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a b s t r a c t

Vector representation is a common approach for expressing the meaning of a relational pattern. Most
previous work obtained a vector of a relational pattern based on the distribution of its context words
(e.g., arguments of the relational pattern), regarding the pattern as a single ‘word’. However, this
approach suffers from the data sparseness problem, because relational patterns are productive, i.e.,
produced by combinations of words. To address this problem, we propose a novel method for computing
the meaning of a relational pattern based on the semantic compositionality of constituent words. We
extend the Skip-grammodel (Mikolov et al., 2013) to handle semantic compositions of relational patterns
using recursive neural networks. The experimental results show the superiority of the proposed method
for modeling the meanings of relational patterns, and demonstrate the contribution of this work to the
task of relation extraction.
& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Relation extraction is the task of extracting semantic relations
between entities from corpora. This task is crucial for a number of
NLP applications such as question answering and recognizing
textual entailment. In this task, it is essential to identify the
meaning of a relational pattern (a linguistic pattern connecting
entities). Based on the distributional hypothesis (Harris, 1954),
most previous studies construct a co-occurrence matrix between
relational patterns (e.g., “X cause Y”) and entity pairs (e.g., “X:
smoking, Y: cancer”), and then they recognize relational patterns
sharing the same meaning regarding the co-occurrence distribu-
tion as a semantic vector (Mohamed et al., 2011; Min et al., 2012;
Nakashole et al., 2012). For example, we can find that the patterns
“X cause Y” and “X increase the risk of Y” have the similar meaning
because the patterns share many entity pairs (e.g., “X: smoking, Y:
cancer”). Using semantic vectors, we can map a relational pattern
such as “X cause Y” into a predefined semantic relation such as
CAUSALITY only if we can compute the similarity between the
semantic vector of the relational pattern and the prototype vector
for the relation. In addition, we can discover relation types by
clustering relational patterns based on semantic vectors.

However, this approach suffers from the data sparseness pro-
blem due to regarding a pattern as a ‘word’. Fig. 1 shows the fre-
quency and rank of relational patterns appearing in the ukWaC
Ltd. This is an open access article u

ase),
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corpus (Baroni et al., 2009). The graph confirms that the dis-
tribution of occurrences of relational patterns follows Zipf's law.
Here, we identify two critical problems. First, the quality of a
semantic vector of a relational pattern may vary, because the
frequency of occurrence of a relational pattern varies drastically.
For example, the pattern “X cause Y” can obtain sufficiently many
co-occurrence statistics (appearing more than 105 times), while
the pattern “X cause an increase in Y” cannot (appearing less than
102 times). Second, we cannot compute semantic vectors of out-of-
vocabulary patterns. We often discard less frequently occurring
relational patterns, say, occurring fewer than 102 times, even
though we have no way of computing semantic vectors for the
discarded or unseen patterns.

A natural approach to these problems is to compute the
meaning of a relational pattern based on semantic composition-
ality, e.g., computing the vector for “X increase the risk of Y” from
the constituent words (e.g, ‘increase’ and ‘risk’). This treatment can
be expected to improve the quality of semantic vectors, incor-
porating information of the constituent words into the semantic
vectors of relational patterns. For example, we can infer that the
relational pattern “X increase the risk of Y” has a meaning similar
to that of “X increase the danger of Y” only if we know that the
word ‘risk’ is similar to ‘danger’.

Recently, there has been much progress in the methods for
learning continuous vector representations of words (Bengio et al.,
2003; Collobert and Weston, 2008; Mikolov et al., 2013). Among
these methods, the Skip-gram model (Mikolov et al., 2013)
received a fair amount of attention from the NLP community,
because the model exhibits the additive compositionality
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. The frequency of relational patterns in ukWaC.
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exemplified by the famous example, vking�vmanþvwoman � vqueen.
Although we found a number of positive reports regarding addi-
tive compositionality, a linear combination of vectors is inade-
quate in some cases. For example, “X prevent the growth of Y” is
dissimilar to “X grow Y” because ‘prevent’ negates the meaning of
‘grow’, but additive compositionality cannot handle the transfor-
mation. On the other hand, since “X have access to Y” has almost
the same meaning as “X access Y”, we should not add the meaning
of ‘have’ to that of ‘access’. For handling the verbs changing or
inheriting the meaning, it is appropriate to apply a matrix because
a matrix can transform (or inherit) a vector. In fact, Socher et al.
(2012) proposed the recursive neural network (RNN) method that
can handle a word changing the meaning by using matrices, but
the method requires a certain amount of labeled data.

In this paper, we propose a novel method for modeling
semantic vectors of relational patterns based on compositionality.
More specifically, in addition to additive compositionality, we
model the verbs that change or inherit the meaning by using RNN.
We extend the Skip-gram model so that it can learn parameters for
RNNs and semantic vectors of words from unlabeled data. In
addition, we introduce l1-regularization for training parameters of
RNN to obtain a simpler model for semantic composition.

We conduct four kinds of experiments on the existing datasets,
pattern similarity, relation extraction, and word similarity. The
experimental results show that the proposed method can suc-
cessfully model semantic compositions of relational patterns,
outperforming strong baselines such as additive composition. The
experiments also demonstrate the contribution of this work to the
task of relation extraction. We confirm that the proposed method
improves not only the quality of vectors for relational patterns but
also that for words.
1 Transformational verbs are similar to light verbs and catenative verbs, but it is
hard to give a formal definition.
2. Proposed method

The proposed method bases on the Skip-gram model and RNN.
Therefore, we first review the Skip-gram model in Section 2.1 and
RNN in Section 2.2 followed by the proposed method.

2.1. Skip-gram model

Let D denote a corpus consisting of a sequence of words
w1;w2;…;wT , and V the set of words occurring in the corpus. The
Skip-gram model minimizes the objective function,

J ¼ �
X
wAD

X
cACw

log pðcjwÞ: ð1Þ

Here, Cw is the set of context words for word w. Cw ¼ fw�h;…;

w�1;wþ1;…;wþhg (h is a parameter that adjusts the width of
contexts), where w�p and wþp represent the word appearing p
words before and after, respectively, the centered word w. The
conditional probability pðcjwÞ for predicting context word c from
word w, is formalized by a log-bilinear model,

pðcjwÞ ¼ expðvw � ~vcÞP
c0 AV exp ðvw � ~vc0 Þ

: ð2Þ

Here, vwARd is the vector for word w, and ~vcARd is the vector for
context c. Training the log-bilinear model yields two kinds of
vectors v and ~v , but we use only v as semantic vectors of words
(word vectors). Because computing the denominator in Eq. (2), the
sum of the dot products for all the words in the corpus, is
intractable, Mikolov et al. (2013) proposed the negative sampling
method based on noise contrastive estimation (Gutmann and
Hyvärinen, 2012). The negative sampling method trains logistic
regression models to be able to discriminate an observed context
word c from k noise samples (pseudo-negative words z).

log pðcjwÞ � logσðvw � ~vcÞþk Ez � Pn logσð�vw � ~vzÞ
� � ð3Þ

Here, Pn is the probability distribution for sampling noise words. In
this study, we used the probability distribution of unigrams raised
to the 3/4 power (Mikolov et al., 2013).

2.2. Recursive neural network (RNN)

Recursive neural network computes the semantic vectors of
phrases based on compositionality (Socher et al., 2011b). Using a
weight matrix MARd�2d and an activation function g (e.g., tanh),
RNN computes the semantic vector of the phrase consisting of two
words wa and wb,

g M
vwa

vwb

" # !
: ð4Þ

The vector computed by Eq. (4) is expected to represent the
meaning of the phrase based on semantic compositionality. Socher
et al. (2011b) apply this function recursively inside a binarized
parse tree, and compose the semantic vectors of phrases and
sentences. Although the study modeled only one compositional
function with a single matrix M, Socher et al. (2012) extended RNN
to matrix-vector RNN (MV-RNN) in order to configure a compo-
sitional function for each word, assigning a word with both a
vector and a matrix.

2.3. Semantic composition for relational patterns

We extend the Skip-gram model to enable it to take into
account the semantic composition for relational patterns. We
provide an overview of the proposed method using the example in
Fig. 2. Here, we have a sequence of lemmatized words “yeast help
reduce the serious risk of infection”. As explained in Section 1, it is
inefficient to regard the relational pattern “X help reduce the
serious risk of Y” as a single ‘word’ (upper). Instead, we compute
the semantic vector from the constituent words of the relational
pattern, e.g., ‘help’, ‘reduce’, ‘serious’, and ‘risk’. Simultaneously,
we would like to handle cases in which words have a major
influence on changing the meaning of the entire phrase.

Inspired by Socher et al. (2012), we represent the words
inheriting or changing the meaning with matrices in RNN. In this
paper, we assume that verbs appearing frequently in relational
patterns may inherit or change the meaning computed by other
constituent words. We call these verbs transformational verbs.1 In
the example in Fig. 2, we may think that ‘reduce’ changes the
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Fig. 2. Overview of the proposed method. The original Skip-gram model is illustrated on the upper level.
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meaning of ‘risk’ and ‘help’ inherits the meaning of “reduce the
serious risk of”; and the change and inheritance are represented
by matrices.

To compute the semantic vector for the relational pattern “X
help reduce the serious risk of Y”, the proposed method first
computes the semantic vector for “the serious risk of”. In this
study, we assume that additive compositionality for words except
for transformational verbs. For this reason, the proposed method
obtains the semantic vector for “the serious risk of” by computing
the mean of the semantic vectors of ‘serious’ and ‘risk’. Next, the
proposed method multiplies the semantic vector for “the serious
risk of” and the matrix for ‘reduce’, and then multiplies the com-
puted vector and the matrix for ‘help’. To learn the parameters in
matrices and vectors, we incorporate the RNN framework into the
Skip-gram model. This is not only because the Skip-gram model
achieved successes in training high-quality word vectors from a
large corpus, but also because the online training algorithm (word-
by-word) is suitable for incorporating matrix-vector compositions
used in RNN.

Meanwhile, giving a formal definition of transformational verbs
is arguable. In this study, we make three assumptions for identi-
fying transformational verbs:

1. Verbs can behave as transformational verbs.
2. Whether a verb is a transformational verb or not is determined

by the statistics of its occurrences in relational patterns.
3. Other words, e.g, nouns, adjectives, adverbs, and verbs not

qualified to be transformational verbs express meanings of their
own. We call these words content words.

Although these assumptions are rather provisional, we would like
to explore the possibility of semantic compositionality for rela-
tional patterns.

We assume that the relational pattern P is composed of
transformational verbs p1;…;pn, followed by content words
pnþ1;…; pm. For example, the lemmatized relational pattern “help
reduce the serious risk of” is composed of the transformational
verbs ‘help’ and ‘reduce’ as well as ‘the’, ‘serious’, ‘risk’, ‘of’, as
shown in Fig. 2. Removing non-content words such as determiners
and prepositions, we obtain content words ‘serious’ and ‘risk’.
Accordingly, the relational pattern “help reduce the serious risk of”
is represented by P ¼ ðp1; p2; p3; p4Þ ¼ ðhelp; reduce; serious; riskÞ.
The total number of words in P is m¼ 4, and the boundary
between the transformational verbs and content words is n¼ 2.
Although formal definitions of relational pattern, transformational
verbs, and content words are open questions, we mine them from
the corpus (refer to Section 3.1).

As previously mentioned, in this study, we assume that addi-
tive compositionality for content words in a relational pattern.
That is to say, the meaning of content words pnþ1;…;pm is com-
puted from the mean of the semantic vectors corresponding to the
content words,

vpðnþ 1Þ þvpðnþ 2Þ þ…vpm
m�n

: ð5Þ

In contrast, we assume that each transformational verb pi inherits
or transforms a given semantic vector using the mapping function,
f pi : R

d-Rd. Hence, the semantic vector vP for the relational pat-
tern P is computed as,

vP ¼ f p1 f p2 …f pn tanh
vpðnþ 1Þ þvpðnþ 2Þ þ…vpm

m�n

� �� �� �� �
: ð6Þ

We design the mapping function f pi using RNN (Socher et al.,
2011b). More specifically, the mapping function for the transfor-
mational verb pi is modeled using a matrix WiARd�d and an
activation function.

f pi ðvÞ ¼ tanhðWpivÞ ð7Þ

In short, the proposed method computes the meaning of con-
tent words of a relational pattern as the vector mean, and inherits/
transforms the meaning using matrix-vector products of RNN.

2.4. Training

The proposed method is identical to the Skip-gram model
when a context window involves no relational pattern. In other
words, we train vw and ~vc in the same manner as the original Skip-
gram model with negative sampling. We summarize the differ-
ences from the original Skip-gram model:

1. We treat a relational pattern as a ‘word’, but its semantic vector
is computed using Formula 6. We update the vectors for content
words and matrices for transformational verbs to enable the
composed vector of the relational pattern P to predict context
words c well.

2. In addition to word vectors v and ~v , we train semantic matrices
W for the transformational verbs. We use backpropagation for
updating vectors and matrices.

3. We do not use Formula 6 for computing a context vector of a
relational pattern. In other words, when the negative sampling
picks a relational pattern for a centered word, we use a context
vector ~v assigned for the pattern.

4. We apply the activation function tanh even for word vectors v.
This keeps the value range of semantic vectors consistent
between composed vectors and word vectors. Each dimension
of a semantic vector of a relational pattern is bound to the range
of ð�1;1Þ, because Formula 6 uses tanh as an activation
function.

Meanwhile, some transformational verbs (e.g., light verbs) may
not contribute to meanings. For example, the word ‘take’ in the
pattern “take care of” does not have a strong influence on the
meaning of the pattern. Thus, we explore the use of l1-regular-
ization to encourage diagonal matrices. We modify the objective
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function (Eq. (1)) into:

J0 ¼ �
X
wAD

X
cACw

log pðcjwÞþλ
X

WAW

rðWÞ: ð8Þ

Here, W represents the set of all matrices for the transformational
verbs. The function r(W) computes the l1-norm from off-diagonal
elements of W,

rðWÞ ¼
X
ia j

jWi;j j : ð9Þ
6 https://code.google.com/p/word2vec/
7 http://u.cs.biu.ac.il/�nlp/resources/downloads/annotation-of-rule-

applications/
3. Experiments

3.1. Corpora and training settings

We used ukWaC2 as the corpus for training the semantic vec-
tors and matrices. This corpus includes the text of Web pages
crawled from the .uk domain, and contains 2 billion words. This
corpus also includes parts-of-speech tags and lemmas annotated
by the TreeTagger.3 In our experiment, we lowercased words and
used the lemmas except for past participle forms of verbs (we used
their surface forms).4 Furthermore, tokens consisting of a single
character (e.g., ‘a’ and ‘b’), determiners (e.g., ‘the’), interrogative
words (e.g., ‘what’), and prepositions were removed as stop words.

We applied Reverb (Fader et al., 2011) to the ukWaC corpus to
extract relational pattern candidates. To remove unuseful rela-
tional patterns, we followed the filtering rules that are compatible
with the ones used in the publicly available extraction result5: the
confidence score of a pattern must be no less than 0.9 at least once
in the corpus, a relational pattern must not contain a temporal
expression (e.g., ‘yesterday’ and ‘tonight’), and the frequency of
occurrence of a pattern must be no less than 5. Additionally,
throughout the experiments, we removed relational patterns that
appear in the evaluation data in order to examine the performance
of the proposed method in composing semantic vectors of unseen
relational patterns. After the above preprocessing, we obtained
55,885 relational patterns.

Verbs appearing in five or more kinds of relational patterns
were identified as transformational verbs. We removed the verb
‘be’ in this experiment. Using the criterion, we identified 697 verbs
as transformational verbs in relational patterns. If a relational
pattern consists only of transformational verbs, we regarded the
last word as a content word. While there may be some room for
consideration regarding the definition of transformational verbs
and content words, we used these criteria in this experiment.

When training the proposed method, we removed words and
relational patterns appearing less than 10 times. As a result, we
obtained approximately 0.7 million words (including relational
patterns) as targets for training semantic vectors. When a trans-
formational verb appears outside of a relational pattern (e.g.,
‘reduce’), we update a vector for the word in the same way as for
an ordinary word.

For comparing with the existing methods, we used the same
hyper-parameters as the ones presented in the papers (Socher
et al., 2012; Mikolov et al., 2013). We set the number of dimen-
sions d¼ 50, following Socher et al. (2012). For the width of con-
text window h, number of negative samples k, and subsampling
parameter in the Skip-gram, we used the same hyper-parameters
as in Mikolov et al. (2013): h¼ 5, k¼ 5, and subsampling with
10�5. We initialize word vectors v and context vectors ~v using the
2 http://wacky.sslmit.unibo.it/doku.php?id¼corpora
3 http://www.cis.uni-muenchen.de/�schmid/tools/TreeTagger/
4 We use past particle forms to express the passive/active voice.
5 http://reverb.cs.washington.edu/
result from the original Skip-gram model (Mikolov et al., 2013).
Elements in semantic matrices W are initialized with random
values sampled from a Gaussian distribution with mean 0 and
variance 0.1. We learn parameters (v, ~v , and W) by the back-
propagation with the stochastic gradient descent (SGD) method.
We control the learning rate α for an instance by using the formula
implemented in word2vec6:

α¼ α0n 1�the number of processed sentences
the number of total sentencesþ1

� �
: ð10Þ

In Eq. (10), α0 represents the initial learning rate (0.025 in this
experiments). Eq. (10) decreases the learning rate steadily
according to the number of processed sentences.

3.2. Evaluation datasets

We conducted three experiments, pattern similarity, relation
extraction, and word similarity.

Pattern similarity: We would like to examine whether our
proposed method can successfully compose semantic vectors of
relational patterns. The performance of a method can be measured
by the correlation between similarity judgments of humans for
relational patterns and the similarities of the corresponding
semantic vectors computed by the method. However, unfortu-
nately, no existing dataset provides similarity judgements
between relational patterns. Instead, we adapted the dataset
developed for semantic inferences between relational patterns
(Zeichner et al., 2012).7 Using relational patterns extracted by
Reverb, this dataset labels whether a pair of relational patterns
(e.g., ‘X prevent Y’ and “X reduce the risk of Y”) is meaningful8 or
not. A meaningful pair is annotated with a label indicating whe-
ther the pair has an inference relation (entailment). The dataset
consists of 6567 pairs overall.

After discarding pairs labeled meaningless and cases where the
set of arguments is reversed between paired patterns such as “X
contain embedded Y” and “Y be embedded within X”, we extracted
5409 pairs for evaluation. The evaluation dataset includes 2447
pairs with inference relation (similar), 2962 pairs without infer-
ence relation (dissimilar). This dataset includes only binary deci-
sions (similar or dissimilar) for relational patterns, whereas simi-
larity values computed by a method range in [0, 1.0]. Thus, we
regard pattern pairs having similarity values greater than a
threshold as ‘similar’, and the rest as ‘dissimilar’. In this way, we
can measure the precision and recall of a method for detecting
similar relational patterns with the given threshold. By changing
the threshold from 0.0 to 1.0, we can draw a precision-recall curve
for each method.

Relation extraction: To examine the contribution of this work to
the relation extraction task, we used the SemEval-2010 Task
8 dataset (Hendrickx et al., 2010). The task is to identify the rela-
tionship of a given entity pair. The dataset consists of 10,717
relation instances (8000 training and 2717 test instances), each of
which is annotated with a relation label. The data set has 19
candidate relation labels, nine directed relationships (e.g.,
CAUSE-EFFECT) and one undirected relationship OTHER. For example,
the entity pair ‘burst’ and ‘pressure’ in the sentence “The burst has
8 When an annotator judges a pair, the slots of relational patterns are filled
with the same subject and object. If the annotator can easily understand the both of
expressions, the pair is meaningful. Take the pair “X belong to Y” and “X be property
of Y” as an example. If the pair is filled with “Such people” and “the left”, it is
unrealistic to understand the meaning of “Such people be property of the left”. In
this case, the pair is annotated with meaningless.

http://wacky.sslmit.unibo.it/doku.php?id=corpora
http://wacky.sslmit.unibo.it/doku.php?id=corpora
http://wacky.sslmit.unibo.it/doku.php?id=corpora
http://wacky.sslmit.unibo.it/doku.php?id=corpora
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
http://reverb.cs.washington.edu/
https://code.google.com/p/word2vec/
http://u.cs.biu.ac.il/~nlp/resources/downloads/annotation-of-rule-applications/
http://u.cs.biu.ac.il/~nlp/resources/downloads/annotation-of-rule-applications/
http://u.cs.biu.ac.il/~nlp/resources/downloads/annotation-of-rule-applications/
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been caused by water hammer pressure” is labeled as CAUSE-EFFECT
(e1; e2).

Word similarity: We also evaluated the word vectors to verify
that the proposed method does not degrade the quality of word
vectors. We used a variety of word similarity datasets: WordSim-
353 (Finkelstein et al., 2001), MC (Miller and Charles, 1991), RG
(Rubenstein and Goodenough, 1965), and SCWS (Huang et al.,
2012). For each dataset, the numbers of word pairs are 353, 30, 65,
and 2003. For evaluation, we used all word pairs included in the
datasets after lowercasing and lemmatizing similarly to the
training procedure. We calculate Spearman's rank correlation
coefficients between human judgments and cosine similarity
values of the semantic vectors computed by each method.

3.3. Results

Pattern similarity: Fig. 3 shows precision-recall curves of the
proposed method and baseline methods on the pattern-similarity
task. The red locus shows the performance of the proposed
method. In this figure, we set the parameter for l1-regularization
to 106, because the parameter achieved the best performance
(Table 1). The blue locus corresponds to the Skip-gram model, in
which relational patterns are regarded as single words. This
treatment is identical to the procedure for training phrase vectors
in Mikolov et al. (2013). The green locus shows the performance of
additive compositions of word vectors trained by the Skip-gram
model. In this method, we trained word vectors as usual (without
Fig. 3. Precision-recall curve of each method on the pattern-similarity task.

Table 1
Area under the curve (AUC) of each method on the pattern-similarity task. This
table also reports the sparsity (the ratio of zero-elements) of matrices with dif-
ferent parameters for l1-regularization. If a method outperforms the Skip-gram
(additive) with 95% statistical significance ðpo0:05Þ, we put a on the value of AUC.

Method AUC Sparsity

Skip-gram (phrase) 0.557 –

Skip-gram (additive) 0.568 –

Identity matrix 0.552 –

Every verb has a matrix 0.566 –

Every word has a matrix 0.561 –

Proposed (λ¼ 0) 0.570 0.0%
Proposed (λ¼ 1) 0.570 0.0%
Proposed (λ¼ 10) 0.570 0.7%

Proposed (λ¼ 102) 0.573 14.4%

Proposed (λ¼ 103) 0.574a 54.4%

Proposed (λ¼ 104) 0.575a 88.2%

Proposedðλ¼ 105Þ 0.576a 96.6%

Proposedðλ¼ 106Þ 0.576a 97.8%

Proposed (λ¼ 107) 0.575a 98.0%
considering relational patterns), and computed vectors of rela-
tional patterns as the mean of vectors of constituent words. This
treatment is the popular and strong baseline method to compute a
phrase vector from its constituent words (Muraoka et al., 2014).
The light blue locus reports the performance when we fix matrices
for transformational verbs as identity matrices: this corresponds
to ignoring transformational verbs in a relational pattern. The
yellow and purple loci correspond to assigning every verb (yellow)
and every word (purple), respectively, with a matrix (rather than a
vector). In these settings, we use a vector representation for a
content word that are located at the end of relational patterns. In
other words, these settings are more flexible than the recom-
mended setting (red) for composing semantic vectors, having
more free parameters to train the models.

Fig. 3 shows that the proposed method performed better than
all baseline methods. It is noteworthy that the proposed method
performed better than the Skip-gram model with additive com-
positionality in green, which has been regarded as a strong base-
line for semantic composition. This result indicates that repre-
senting transformational verbs with matrices in RNN is more
suitable than additive composition for computing the semantic
vectors of relational patterns.

The proposed method outperformed the setting with trans-
formational verbs ignored (light blue). This result indicates that
the treatment for transformational verbs is important for com-
posing semantic vectors of relational patterns. In fact, the pro-
posed method successfully computes semantic vectors of rela-
tional patterns with inhibitory verbs: for example, the proposed
method could predict the similarity between “prevent the growth
of” and ‘inhibit’ while the use of identity matrices cannot.

The comparison among the proposed method (red), repre-
senting every verb with a matrix (yellow), and representing every
word with a matrix (purple) demonstrates the effectiveness of
identifying transformational verbs in advance. This result suggests
that transformational verbs (verbs appearing frequently in rela-
tional patterns) can inherit/change the meaning and that it is
important to incorporate their behaviors in composing semantic
vectors of relational patterns.

Training semantic vectors of relational patterns by regarding a
relation pattern as a single word (blue) performed worse than
most of other methods in this experiment. This suggests the dif-
ficulty in learning vector representations of relational patterns
only with the distributional hypothesis. The incorporation of the
distributional hypothesis with the semantic compositionality is
the key to success in modeling semantic vectors of relational
patterns.

Table 1 shows the area under the curve (AUC) of each method
appearing in Fig. 3. In addition to AUC values, we report the
sparsity (the percentage of zero elements in matrices), changing
the parameter for l1-regularization from 0 to 107 in powers of ten.9

Again, we can reconfirm from this table that the proposed method
outperforms the baseline methods. Moreover, the methods with
λ¼ 103;104;105;106, and 107 outperform the strong baseline,
Skip-gram (additive) with 95% statistical significance (po0:05)
measured by paired bootstrap resampling (Koehn, 2004). The
proposed method obtained the best performance (0.576) with over
95% sparsity (λ¼ 105 and 106). The results indicate that the use of
l1-regularization for off-diagonal elements of matrices improves
the performance even though the obtained model becomes com-
pact. However, the model with λ¼ 107 was too sparse to achieve
the best performance.
9 We stopped increasing λ to 107 because the AUC decreased whenwe changed
λ from 106 to 107.



Table 3
Spearman's rank correlation coefficients on the word similarity tasks.

Method WS353 MC RG SCWS

Baseline (Skip-gram without relational patterns) 63.0 69.5 74.2 60.3

Proposed (λ¼ 106) 68.4 73.7 75.4 61.5

Table 2
Comparison of using the proposed method with previously published results.

Method Features F1

SVM Basic features 76.0
(Use semantic vectors Basic features, semantic vectors 79.0
obtained by the proposed

method)
Basic features, WordNet, NE 79.9

Basic features, semantic vectors, 82.1
WordNet, NE

SVM (Best in SemEval 2010) POS, prefixes, morphological,
WordNet,

(Rink and Harabagiu, 2010) dependency parse, Levin classed,
ProBank,

82.2

FrameNet, NomLex-Plus, Google
n-gram,
paraphrases,
TextRunner

RNN – 74.8
(Socher et al., 2011b) WordNet, NE 77.6
MV-RNN - 79.1
(Socher et al., 2012) WordNet, NE 82.4
CNN (Zeng et al., 2014) WordNet 82.7
FCM - 80.6
(Yu et al., 2014) Dependency parse, NE 83.0
CR-CNN (dos Santos et al., 2015) – 84.1
RelEmb - 82.8
(Hashimoto et al., 2015) Dependency parse, WordNet, NE 83.5
depLCNNþNS – 84.0
(Xu et al., 2015) WordNet 85.6
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Table 1 also shows that representing every verb with a matrix
or representing every word with a matrix performed worse than
Skip-gram (additive). This also suggests that it is essential to dis-
tinguish transformational verbs from content words. In addition,
representing content words with matrices gave too much flex-
ibility for this task.

Relation extraction: Table 2 shows the performance of each
method on the relation extraction task. The top 4 rows represent
the results of the baseline method and improvements by using
semantic vectors computed by the proposed method. To predict
whether a given entity pair has a specific relation, we built one-
versus-one classifiers modeled by SVM with radial basis function
(RBF) kernel. We defined basic features for the classifiers: parts-of-
speech tags, surface forms, and lemmas of words appearing
between an entity pair, and lemmas of the words in the entity pair.
In addition, we included the value of each dimension of the
semantic vectors of a relational pattern and entity pairs as features
in order to examine the effect of the semantic vectors obtained by
the proposed method with (λ¼ 106). Moreover, we employed
named entity information and WordNet super sense classes pre-
dicted by a super sense tagger (Ciaramita and Altun, 2006). We
used libsvm10 for training SVM models. For hyper-parameters, we
determined C ¼ 8:0 and γ ¼ 0:03125 based on 5-fold cross-
validation.

Table 2 shows that the use of semantic vectors of the proposed
method boosted the performance from 76.0 to 79.0 F1 scores.
Moreover, even with the external knowledge (WordNet
super sense), semantic vectors computed by the proposed method
improved the performance from 79.9 to 82.1. This demonstrates
the usefulness of the semantic vectors computed by the proposed
method for the task of relation extraction.

For comparison, Table 2 includes the performance reported in
the previous work. Table 2 shows that using our semantic vectors
exhibited performance closed to the best method in the SemEval-
2010 task 8 competition (Rink and Harabagiu, 2010). The proposed
method outperformed RNN (Socher et al., 2011b) by a large
10 https://www.csie.ntu.edu.tw/�cjlin/libsvm/
margin. Moreover, the proposed method achieved a comparable
performance with MV-RNN (Socher et al., 2012).

However, the best result obtained by the proposed method was
lower than that of the state-of-the-art methods. These methods
specially train vector representations for words such that it pre-
dicts predefined relation labels in the SemEval-2010 Task 8 data-
set. In other words, they fine-tuned vector representations for this
task. In fact, Yu et al. (2014) reported that fine-tuning improved
the performance. In addition, Hashimoto et al. (2015) indicated
that they achieved a better performance when they refined vector
representations for initialization. Therefore, we may obtain a fur-
ther improvement if we tune matrices and vectors in our model
specialized for the SemEval-2010 Task 8. In contrast, our focus is to
model semantic composition of relational patterns in a generic
and unsupervised fashion. We will explore the possibility of fine-
tuning in future work.

Word similarity: Table 3 reports the results for word similarity
on four different datasets. In this task, we compared the proposed
method with the Skip-gram model ignoring relational patterns.
Table 3 shows that the proposed method yielded the better per-
formance than the Skip-gram model without relational patterns.
In other words, the result indicates that our approach also
improved the quality of the semantic vectors of words.

3.4. Visualizing the matrices

Fig. 4 shows a visualization of matrices for the words ‘have’ and
‘prevent’ learned by the proposed method with different para-
meters for l1-regularization ðλ¼ 0;1;103, and 106Þ. The values of
the diagonal elements in the matrix for ‘have’ are high while the
off-diagonal elements are close to zero. In other words, the matrix
for ‘have’ is close to the identity matrix, implying that the word
‘have’ inherits the meaning from content words. The proposed
method learned this behavior because a number of relational
patterns (e.g., “have access to” and “have an impact on”) include
the word ‘have’, but their contexts are similar to those for content
words (e.g., ‘access’ and ‘impact’). We could observe the similar
tendency for verbs such as ‘make’ and ‘take’.

In contrast, the matrix for ‘prevent’ is entirely different from
that for ‘have’. With the small l1-regularization parameters
ðλ¼ 0 and 1Þ, the matrix for ‘prevent’ does not have an obvious
tendency. With the large l1-regularization parameters (λ¼ 103 and
106), the matrix is close to the diagonal matrix. However, the
matrix is different from the identity matrix: each diagonal element
have a non-uniform value. This is probably because the word
‘prevent’ tends to negate the meaning of content words, as in
“prevent the growth of”. Thus, the proposed method found a
matrix so that it does not pass the meaning of the content word
(e.g., ‘growth’) directly to that of the whole.
4. Related work

Relation extraction: A number of previous studies extracted
semantic relations between entities using linguistic patterns
(Pantel and Pennacchiotti, 2006; Rosenfeld and Feldman, 2007;
Carlson et al., 2010; Min et al., 2012; Nakashole et al., 2012). These
studies mostly explored methods for obtaining relation instances

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/


Fig. 4. Examples of the matrices learned using the proposed method (λ¼ 0;1;103, and 106).
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with high-precision e.g., using pointwise mutual information
between entity pairs and patterns (Pantel and Pennacchiotti,
2006), checking types of arguments of relational patterns
(Rosenfeld and Feldman, 2007), and extracting entities and rela-
tion instances simultaneously (Carlson et al., 2010). On the other
hand, Min et al. (2012) improved recall by incorporating various
knowledge sources into the extracting algorithm. However, these
approaches suffer from the data sparseness problem described in
Section 1.

Nakashole et al. (2012) presented PATTY, a large resource for
relational patterns. PATTY has an automatic method for inducing
rules for generalizing relational patterns with part-of-speech tags,
wildcards, and argument types. For example, PATTY can generalize
the relational pattern “singer sings her song” into “singer sings
[prp] song”, where [prp] represents a pronoun. This approach
could reduce the data sparseness problem to some extent, but
could not model the compositionality of relational patterns, e.g.,
similarity between words in two relational patterns.

Semantic composition: Mitchell and Lapata (2010) demon-
strated the ability of computing the meaning of a phrase from
constituent words. They explored various functions for composing
phrase vectors, e.g., additive and multiplicative compositions.
Mikolov et al. (2013) proposed the Skip-gram model, which was
inspired by neural language models (Bengio et al., 2003; Collobert
and Weston, 2008). The Skip-gram model exhibits additive com-
positionality. Levy and Goldberg (2014a) and Levy and Goldberg
(2014b) provided theoretical analyses of additive compositionality
of the Skip-gram model with negative sampling. Pennington et al.
(2014) demonstrated that semantic composition could be modeled
also by a co-occurrence matrix between words and their context
words. Although these studies achieved good performance in
additive compositionality, they cannot model the case in which a
word such as ‘prevent’ or ‘inhibit’ changes the meaning of an
entire phrase, e.g., “prevent the growth of.” Baroni and Zamparelli
(2010) suggested representing modifiers with matrices rather than
with vectors.

MV-RNN (Socher et al., 2012), which is the extension method of
RNN (Socher et al., 2011b), can handle a word changing the
meaning but they requires supervision data for specific tasks (e.g.,
sentiment analysis). In addition, those authors did not determine
whether the vector representation of internal nodes of a tree really
exhibits the meanings of the phrases. Muraoka et al. (2014) pro-
posed a method that reduces MV-RNN parameters. The method
uses a single matrix for composing a phrase with the same part-of-
speech pattern (e.g., adj–noun). However, they did not evaluate
the method for composing a phrase vector from three or more
words. Socher et al. (2011a) proposed a method to learn word
vectors and a matrix from an unlabeled corpus using an auto-
encoder but this approach uses only a single matrix for vector
composition. In other words, the method cannot take modification
of each word into account. Hashimoto et al. (2014) proposed a
method for training weights for linear combinations of word
vectors. Although their method jointly learns the vector repre-
sentation and weighting factors of words from an unlabeled cor-
pus, they cannot model changing aspects of words without the
capability of linear transformations.
5. Conclusion

In this paper, we proposed a novel method for computing the
meanings of relational patterns based on semantic composition-
ality. We extended the Skip-gram model to incorporate semantic
compositions modeled by RNNs. In addition, we introduced
l1-regularization to obtain a simpler model. The experimental
results showed that the proposed method can successfully model
semantic compositions of relational patterns, outperforming
strong baselines such as additive compositionality. The experi-
ments also demonstrated the contribution of this work to the task
of relation extraction. We confirmed that the proposed method
could improve not only the quality of vectors for relational pat-
terns but also that for words.

In this study, we defined transformational verbs heuristically.
Even though this study could demonstrate superiority in handling
transformational verbs, we need to explore a better approach for
determining whether a word should have a vector or matrix.
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