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Abstract

We study an obstruction to splitting a finitely generated gréugs an amalgamated free product
or HNN extension over a given subgro&pand show that when the obstruction is “small"splits
over a related subgroup. Applications are given which generalise decomposition theorems from low
dimensional topologya 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

A group G is said to split over a subgroug if it can be decomposed as a non-trivial
amalgamated free produdtxy B or an HNN extensiomxg . There is an integer valued
obstruction to splittingG over a given subgroupi, studied by Scott in [13], denoted
e(G, H). If G does split oveH thene(G, H) > 2, however the converse is known to be
false. Nonetheless in many situations whet€, H) > 2 it is possible to show thaf or
some finite index subgroup @ splits over a subgroup related . Examples of this
phenomenon include Stallings’ characterisation of groups with more than one end [15],
and the algebraic torus theorem [4]. In the former one starts with an arbitrary group
for whiche(G, 1) > 2 and concludes that splits over some finite subgroup. In the latter
theorem one starts with an infinite cyclic subgrabdp< G for which e(G, H) > 2 and
concludes that eithef is an extension of a finite group by a triangle group or splits over
some (possibly different) cyclic subgroup.

Whene (G, H) > 2 there is another obstruction to splittigdgover H, which we will call
the singularity obstruction. It is not uniquely defined but depends on a choice of “proper
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H-almost invariant” subset C G, (see below) so we will denote it b§4 (G, H). The
singularity obstructionS4 (G, H) consists of a union of double cosefsF H for some
subsetF C G, and if it vanishes for some choice afwe obtain a splitting oG over H.

Scott’s original approach to the problem of producing a splitting from a Haik G
with e(G, H) > 2 included the method of passing to a finite index subgi@up: G which
contains the subgroufi and avoids all the elements 6§ (G, H). The subseG1 N A can
then be shown to be a propAralmost invariant subset @, with singularity obstruction
given byG1 NS4 (G, H). By construction this is empty 961 splits overH .

In this paper we take a somewhat different approach. Instead of trying to make the
singularity obstruction empty we show thatSf (G, H) is small in one of two technical
senses then we obtain a splitting @fover a subgroup related . This result is more
closely related to Stallings’ theorem [15] and the algebraic torus theorem [4], and potential
applications include generalisations of those results.

In order to define the singularity obstruction we recall the definition ofHaalmost
invariant set:

Let G be a group, and a subgroup of5. A properH -almost invariant subset @ is
a subse#A satisfying the following conditions:

(a) H is the left stabiliser ofd.

(b) A is H-almost invariant, i.e., for any elemegte G the symmetric difference

A + Ag is H-finite (contained in finitely many right cosets #f).

(c) Ais H-proper,i.e., neitheA norG \ A is H-finite.

According to Scott [13] ifG is a finitely generated group arfd is a subgroup ofz
then the positive intege(G, H) is at least 2 if and only if5 contains a propeH -almost
invariant set. According to Dunwoody [{] splits overH if and only if it contains a proper
H-almost invariant seft which also satisfies:

(d) For any elemeng € G, at least one of the following intersections is empty:

ANgA,ANgA*, A*NgA, A*NgA*. (Here* denotes the complement of a subset.)

We can now define the singularity obstructién (G, H) given a properH -almost
invariant subsef. It will consist of precisely those elements@ffor which condition (d)
fails.

Definition 1. Let H be a subgroup of a group and letA be a subset off satisfying con-
ditions (a)—(c). Define the singularity (or splitting) obstruction of the trjgle H, A) to be
the subseS4(G, H) ={g € G | gANA£B, gA*NA#£D, gANA* £, gA* N A* £ ().

Clearly S4 (G, H) = ¢ if and only if A satisfies condition (d), so the vanishing of the
obstruction leads to a splitting @f over H. To see thatS,4 (G, H) is of the formH FH
for some subsek’ ¢ G we note that the singularity obstruction is invariant under left and
right multiplication by elements of the left stabiliser &f

To a geometric group theorist these definitions seem a little mysterious, however there
is now an elegant geometric interpretation of them, given by Sageev in his thesis [11]. To
understand it we recall the geometric interpretation of a group splitting given by Bass and
Serre [16]:
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A finitely generated grou splits over the subgrou@ if and only if G acts on a
simplicial treeT with no global fixed points, with a single edge orbit and edge stabitiser

Starting with a subgroup/ < G and a propetH -almost invariant subsed satisfying
condition (d) Dunwoody showed directly how to construct a tree on widichcts as
above, and thus recovered a splitting@fover H. In his thesis Sageev showed how to
generalise Dunwoody'’s construction starting with any prdpeslmost invariant subset.

In place of a tree Sageev constructed a contractible cubical comptaxwhichG acts

and which satisfies Gromov’s CAT(0) condition of non-positive curvature. In Dunwoody'’s
theory H stabilises an edge of the tree, and in Sageev’s construction there is a natural
family of codimension-1 “hyperplanes” stabilised by the conjugate& ofThese are in
bijective correspondence with the translates of the unordered pait*} by the action

of G and the subgroupl stabilises the hyperplane correspondingAg A*}. From now

on we will usually fail to distinguish between the hyperplanes in the cube complex and
the pairs{gA, gA*}. SinceG acts transitively on the s¢t A | g € G} there is one orbit of
hyperplanes, and Sageev showed that the action satisfied a non-triviality condition, which,
as Gerasimov has shown [5], is equivalent to the statement that there is no global fixed
pointin X.

Maximal cubes of dimensiom in Sageev’s construction correspond to subsets
{g1,..., g} in G such that the hyperplanég A, g; A*) all cross one another transversely,
where two hyperplane&1A, g1A*) and (g24, g2A*) cross one another transversely if
and only if the four subsetg1A N g2A, g1A N g2A*, g1A™ N g2A, g1A* N g2 A* are all
non-empty. It follows that the cube complex has dimension 1, and is therefore a tree, if
and only if the singularity obstruction vanishes. We obtain a splitting of the group when
Sa(G, H) = ¢ by applying the Bass—Serre theorem to this tree.

The task of finding a splitting off now becomes the task of finding a subgrddip< G
and a propeH -almost invariant subset such thatS4 (G, H) is empty.

In this paper we will start with the assumption that we have a finitely generated group
G, a subgrougH such thak(G, H) > 2, and a subset C G satisfying conditions (a)—(c)
with non-empty splitting obstructiofia (G, H) = H F H. We will then show how to obtain
a splitting of G given the assumption th&t F H is “small”:

Theorem A. Let G be a finitely generated group with a subgroup H and a subset A
satisfying conditions (a)—(c) with non-empty splitting obstruction H F H for some subset
F in G. If the subgroup (H F H) is a proper subgroup of G then G splits over a subgroup
of (HFH).

To state the second main theorem we need two definitions. Two subgkoapd K are
said to be commensurable if the intersecti®dm K has finite index in bottH andK . The
commensurator of a subgroup < G is the subgroup consisting of those elementsG
such thatd andH# are commensurable.

Theorem B. Let G be a finitely generated group with a finitely generated subgroup H
and a subset A satisfying conditions (a)—(c) with non-empty splitting obstruction H F H
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for some finite subset F in G. If the subgroup (H F H) lies in the commensurator of H in
G then G splits over a subgroup commensurable with H.

The subgrougH F H) is a priori infinitely generated even whd is finitely generated
andF is finite, however whert is non-empty we will show that it is equal to the subgroup
(H, F). The requirement thall should be finite in Theorem B is no restriction, since for
any finitely generated subgroup the splitting obstruction can always be expressed as a
finite union of double cosets (we give an outline argument for this later).

The proofs of Theorems A and B are given in Section 2, and proceed by analysing the
topology of the corresponding cube complex. The conditions of Theorem A ensure the
existence of a separating vertex in the cube complex, from which one can construct an
essential action on a tree. The conditions of Theorem B ensure that the cube complex has
more than one topological end, and one can then apply a result of Dunwoody [2] to obtain
a splitting of the group.

In Section 3 we illustrate the theorems by considering the special case of infinite
cyclic subgroups of surface groups, interpreting the conditions of the theorems in terms
of properties of curves on surfaces, and showing how the induced splittings appear
geometrically.

In Section 4 we consider applications of the main results, and in particular generalise a
result of Shalen concerning -injective immersions of surfaces in 3-manifolds to obtain:

Theorem C. Let G be a group with a subgroup H and a subset A satisfying conditions
(a)—(c) with singularity obstruction H F H for somefinitesubset F in G. If H iscontained
in a chain of proper finite index subgroups G|r|+1 < G|r| < --- < G1 = G then for some
i the subgroup G; splits over a subgroup of (H F; H) where F; denotesthe subset F N G;.

Again note that ifH F; H is non-empty thedH F; H) = (H, F;). Theorem C is related
to Scott’s theorem in [13] which uses the stronger hypothesisHhitan intersection of
finite index subgroups off to draw the conclusion that some subgrdagipsplits overH,
and to results in [7] concerning HNN extensions.

It should be noted that Theorem B was known to Dunwoody and Roller [3], and an
outline proof of it appears in the recent paper by Scott and Swarup [14]. Their approach
to constructing group splittings is somewhat different from the one given here, and relies
on a combinatorial generalisation of the notion of intersection number for co-dimension 1
immersions rather than the more group theoretic singularity obstruction studied in this
paper.

2. Themain theorems
We will begin by showing that a CAT(0) cube complgxhas a separating vertex if and

only if the “transversality graph” associatedXdoy Roller in [10] is disconnected. We will
then show how to use this to collapse the cube complex onto a tree, sothiat & group
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acting on the complex then the collapse is equivariant. Assuming the action on the cube
complex is essential and the transversality graph is disconnected we obtain an essential
action of G on a tree. By the Bass—Serre theorénwill split over an edge stabiliser for
this action.

Sageev showed that given a subgrdtipn a finitely generated grou@ which admits
a properH -almost invariant sef there is a CAT(0) cube complex (which depends for
its construction on the choice df) on whichG acts. To obtain Theorem A we will show
that the cube compleX has a separating vertex if and only if the singularity obstruction
Sa(G, H) generates a proper subgroup @f To do so we will analyse the family of
“hyperplanes” in the complex. We start with a definition:

Let X be a CAT(0) cube complex and be an edge inX. The geodesics through
the midpoint ofe at right angles to it form a totally geodesic codimension 1 subspace
which we will call the hyperplane correspondingdolf C is a cube containing then
the corresponding hyperplane interseCts the Euclidean hyperplane orthogonal to and
bisectinge, it therefore intersects only those edges paralleC'tand then only at their
midpoints. It follows that the intersection of a hyperpldafden X with the cubes ofX
induces a cubical structure on the hyperplane, and since the hyperplane is totally geodesic
this makesH into a CAT(0) cube complex in its own right. (For a more combinatorial
description of this see [9].)

Now letH, J be hyperplanes iX. We say tha#{ and.7 are nested if they are disjoint
or equal, and they are transverse if they are not nested. After Roller [10] we define a graph,
called the transversality graph, with vertices theXgtof hyperplanes ok, and an edge
joining two vertices if and only if the corresponding hyperplanes are transverse.

Lemma?2. Let X bea connected CAT(0) cube complex. Then thefollowing are equivalent:
(i) X hasa separating vertex.
(i) Thereisa surjective function f: Xy — {0, 1} such that f(H) = f(J) whenever
‘H istransverseto J.
(iii) Thetransversality graph is disconnected.

Proof. (i) = (ii): Suppose first thak has a separating vertexand letY be a component
of X \ {v}. Define f (H) = 1 for any hyperplané&{ which intersecty’ and f (H) = 0O for
any hyperplane contained i \ Y. Since hyperplanes are connected and do not contain
vertices ofX, f is a well defined onXy. Furthermore since any hyperplane is contained
in eitherY or its complement, if{ is transverse tg/ then they must both lie it or both
liein X\ Y; it follows that f (H) = f(J) wheneverH is transverse tg/.

(i) = (i): Since any edge intersects exactly one hyperplafé, we may define a
function (which, abusing notation, we also denote pyfrom X to Z, by setting
f(e) = f(H.). Now consider a vertex of X; its link is the simplicial complex whose
O-cells are the edges a&f adjacent ta, 1-cells correspond to squares containirgnd so
on. Itis clear that if two vertices in the link of a vertexcorresponding to hyperplangs
and.7 are joined by an edge then the hyperplaieand.7 intersect in the corresponding
square in the link of, and sof takes the same value on the corresponding edg#&s of
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Hence our functiory gives rise to a 0-cocycle on the link of We now see that if this
function takes both values on some link then that link is disconnected and the vertex is local
cut point. Since any CAT(0) cube complex is simply connected this will also be a global
cut point, so it only remains to show thAtmust take both values in the neighbourhood of
some vertex. If this were not the case then we could define a new furctiof? — Z, by
settingg(v) = 0 if and only if f(e) = 0 for some (and hence every) edgadjacent to.

If two verticesv andw are adjacent along an edgeéheng(v) = f(e) = g(w) Sog is a
0-cocycle onX, and, sinceX is connectedyg is constant. But every hyperplane is adjacent
to some vertex, and itself is assumed to be not constant, and this is a contradiction.

(i) < (iii): Given a function f: Xy — Z> such thatf (H) = f(J) wheneverH is
transverse tQ7 we obtain a vertex colouring of the transversality graph which is constant
on components. It follows that there is such a surjective function if and only if the
transversality graph is disconnecteda

The proof of Theorem A now proceeds in two steps, we will show that the hypothesis
that the singularity obstruction generates a proper subgroapleéds to the existence of
a separating vertex in the corresponding cube compleand use this separating vertex to
construct a tree on whici acts essentially. Assume for the moment that the first step has
been accomplished. We will show how to construct the required action on & tnseng
the existence of the separating verticeXin

First remove the separating vertices frafrand let{Y;} be the collection of components
of the complement. Let the vertex set Bfbe the union of the set of separating vertices
of X together with the seftY;}. Vertices of T of the first type will be called type A, and
those of the second will be called type B. There is an edge joining a vedékype Ato a
vertexw of type B if and only if the separating vertex ¥ corresponding tw is adjacent
to a hyperplane inw; there are no other edges. Since every vertex of type A is separating
T is atree.

Now, since hyperplanes are connected, and no hyperplakecohtains a vertex ok,
any hyperplane intersects (and is contained in) exactly one comp@nefRtrthermore
any two hyperplanes which intersectfhmust lie in the same compone¥jtand intersect
there. It follows that the componenkts are in bijective correspondence with components
of the transversality graph d&f. This correspondence is easily seen to lie-map, so the
stabiliser of a vertex of type is just the stabiliser of the corresponding component of the
transversality graph. So we have:

Lemma 3 (The collapsing lemmal.et X be a CAT(0) cube complex with disconnected
transversality graph, and let G be a group acting essentially on X with one orbit of
hyperplanes. Then there is an essential action of G on a tree T with every edge stabiliser
a subgroup of the stabiliser of a component of the transversality graph.

Proof. We have already constructed the ttBebove. The action of the group on the
cube complexX permutes both the separating verticesXofand the components of its
transversality graph, and preserves adjacency relations between them, so we obtain an
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action of G on T. The action respects the decomposition of the vertex set into vertices
of type A and type B, and so has no edge inversions. It follows that if there is a fixed
point for the action then there is a fixed vertex. Hence the action will be essential if
and only if there are no vertices fixed by the entire group. If a vertex of type A is
fixed by G then so is the corresponding separating verteX pind this contradicts the

fact that the action oG on X is essential. If a vertex of type B is fixed &y thenG
preserves the corresponding component of the transversality grap&. &8s transitively

on hyperplanes so in this case there can be only one component in the transversality graph,
which is again a contradiction.

Our next proposition describes the stabilisers of hyperplanes and of components of the
transversality graph for a CAT(0) cube complex on which a group acts with one orbit of
hyperplanes.

Proposition 4. Let (G, H, A) be a triple with splitting obstruction S4(G, H) = HF H,
and let X bethe associated CAT(0) cube complex. Then the stabiliser H of the hyperplane
{A, A*} contains H as a subgroup of index at most 2 and if H F H is non-empty then the
subgroup (H F H) contains H. The stabiliser of the component of the transversality graph
containing {A, A*} isH if HFH isemptyand (HFH) = (H, F), otherwise.

Proof. It is obvious that the stabiliser of the pdit, A*} contains the stabiliser of as a
subgroup of index at most 2, 96 containsH as a subgroup of index at most 2.HfF H

is non-empty then we may choose an elemert H F H so that the four intersections
ANkA, ANkA* A* NkA, A* NkA* are all non-empty. Now for any elemegie H we
have eithergA = A andgA* = A* or gA = A* andgA* = A. In either case the four
intersectionsA NkgA, A NkgA*, A* NkgA, A* NkgA* are all non-empty ség lies in
HFH.ltfollows thatg € (HF H) as required.

If HFH is empty then there are no hyperplanes transversg¢AtoA*} so the
transversality graph is totally disconnected and the stabiliser of the component containing
{A, A*}is H. If HF H is non-empty lef{ denote the hyperplarnei, A*}. A hyperplane
gH # H lies in the same component of the transversality graii ésnd only if there is a
sequence = go, g1, - - ., &n = g With g; 1 H transverse tg;H fori =2,...,n,i.e., ifand
only if g7 gi+1€ HFH, ifand only if g; 11 € g; H F H. Since we start witlgy = e € H it
follows thatgH is in the same component of the transversality grapk asand only if
g € (HFH). Now an elemeng € G preserves the component of the transversality graph
containingX if and only if g lies in the same componenta§ i.e., if and only ifg € H
orge (HFH). SinceH < (HFH) we see that the stabiliser is precisélf FH) as
required.

Finally sinceH < H < (HFH)we havelHFH)= (H,F). O

Proposition 5. Let (G, H, A) be a triple with splitting obstruction S4(G, H) = HF H,
and let X be the associated CAT(0) cube complex. The following are equivalent:
(i) Thetransversality graph of X is disconnected.
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(i) Thesubgroup (H F H) isa proper subgroup of G.
(iii) Thesubgroup (H F H) is an infinite index subgroup of G.

Proof. (i) < (ii) If HFH is empty then both statements are true since the transversality
graph is totally disconnected and there is a bijection between components of the
transversality graph and cosets Bfsince G acts transitively on hyperplanes. H F H
is non-empty then by Proposition 4 the subgr@fp F) is the stabiliser of the component
of the transversality graph containiid, A*} and again, sinc& acts transitively on the
set of components of the transversality graph there is a bijection between this set and the
set of left cosets of the stabiliser.

(i) < (iii) Both statements are true i F H is empty and in any case it is obvious that
(iii) implies (ii). Suppose now thall F H is non-empty andH F H) is a proper subgroup
of G so by the equivalence of (i) and (ii) the transversality graph is disconnected. By the
collapsing lemma there is an essential actiodain a treel” with vertices the separating
vertices ofX together with the components of the transversality graph,@&nd as already
noted there is a bijection between this latter set and coséfs BiH) in G. If (HF H) has
finite index inG then there are only finitely many such components,@rths a bounded
orbit in its action onT", which contradicts essentiality.c

Theorem A. Let G bea finitely generated group with a subgroup H, a subset A satisfying
conditions (a)—(c) with non-empty splitting obstruction H F H for some subset F in G. If
the subgroup (H F H) isa proper subgroup of G then G splitsover a subgroup of (H F H).

Proof. By Proposition 5 the Sageev cubing has a separating vertex, so by Lemmas 2 and 3
we obtain the required essential actiorGobn a treel’. Edge stabilisers all lie in stabilisers

of components of the transversality graph, and according to Proposition 4 these are all
conjugate intd H F H). It follows thatG splits over a conjugate of a subgroup(éf F H)

and hence over a subgroup(@ F H) as required. O

Remark 6. The subgroup ofH F H) over whichG splits is the stabiliser of an edge in the
tree, which is necessarily the intersection of the two vertex stabilisers corresponding to the
end points of the edge. One of the vertices has stabiliser conjugate to the sufigioal)

as remarked above, since it is the stabiliser of a vertex of type B. In the statement of the
theorem we have not bothered to remark that the other vertex stabiliser is the stabiliser of
a vertex of type A so is the stabiliser of a separating vertex in the complex. Hence we can
arrange that the splitting subgroup is actually the intersecti@®/df H) with the stabiliser

of a separating vertex in the cube complex.

We now turn our attention to Theorem B. Again we interpret the stated condition on
the singularity obstruction in terms of the topology of the cube complex, and then apply a
result of Dunwoody’s to obtain the required splitting of the group.
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Proposition 7. Let (G, H, A) be a triple with G and H both finitely generated and
with splitting obstruction S4(G, H) = HF H, and let X be the associated CAT(0) cube
complex. Then the following are equivalent:
(i) Thetransversality graph of the cubing islocally finite.
(i) Each hyperplanein the cubing is compact.
(iii) The splitting obstruction H F H liesin the commensurator Comn; H of H in G.

Proof. (i) < (ii) Note that since5 acts transitively on hyperplanes the transversality graph
is locally finite if and only if some vertex of the graph has finite valency. As remarked
above the hyperplar¥ is a CAT(0) cube complex whose cell decomposition is given by
the intersection ofH with cells of X which it intersects and the hyperplanesiofare
in bijective correspondence with the hyperplanestoihich are transverse to it [9]. It
follows that the transversality graph for the cube comgiéxs the full subgraph of the
transversality graph foX spanned by those vertices adjacent£oThis is finite if and
only if the transversality graph df is locally finite. Now the maximal cells in any CAT(0)
cube complex are defined uniquely by the hyperplanes they intersect so maximal cubes are
in bijective correspondence with maximal complete subgraphs of the transversality graph.
The equivalence of (i) and (ii) is immediate.

(i) = (iii) Note that H is always a subgroup of its own commensurator, Ceniifmand
so the splitting obstructio®! F H is a subset of ComgH if and only if F € Comn H.
Since H preserves the hyperplard, A*} it permutes the hyperplanes transverse to
it, and if the transversality graph is locally finite then there are only finitely many of
these, saH has a finite index subgroufip which preserves all of them. It follows that
the stabiliser of any hyperplane transversg 4g A*} contains a finite index subgroup
of H. Transversality is a symmetric relation so this shows that stabilisers of transverse
hyperplanes are commensurable, and so for@ayH F H, the subgroup#/ and H8 are
commensurable.

(iif) = (i) SinceH is finitely generated we may add the generatord @b the generating
set for G to ensure that the coboundary of the geis connected in the Cayley graph
of G. It follows that translatesgA, gA*) and (A, A*) are transverse if and only if
their coboundaries intersect. Since the coboundariesHafmite this ensures that the
singularity obstruction iH -finite, so we may assume that is finite. For eachf € F
defineH; = H N H/. Since eacly lies in the commensurator df, H; is a finite index
subgroup of botlH andH/, and asF is finite the intersection of these subgroups, which
we shall denoteHp, has finite index inH and hence inH/. For eachf choose a left
transversaf’y to Ho in H/ .

Now the setH F is a disjoint union of the set§f —1H f as f ranges ovef#, and each
of these sets may be rewritten A% Hp. Letting S denote the union over of the subsets
fTr we see thatd F is contained inSHp and hencel{ FH € SH. It follows that any
g for which {gA, gA*} is transverse t§dA, A*} can be written in the formi for some
s € S andh € H. But sinceH preserves the hyperplad, A*}, there are at mogtS|
distinct hyperplanes transverseftd, A*}. As G acts transitively on the hyperplanes the
transversality graph is locally finite.O
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Theorem B. Let G be a finitely generated group with a finitely generated subgroup H,
and a subset A satisfying conditions (a)—(c) with non-empty splitting obstruction H F H
for some finite subset F in G. If the subgroup (H F H) lies in the commensurator of H in
G then G splits over a subgroup commensurable with H.

Proof. By Proposition 7 the hyperplardel, A*} is compact so it intersects only finitely
many edges. It follows that the 1-skeleton of the cube complex is separated by these edges,
and, since the action is essential there are translates of this cut lying arbitrarily far from
it on either side (this was Sageev’s original definition of essentiality in [11]). It follows
that the 1-skeleton of the cube complex is a graph with more than one end. According to
Dunwoody [2] given any groud acting with unbounded orbits on a graphwith more

than one end we obtain a splitting of the gra@pver the stabiliser of some finite subset

of the edges of". Applying this result to the action off on the 1-skeleton of the cube
complexX we obtain a splitting of; over a subgroup commensurable with the stabiliser

of an edge and hence commensurable with the corresponding hyperplane stabiliser. By
Proposition 4 this is (a conjugate of) at most an index 2 extensiéh.of O

The result in [2] used above can be viewed as a generalisation of Stallings’ theorem
concerning finitely generated groups with more than one end. In a more recent paper [8].
| give a new geometric proof of Stallings’ theorem which can be adapted to prove
Dunwoody'’s result as well using methods similar to those used here.

3. Example

In this section we will illustrate Theorems A and B by considering the special case of
an infinite cyclic subgroup of the fundamental group of a closed orientable suxfaife
genus at least 2. Itis technically convenient, but not necessary, to £quith a metric of
constant negative curvature so that its universal cover is the hyperbolicifaard the
fundamental grougs of X acts by orientation preserving isometriesih Let H = (i) be
a maximal cyclic subgroup af; we will first illustrate how to construct a propgf-almost
invariant subseft ¢ G from this action, and then show how to interpret the conditions of
Theorems A and B in terms of it.

The subgroup acts freely and properly discontinuously on the universal ctiifeof
¥ and there is a geodesic lifein H? along which/ translates the plane. This line cuts
H? into two infinite componenté®, and sinces acts cocompactly oH?Z, given any point
p € H? there are points in the orbit ¢f on both sides of the line.

Choose a poinp in H? such that none of the pointg p) lie on ¢ for any g € G, and
let A={g e G|g(p) et} Since the action off preserves orientation dfi? no element
preserving switches sides, so the stabiliser(ds exactly the stabiliser of and is equal
to the left stabiliser of the subsat By construction the stabiliser éfin G containsH , and
sinceG acts freely and properly discontinuously the stabiliser is infinite cyclic. Sihig
a maximal infinite cyclic subgroup it is the line stabiliser, and therefore the left stabiliser
of A. We claim thatA is a properH -almost invariant set.
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First note that for any elemente G the setA + Ax consists of those elemengs= G
such that exactly one of the elemegtsr gx 1 lies in 4, i.e.,g € A + Ax if and only if
every path inH? joining g(p) to gx~1(p) crosses the liné. Equivalentlyg € A + Ax if
and only if the lineg—1(¢) crosses every path fromto x ~1(p). Now pick a path fromp
tox~1(p); sinceG acts properly discontinuously dii* and discretely on the translates of
¢ there are only finitely many translates?(¢) which intersect this path and go'! lies in
one of finitely many left cosets dff . It follows thatg is contained in finitely many right
cosets ofH, SOA + Ax is H-finite for eachx € G.

If Ais H-finitethenthe seftg(p) | g € A}is containedinthe s¢b"x;(p) |n € Z x; € S}
for some finite sef C G. It follows that every translate gf lying in ¢* lies in a bounded
neighbourhood of the ling, where the bound is given by the maximum distance from the
pointsx;(p) to £. A simple inspection shows that there are points arbitrarily far ffam
¢+ and sinceG acts co-compactly on the plafi# every point inH? is uniformly close
to the orbit of p and this is a contradiction. The same argument shows4hdd also not
H -finite, SOA is a properH -almost invariant set.

Now consider the splitting obstructia®y (G, H). Note that if a translatg¢ is disjoint
from ¢ then the two lines cut the plari@? into exactly three components, and it follows
that at least one of the subsetsnN g714, A N g~ 1A* A* N g~ 1A, A* N g~ 1A* must
be empty (exactly which is empty depends on which of the four sulfSets g¢* is
empty). On the other hand, sinéds a geodesic, i¥ is not equal togf but intersects it
then the intersection is a single point and the two linesk#into four infinite pieces.
Each of the components must contain at least one translateaofl so the four subsets
ANg 1A, Ang 1A* A*Nng~1A, A*Ng~1A* are all non-empty in this case. It follows
easily that an element € G lies in the splitting obstructios4 (G, H) if and only if the
lines¢ andg? cross (i.e., they intersect but are not equal).

Since H acts co-compactly od it has a compact fundamental domain and siace
acts properly discontinuously dfi? there are only finitely many lines¢ which cross the
fundamental domain. Hence there is a finite Bet G such that the only lines crossirig
in the fundamental domain are the linesfiid. A translateg? lies in the setF'¢ if and only
if g € FH and alineg’¢ crossed if and only if #" ¢’¢ crosses the fundamental domain for
somen, and sog'¢ crossed ifand only if g’ € HFH.

Adapting the argument in Proposition 4 it is easy to see that the subgkbHpl ) is the
stabiliser of a component of the union of translatesg ohder the action o7, so(H FH)
is a proper subgroup @ if and only if the set of linegg? | ¢ € G} is disconnected; in this
case we can obtain a splitting geometrically as follows.

Let N denote the closure of an neighbourhood ofG¢ in H2. The components of
N are in bijective correspondence with the left cosets@# H) and choosing to be
sufficiently small we may ensure that any elemgmrt G taking N to intersect itself must
take a translate of in N to intersect another such translate. The compoNegrdtabilised
by (H F H) then projects to a compact embedded subsurfacg.itf any component of
the complement of the image is a disc then this disc lifts to a union of discs in the universal
cover. Any of these discs which are incident witls must have their entire boundary in
No otherwise some other component®fwill intersect the boundary ofNg, which is a
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contradiction. So we may expang to include these discs and obtain a new surface which
projects to a subsurface af and such that the inclusion of this subsurfacesjsnjective.
If the inclusion is surjective then the stabiliserddf must surject otz which it does not do,
so the image oNg is a propetr;-injective subsurface which carries the subgroHF H).
Choosing any component of the boundary of this subsurface, Van Kampen’s theorem yields
a splitting of G over the corresponding cyclic subgroup as an amalgamated free product or
an HNN extension.

One situation wheréf F H is guaranteed to be a proper subgrouaé when its rank
is less than or equal tag2- 1. Since(H FH) = (H, F) andH is cyclic, this is guaranteed
when|F| < 2g — 2. But we have seen th&F| measures the number of self intersection
points of the curve, so we get examples whenever we choose a curve with self intersection
number at most2— 2. An alternative way to view this is that a curve with self intersection
number less thang2— 2 cannot be a filling curve, which can be easily established using an
Euler characteristic argument.

To apply Theorem B we need to know that the splitting obstructiafH lies in the
commensurator of the cyclic subgrop SinceX is a surface of genus > 2 andH is
a maximal cyclic subgroup, it is its own commensurator. The assumption that the splitting
obstructionS4 (G, H) lies in the commensurator is therefore equivalent to the assertion that
it is empty, i.e., that the image @éfin X is an embedded curve. Applying Van Kampen’s
theorem we obtain a splitting aff over H as required. To obtain a more interesting
example we choose an elemén& G which has infinite order but does not generate a
maximal cyclic subgroup, for example= #2. We can then deform the geodesic liie
to a quasi-geodesi€ with stabiliser exactlyk = (k), and repeat the construction above
to obtain a propek -almost invariant subse® ¢ G. Now the commensurator &€ is
preciselyH, so if the singularity obstructio§ (G, K) lies in the commensurator &f it
lies entirely inH. Sincef is a geodesic, any elemegite G which takest to cross itself
must also take’ to cross itself, since crossing is determined by the linking of the end
points of the geodesic and its translate, and the quasi-geodesic shares the same end points.
It follows thatS4 (G, H) C Sp(G, K) C H, and again we see that the imagefoh X is
an embedded curve yielding a splitting@fover H, which, as required, is commensurable
with (k).

4. Applications

As an application of Theorem A we have the following generalisation of a result
of Shalen’s concerning surface subgroups of the fundamental group of an aspherical
3-manifold. Briefly it asserts that if a subgroug with ¢(G, H) > 2 is contained
in sufficiently many finite index subgroups @ then G has a finite index subgroup
which splits. This is analogous to Shalen’s theorem which asserts that if an immersed
incompressible surface in a 3-manifold lifts by degree 1 to sufficiently many finite covers
of the 3-manifold then the 3-manifold has a finite cover which contains an embedded
incompressible surface. The connection is spelt out in [7].
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Theorem C. Let G be a group with a subgroup H and a subset A satisfying conditions
(a)—(c) with singularity obstruction H F H for somefinitesubset F in G. If H iscontained
ina chain of proper finiteindex subgroups G r|+1 C G|r| C --- C G1 = G then for somei
the subgroup G; splits over a subgroup of (H, F;) where F; denotesthe subset F N G;.

Proof. For eachi let A; denote the intersection of with G;. SinceH is contained in
all the subgroup%; and eachG; has finite index inG, the triple (G;, H, A;) satisfies
conditions (a)—(c). It is easy to see that the splitting obstructignG,, H) takes the form
HF;H, whereF; = F N G;. If F; = F;;1 for somei, then the subgroupH, F;) is a
proper subgroup of;, since it lives inside5; 1, and we can apply Theorem A to obtain
a splitting of G; over a subgroup ofH, F;). If on the other hand; 11 is always a proper
subset ofF;, thenF|r 41 is the empty set, and|r |1 splits overH. O

As an application of Theorem B we have:

Proposition 8. Let G be a group with a subgroup H and a subset A satisfying conditions
(a)—(c) and suppose that AH = A. If there is no subgroup H’ of infinite index in H and
subset B in G for whichthetriple (G, H’, B) satisfies conditions (a)—(c)then G splits over
a subgroup commensurablewith H .

Proof. According to Kropholler [6] the fact that is right invariant unde implies that
for any elemeng € S4(G, H), the subgrougd N H$ admits a subseB c G satisfying
conditions (a)—(c). It follows from the hypotheses that for any sgcthe subgroup
H N H¢& has finite index inH . Since the splitting obstruction is closed under inversion
the subgroupd N H¢ " also has finite index ifd and so any element is (G, H) lies

in the commensurator dff in G. Now by Theorem B the grou@ splits over a subgroup
commensurable witlt/. O

This is a special case of:

Conjecture9. If (G, H, A) is a triple satisfying conditions (a)—(c) and alse= AH, then
G splits over a subgroup commensurable with a subgrouip.of

This conjecture has been verified in the case wHesa polycyclic [3], or a quasi-convex
subgroup of a word hyperbolic group [12]. Proposition 8 was also noted independently
in [14]. It immediately gives:

Corollary 10. Let G be the fundamental group of a closed aspherical 3-manifold and
H a subgroup of G isomorphic to the fundamental group of a closed surface. If thereisa
subset A C G satisfying conditions (a)—(c)and also A H = A then G splitsover a subgroup
commensurablewith H.

Proof. A subgroupH’ of infinite index in H is free, and an aspherical open 3-manifold
with free fundamental group has one end, so the quotient of the universal cover of the 3-
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manifold M by a subgroup of infinite index i/ has one end. Since the action@fon

the universal cover is co-compact the number of ends of this quotient is the same as the
number of ends of the quotient of the Cayley graptGofinder the action of’, and so
according to Scott [13] equal @G, H'). Sincee(G, H') = 1 there is no subsek such

that the triple(G, H’, B) satisfies conditions (a)—(c). It follows from Proposition 8 that the
groupG splits over a subgroup commensurable with O

It is worth remarking in passing that this corollary can be generalised to the situation of
co-dimension 1 subgroups of Poincaré duality groups.

Finally we consider the situation of pairs of subgrolpsk < G stabilising subsets
A, B in G, respectively, both satisfying conditions (a)—(c) for their corresponding
stabilisers. As Sageev remarks in his thesis [11], it is possible to use the sdbasats
B together with their complements and all the translates of these sets to construct a cube
complexX on whichG acts with two orbits of hyperplanes. In general we expect neither
system to give rise to a splitting ¢f, however the arguments in Section 2 may be adapted
with little effort to show the following:

Theorem D. Let G be a finitely generated group and suppose that G has two subsets
A and B, with stabilisers H and K respectively, satisfying conditions (a)—(c)for their
respective stabilisers and with splitting obstructions H FH and K F'K, respectively.
Assume furthermore that for any element ¢ € G at least one of the four intersections
ANgB,ANgB*, A*NgB, A* N gB* isempty. Then G splits over subgroupsof (H F H)
andof (K F'K).

The result is analogous to the observation that if an irreducible 3-manifold contains
disjoint immersed incompressible surfaces then it contains an embedded incompressible
surface. In the case of 3-manifolds the proof proceeds by taking a regular neighbourhood of
one of the surfaces and examining its boundary components. Standard surgery techniques
and applications of Dehn’s lemma yield an incompressible surface since the components of
the complement of these bounding surfaces cannot all be handlebodies, containing as they
do immersed incompressible surfaces. Another way to state the 3-manifold result is that
any immersed incompressible surface in a non-Haken 3-manifold must have complement
a union of handlebodies.

To prove Theorem D one shows that as in Theorem A the hypotheses ensure that the
corresponding cube complex has a separating vertex and then uses that fact to build a
Bass—Serre tree as before. To check that the edge stabilisergleif ) or (K F'K) one
notices that these are precisely the stabilisers of components of the transversality graph.
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