groups'. Thus the point graph is complete 
multipartite, and the EGQ is a group divisible design with A. = t + 1. The groups not 
containing P form a partition of the residue of P into ovoids. 

PROOF. By (4.1), if P and Q are joined, there are at least st points joined to Q but 
not P, and so at least 1 + (s + 1(st + 1) + st points altogether. 
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If equality holds, then for any point P, there are st points not joined to P; and these 
points are joined to all points in the residue of P, so no two of them are joined to one 
another. Thus P together with these points form a set of st + 1 pairwise non-adjacent 
points, all having the same set of common neighbours. Thus the point graph is 
complete multipartite, with s + 2 'groups' of size st + 1. 

Finally, as no two points in any group are joined and there are s + 2 'groups', each 
block must contain exactly one point from each 'group'. 

REMARK. The existence of a partition of a GQ into ovoids is very restrictive. Of the 
known GQs with s odd, the only ones to have such a partition are those with s = 1 (the 
complete bipartite graphs), t = 1 (grids), or t = s + 2. 

EXAMPLE 4.3 (Shult [13]). For any t;:;. 1, there is a unique EGQ(I, t). It attains the 
bound of (4.2). Its blocks are all transversals to three disjoint (t + I)-sets. 

In fact, this remains true (suitably modified) with no assumptions of finiteness or 
regularity. 

EXAMPLE 4.4. An EGQ(s, 1) attaining the bound in (4.2) exists whenever s = q -1, 
where q is a power of 2. The examples with s = 1 and s = 3 are unique. 

CONSTRUCTION. Let 1r = PG(2, q), where q is a power of 2. Let P be a point of 1r, C 
a hyperoval containing P, and T the group (of order q2) of all elations with centre P. 
The points of the EGQ are the points of 1r different from P; the blocks are the lines 
not containing P, and the translates of C\{P} under T. (The 'groups' are the lines 
containing P.) The proof is similar to that for (3.8). 

UNIQUENESS. For s = 1 this is trivial (or follows from (4.3)). Consider the case s = 3. 
We show first that, if x, y, z are blocks with Ix n yl = Ix n zl = 2, then Iy n zl = 1. This 
is clear if there is a point P E X n y n z, by considering the residue of P; so suppose 
not. Then the points lying in more than one of x, y, z are in distinct groups; since there 
are only five groups, Iy n zl:s:; 1. But, if P is the point of y whose group contains no 
point of x n y or x n z, then P lies in two blocks meeting x in two points each; these 
blocks must be y and z. 

Now easy counting shows that, if Ix nyl = Ix nzl = 1, then Iy nzl = 1. So the 
blocks fall into two families, two blocks meeting in one point iff they belong to the 
same family. 

Take a new point 00, and let 'lines' be the sets G U {oo} (where G is a group) together 
with the blocks of one family. The resulting point-line structure is a projective plane of 
order 4, and the blocks of the other family (with 00 adjoined) are hyperovals. The 
uniqueness now follows from the uniqueness of PG(2, 4) and well known properties of 
its hyperovals. 

We consider further extensions. 

EXAMPLE 4.5 (Shult [13]). The EGQ(I, t) of (4.3) can be infinitely often extended. 

The point set of the nth extension consists of n + 3 disjoint (t + I)-sets; the blocks 
are all the transversals. 

THEOREM 4.6. Let CO be a connected geometry, the residues of which are EGQ(s, l)s 
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(with s odd) attaining the bound of (4.2). Let w = v + d = (s + 1)(s + 2) + d be the 
number of points of rio Then one of the following holds: 
(i) d=s+l, s==±1 (mod 6), s#:5; 
(ii) s = 3, d = 1; 
(iii) s = d2 - d - 1, d = 3 or 6. 

PROOF. Set q = s + 1, and let r be the point graph of rio We have pi! :s:; q - 1 and 
pi! ~ q2 + 1. (Here, for example, pi! denotes the number of common neighbours of 
two points at distance 2; we do not assume its constancy.) So the number of points at 
distance 2 from a point P is at most 

q(q + 1)(q - 1)/(q2 + 1) < q, 

and hence at most q - 1. 
If P, Q, R satisfy d(P, Q) = 2, d(Q, R) = 1, then P and Q have at least q2 common 

neighbours, and Q and R at least q2; so P and R have at least q2 + 1 + q2 - q2 - q > 0, 
and d(P, R):S:; 2. Thus r has diameter at most 2, and d :s:; q. 

Since d < q + 2, if P is a point and x a block with P f x, then x contains a point Q 
joined to P. In the residue of Q, all but one point of x are joined to P; and, in fact, 
for all but one point R of x\{Q}, there is a unique block containing P, Q, R, and 
another"point S of x\{Q}. This allows two possible types of antiftags (x, P): 
(i) those having a unique point of x lying on no such block; 
(ii) those for which the pairs {Q, R} such that no block contains P, Q, and R form a 
I-factor (a partition of x). 

If (x, P) has type (i), then the triples of points of x lying on a block with P form a 
Steiner triple system of order q + 1, so that q == 0 or 2 (mod 6). On the other hand, if 
(x, P) has type (ii), then there is a Steiner triple system of order q + 3-take the triples 
as above, together with those obtained by adjoining a new point ao to each pair in the 
distinguished I-factor-so that q == 0 or 4 (mod 6). 

Next, we show that d divides q. A block not containing P has at most one point not 
joined to P. So two points at distance 2 from P are at distance 2 from one another, and 
(as in (4.2» r is complete multipartite with block size d.But its restriction to the 
residue of P contains a complete multipartite graph with block size q, establishing the 
claim. 

Set q = de. For any point P, there are 

2d2e2(d2e2 + d + 2)/(de + 2) 

antiftags (x, P), of which 

are of type (i) and the remaining 

are of type (ii). Thus: 

2d3e2(de + 1)(e - 1)/(de + 2) 

d = 1 iff all antiftags are of type (ii); 

e = 1 iff all antiftags are of type (i). 

For e = 1, we get the stated congruence on s from the Steiner triple system. To show 
non-existence for s = 5, let x be a block, G a 'group', with G nx = {P}. For each point 
Q E G\{P}, the blocks containing Q and meeting x in three points define a Steiner 
triple system on x\{P}; and any three points of x\{P} form a triple in just one of the 
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five systems (as P varies over G\{P}). So the triples from a 7-set are partitioned into 
five Steiner triple systems. The impossibility of such a partition (due to Cayley) is well 
known. (Unfortunately, no other values of s can be excluded by this argument.) 

To finish, we need one further observation. We build a new incidence structure D, 
the points of which are the 'groups' (of size d) of the complete multipartite graph r , 
and whose collinear triples are the triples of points such that no representatives ae 
contained in a block of C§; in other words, a line of D has the form X U Y, where X is 
a 'group' , and Y is a 'group' (of size q) for the complete multipartite point graph of the 
residue of a point of X. Then D is a 2-(de2 + e + 1, e + 1, 1) design. 

If d = 1, then D is a projective plane of order e = q. The divisibility condition from 
the antiftag count above gives that e + 2 divides 24, whence e = q = 2, 4, 6, 10 or 22. 
The Bruck-Ryser theorem [4] excludes 6 and 22; the condition q == 0 or 4 (mod 6) 
excludes 2; and the computer result of Lam et af. [8] excludes 10, since a block of the 
EGQ is a hyperoval in the plane. 

Finally, suppose that d and e are both greater than 1, so that q == 0 (mod 6) . We 
have that de + 2 divides 8(d + 2); and, from counting blocks of D, e + 1 divides 
d(d - 1). If q == 0 (mod 4) , then de + 2 == 2 (mod 4), and so de + 2 dividies 2(d + 2). 
Since e> 1, this forces de + 2 = 2(d + 2), giving d = 2, e = 3, a contradiction. So q == 2 
(mod 4), whence q = 6 (mod 12). Now de + 2 divides 8(d + 2), and the quotient is less 
than 8. Taking each value in turn, there are only finitely many possibilities for d and e, 
and all except d = 3, e = 2 and d = 6, e = 5 are excluded by divisibility. 

EXAMPLE 4.7. Examples of the situation described in (4.6) are known for s = 1 and 
for s = 3. For s = 1, see (4.5). The 20-point EGQ(3, 1) can be extended twice . The 
second extension (due to D. R. Hughes) can be described as follows. Let P and Q be 
points of the Witt design fJlJ (the unique 5-(24,8,1) design). The points of C§ are those 
of fJlJ different from P and Q; the blocks of C§ are those of fJlJ containing exactly one of 
P and Q. 

As in the case s even, we turn now to EGQs having more than the minimum number 
of points. However, rather than establishing an inconclusive result like (3.6), we turn 
to the analogue of (3.7) . 

THEOREM 4.8. Suppose that an EGQ(s, t), with s odd and s> 1, has the property 
that, whenever a point P is not on a block x, there is more than one point of x not joined 
to P. Then 

v ~ (s + 2)(s + l)st/(s - 1) + (s + 2). 

If equality holds, then s = 3, t = 1 or 9, and the EGQ is a locally polar space of polar 
rank 2. 

PROOF. A similar argument to (3.7) gives the inequality, noting that P is joined to 
at most s - 1 points of x . 

When equality holds, it is easy to check that the point graph of the EGQ is strongly 
regular: its valency is (s + 1)(st + 1); two adjacent vertices have s(st - 2t + 1) common 
neighbours, and two non-adjacent vertices have (s -1)(st + 1) common neighbours. 
This graph has an eigenvalue of multiplicity 

(s + 1) + 2st(s + 1)(s + 2)/(st + 3)(s - 1), 
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which must be an integer; so sl + 3 divides 6(s + l)(s + 2). Since 

sl + 3 = (s + 1)1 - (I - 3), 

sl + 3 divides 6(1 - 3)(s + 2), and hence sl + 3 divides 6(21 - 3s - 9). We distinguish 
three cases: 
(i) 21> 3s + 9, sl + 3 ~ 121 -ISs - 54; 
(ii) 2t < 3s + 9, sl + 3 ~ ISs - 121 + 54; 
(iii) 21 = 3s + 9. 

In addition, from the number of points of the EGQ, we see that s -1 divides 61; 
and, from the necessary condition for a GQ, we know that s + 1 divides st(st + 1), 
I~S2, and s ~ f (if I> 1). In case (i) we have s ~ 11, and hence t ~ 121. In case (ii), 
1 ~ (ISs + 51)/(s + 12) ~ 7, and hence s ~ 43. In case (iii), s - 1 divides 9s + 27, so 
s - 1 divides 36. So there are only finitely many possible orders (s, t), and the 
divisibility conditions and inequalities eliminate aU cases but s = 3, t = 1, 3 or 9. 

Finally, by hypothesis , s = 3 inplies that, if P It x, then P is joined to exactly two 
points of x. Hence CO is a locally polar space of polar rank 2. (For more on locally polar 
spaces, see Buekenhout and Hubaut [6].) The non-existence of an EGQ(3, 3) 
satisfying our hypotheses has been shown recently by Blokhuis and Wilbrink [2]. 

EXAMPLE 4.9. EGQ(3, t)s satisfying the hypothesis and attaining the bound of (4.8) 
exist for t = 1 and for 1 = 9. (For 1 = 1, the points are the 35 partitions of {I, . . . , 8} 
into two 4-sets, the blocks the 3-subsets of {I, ... ,8}; a point and block are incident if 
the 3-set is contained in a part of the partition. For t = 9, the points and blocks are the 
vertices and 5-cliques of McLaghlin's graph [9].) Both examples are unique. (The 
uniqueness proofs, like the non-existence proof for t = 3, are given in the context of 
Zara graphs, for which we refer also to [1] and [15]. We are grateful to the referee for 
pointing out this connection. The overlap between EGQs and Zara graphs is larger 
than we have indicated, but it is not our purpose to discuss this here.) 

Both examples are known to have further extensions. In each case, there is a 
one-point extension which is a regular two-graph, and another extension with twice as 
many points whose point graph is the associated double cover of the complete graph. 
(See Seidel [10] for more information on two-graphs.) 
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