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Abstract

We study an obstruction to splitting a finitely generated groupG as an amalgamated free product
or HNN extension over a given subgroupH and show that when the obstruction is “small”G splits
over a related subgroup. Applications are given which generalise decomposition theorems from low
dimensional topology. 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

A groupG is said to split over a subgroupH if it can be decomposed as a non-trivial
amalgamated free productA ∗H B or an HNN extensionA∗H . There is an integer valued
obstruction to splittingG over a given subgroupH , studied by Scott in [13], denoted
e(G,H). If G does split overH thene(G,H) � 2, however the converse is known to be
false. Nonetheless in many situations wheree(G,H) � 2 it is possible to show thatG or
some finite index subgroup ofG splits over a subgroup related toH . Examples of this
phenomenon include Stallings’ characterisation of groups with more than one end [15],
and the algebraic torus theorem [4]. In the former one starts with an arbitrary groupG

for which e(G,1) � 2 and concludes thatG splits over some finite subgroup. In the latter
theorem one starts with an infinite cyclic subgroupH < G for which e(G,H) � 2 and
concludes that eitherG is an extension of a finite group by a triangle group or splits over
some (possibly different) cyclic subgroup.

Whene(G,H)� 2 there is another obstruction to splittingG overH , which we will call
the singularity obstruction. It is not uniquely defined but depends on a choice of “proper
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H -almost invariant” subsetA ⊂ G, (see below) so we will denote it bySA(G,H). The
singularity obstructionSA(G,H) consists of a union of double cosetsHFH for some
subsetF ⊂G, and if it vanishes for some choice ofA we obtain a splitting ofG overH .

Scott’s original approach to the problem of producing a splitting from a pairH < G

with e(G,H)� 2 included the method of passing to a finite index subgroupG1 <G which
contains the subgroupH and avoids all the elements ofSA(G,H). The subsetG1 ∩A can
then be shown to be a properH -almost invariant subset ofG1 with singularity obstruction
given byG1 ∩ SA(G,H). By construction this is empty soG1 splits overH .

In this paper we take a somewhat different approach. Instead of trying to make the
singularity obstruction empty we show that ifSA(G,H) is small in one of two technical
senses then we obtain a splitting ofG over a subgroup related toH . This result is more
closely related to Stallings’ theorem [15] and the algebraic torus theorem [4], and potential
applications include generalisations of those results.

In order to define the singularity obstruction we recall the definition of anH -almost
invariant set:

Let G be a group, andH a subgroup ofG. A properH -almost invariant subset ofG is
a subsetA satisfying the following conditions:

(a) H is the left stabiliser ofA.
(b) A is H -almost invariant, i.e., for any elementg ∈ G the symmetric difference

A+Ag is H -finite (contained in finitely many right cosets ofH ).
(c) A is H -proper, i.e., neitherA norG \A is H -finite.
According to Scott [13] ifG is a finitely generated group andH is a subgroup ofG

then the positive integere(G,H) is at least 2 if and only ifG contains a properH -almost
invariant set. According to Dunwoody [1]G splits overH if and only if it contains a proper
H -almost invariant setA which also satisfies:

(d) For any elementg ∈ G, at least one of the following intersections is empty:
A∩gA,A∩gA∗,A∗ ∩gA,A∗ ∩gA∗. (Here∗ denotes the complement of a subset.)

We can now define the singularity obstructionSA(G,H) given a properH -almost
invariant subsetA. It will consist of precisely those elements ofG for which condition (d)
fails.

Definition 1. LetH be a subgroup of a groupG and letA be a subset ofG satisfying con-
ditions (a)–(c). Define the singularity (or splitting) obstruction of the triple(G,H,A) to be
the subsetSA(G,H) = {g ∈ G | gA∩A 
= ∅, gA∗ ∩A 
= ∅, gA∩A∗ 
= ∅, gA∗ ∩A∗ 
= ∅}.

ClearlySA(G,H) = ∅ if and only if A satisfies condition (d), so the vanishing of the
obstruction leads to a splitting ofG overH . To see thatSA(G,H) is of the formHFH

for some subsetF ⊂ G we note that the singularity obstruction is invariant under left and
right multiplication by elements of the left stabiliser ofA.

To a geometric group theorist these definitions seem a little mysterious, however there
is now an elegant geometric interpretation of them, given by Sageev in his thesis [11]. To
understand it we recall the geometric interpretation of a group splitting given by Bass and
Serre [16]:
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A finitely generated groupG splits over the subgroupH if and only if G acts on a
simplicial treeT with no global fixed points, with a single edge orbit and edge stabiliserH .

Starting with a subgroupH < G and a properH -almost invariant subsetA satisfying
condition (d) Dunwoody showed directly how to construct a tree on whichG acts as
above, and thus recovered a splitting ofG overH . In his thesis Sageev showed how to
generalise Dunwoody’s construction starting with any properH -almost invariant subsetA.
In place of a tree Sageev constructed a contractible cubical complexX on whichG acts
and which satisfies Gromov’s CAT(0) condition of non-positive curvature. In Dunwoody’s
theoryH stabilises an edge of the tree, and in Sageev’s construction there is a natural
family of codimension-1 “hyperplanes” stabilised by the conjugates ofH . These are in
bijective correspondence with the translates of the unordered pair{A,A∗} by the action
of G and the subgroupH stabilises the hyperplane corresponding to{A,A∗}. From now
on we will usually fail to distinguish between the hyperplanes in the cube complex and
the pairs{gA,gA∗}. SinceG acts transitively on the set{gA | g ∈ G} there is one orbit of
hyperplanes, and Sageev showed that the action satisfied a non-triviality condition, which,
as Gerasimov has shown [5], is equivalent to the statement that there is no global fixed
point inX.

Maximal cubes of dimensionn in Sageev’s construction correspond to subsets
{g1, . . . , gn} in G such that the hyperplanes(giA,giA

∗) all cross one another transversely,
where two hyperplanes(g1A,g1A

∗) and (g2A,g2A
∗) cross one another transversely if

and only if the four subsetsg1A ∩ g2A,g1A ∩ g2A
∗, g1A

∗ ∩ g2A,g1A
∗ ∩ g2A

∗ are all
non-empty. It follows that the cube complex has dimension 1, and is therefore a tree, if
and only if the singularity obstruction vanishes. We obtain a splitting of the group when
SA(G,H)= ∅ by applying the Bass–Serre theorem to this tree.

The task of finding a splitting ofG now becomes the task of finding a subgroupH <G

and a properH -almost invariant subsetA such thatSA(G,H) is empty.
In this paper we will start with the assumption that we have a finitely generated group

G, a subgroupH such thate(G,H)� 2, and a subsetA ⊂G satisfying conditions (a)–(c)
with non-empty splitting obstructionSA(G,H)=HFH . We will then show how to obtain
a splitting ofG given the assumption thatHFH is “small”:

Theorem A. Let G be a finitely generated group with a subgroup H and a subset A
satisfying conditions (a)–(c), with non-empty splitting obstruction HFH for some subset
F in G. If the subgroup 〈HFH 〉 is a proper subgroup of G then G splits over a subgroup
of 〈HFH 〉.

To state the second main theorem we need two definitions. Two subgroupsH andK are
said to be commensurable if the intersectionH ∩K has finite index in bothH andK. The
commensurator of a subgroupH <G is the subgroup consisting of those elementsg ∈ G

such thatH andHg are commensurable.

Theorem B. Let G be a finitely generated group with a finitely generated subgroup H

and a subset A satisfying conditions (a)–(c), with non-empty splitting obstruction HFH
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for some finite subset F in G. If the subgroup 〈HFH 〉 lies in the commensurator of H in
G then G splits over a subgroup commensurable with H .

The subgroup〈HFH 〉 is a priori infinitely generated even whenH is finitely generated
andF is finite, however whenF is non-empty we will show that it is equal to the subgroup
〈H,F 〉. The requirement thatF should be finite in Theorem B is no restriction, since for
any finitely generated subgroupH the splitting obstruction can always be expressed as a
finite union of double cosets (we give an outline argument for this later).

The proofs of Theorems A and B are given in Section 2, and proceed by analysing the
topology of the corresponding cube complex. The conditions of Theorem A ensure the
existence of a separating vertex in the cube complex, from which one can construct an
essential action on a tree. The conditions of Theorem B ensure that the cube complex has
more than one topological end, and one can then apply a result of Dunwoody [2] to obtain
a splitting of the group.

In Section 3 we illustrate the theorems by considering the special case of infinite
cyclic subgroups of surface groups, interpreting the conditions of the theorems in terms
of properties of curves on surfaces, and showing how the induced splittings appear
geometrically.

In Section 4 we consider applications of the main results, and in particular generalise a
result of Shalen concerningπ1-injective immersions of surfaces in 3-manifolds to obtain:

Theorem C. Let G be a group with a subgroup H and a subset A satisfying conditions
(a)–(c), with singularity obstruction HFH for some finite subset F in G. If H is contained
in a chain of proper finite index subgroups G|F |+1 <G|F | < · · · <G1 = G then for some
i the subgroup Gi splits over a subgroup of 〈HFiH 〉 where Fi denotes the subset F ∩Gi .

Again note that ifHFiH is non-empty then〈HFiH 〉 = 〈H,Fi〉. Theorem C is related
to Scott’s theorem in [13] which uses the stronger hypothesis thatH is an intersection of
finite index subgroups ofG to draw the conclusion that some subgroupGi splits overH ,
and to results in [7] concerning HNN extensions.

It should be noted that Theorem B was known to Dunwoody and Roller [3], and an
outline proof of it appears in the recent paper by Scott and Swarup [14]. Their approach
to constructing group splittings is somewhat different from the one given here, and relies
on a combinatorial generalisation of the notion of intersection number for co-dimension 1
immersions rather than the more group theoretic singularity obstruction studied in this
paper.

2. The main theorems

We will begin by showing that a CAT(0) cube complexX has a separating vertex if and
only if the “transversality graph” associated toX by Roller in [10] is disconnected. We will
then show how to use this to collapse the cube complex onto a tree, so that ifG is a group
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acting on the complex then the collapse is equivariant. Assuming the action on the cube
complex is essential and the transversality graph is disconnected we obtain an essential
action ofG on a tree. By the Bass–Serre theoremG will split over an edge stabiliser for
this action.

Sageev showed that given a subgroupH in a finitely generated groupG which admits
a properH -almost invariant setA there is a CAT(0) cube complexX (which depends for
its construction on the choice ofA) on whichG acts. To obtain Theorem A we will show
that the cube complexX has a separating vertex if and only if the singularity obstruction
SA(G,H) generates a proper subgroup ofG. To do so we will analyse the family of
“hyperplanes” in the complex. We start with a definition:

Let X be a CAT(0) cube complex ande be an edge inX. The geodesics through
the midpoint ofe at right angles to it form a totally geodesic codimension 1 subspace
which we will call the hyperplane corresponding toe. If C is a cube containinge then
the corresponding hyperplane intersectsC in the Euclidean hyperplane orthogonal to and
bisectinge, it therefore intersects only those edges parallel toC, and then only at their
midpoints. It follows that the intersection of a hyperplaneH in X with the cubes ofX
induces a cubical structure on the hyperplane, and since the hyperplane is totally geodesic
this makesH into a CAT(0) cube complex in its own right. (For a more combinatorial
description of this see [9].)

Now letH, J be hyperplanes inX. We say thatH andJ are nested if they are disjoint
or equal, and they are transverse if they are not nested. After Roller [10] we define a graph,
called the transversality graph, with vertices the setXH of hyperplanes ofX, and an edge
joining two vertices if and only if the corresponding hyperplanes are transverse.

Lemma 2. Let X be a connected CAT(0) cube complex. Then the following are equivalent:
(i) X has a separating vertex.
(ii) There is a surjective function f :XH → {0,1} such that f (H) = f (J ) whenever

H is transverse to J .
(iii) The transversality graph is disconnected.

Proof. (i) ⇒ (ii): Suppose first thatX has a separating vertexv, and letY be a component
of X \ {v}. Definef (H) = 1 for any hyperplaneH which intersectsY andf (H) = 0 for
any hyperplane contained inX \ Y . Since hyperplanes are connected and do not contain
vertices ofX, f is a well defined onXH . Furthermore since any hyperplane is contained
in eitherY or its complement, ifH is transverse toJ then they must both lie inY or both
lie in X \ Y ; it follows thatf (H)= f (J ) wheneverH is transverse toJ .

(ii) ⇒ (i): Since any edgee intersects exactly one hyperplaneHe we may define a
function (which, abusing notation, we also denote byf ) from X(1) to Z2 by setting
f (e) = f (He). Now consider a vertexv of X; its link is the simplicial complex whose
0-cells are the edges ofX adjacent tov, 1-cells correspond to squares containingv and so
on. It is clear that if two vertices in the link of a vertexv corresponding to hyperplanesH
andJ are joined by an edge then the hyperplanesH andJ intersect in the corresponding
square in the link ofv, and sof takes the same value on the corresponding edges ofX.
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Hence our functionf gives rise to a 0-cocycle on the link ofv. We now see that if this
function takes both values on some link then that link is disconnected and the vertex is local
cut point. Since any CAT(0) cube complex is simply connected this will also be a global
cut point, so it only remains to show thatf must take both values in the neighbourhood of
some vertex. If this were not the case then we could define a new functiong :X(0) → Z2 by
settingg(v) = 0 if and only if f (e) = 0 for some (and hence every) edgee adjacent tov.
If two verticesv andw are adjacent along an edgee theng(v) = f (e) = g(w) sog is a
0-cocycle onX, and, sinceX is connected,g is constant. But every hyperplane is adjacent
to some vertex, andf itself is assumed to be not constant, and this is a contradiction.

(ii) ⇔ (iii): Given a functionf :XH → Z2 such thatf (H) = f (J ) wheneverH is
transverse toJ we obtain a vertex colouring of the transversality graph which is constant
on components. It follows that there is such a surjective function if and only if the
transversality graph is disconnected.✷

The proof of Theorem A now proceeds in two steps, we will show that the hypothesis
that the singularity obstruction generates a proper subgroup ofG leads to the existence of
a separating vertex in the corresponding cube complexX, and use this separating vertex to
construct a tree on whichG acts essentially. Assume for the moment that the first step has
been accomplished. We will show how to construct the required action on a treeT using
the existence of the separating vertices inX.

First remove the separating vertices fromX and let{Yi} be the collection of components
of the complement. Let the vertex set ofT be the union of the set of separating vertices
of X together with the set{Yi}. Vertices ofT of the first type will be called type A, and
those of the second will be called type B. There is an edge joining a vertexv of type A to a
vertexw of type B if and only if the separating vertex inX corresponding tov is adjacent
to a hyperplane inw; there are no other edges. Since every vertex of type A is separating
T is a tree.

Now, since hyperplanes are connected, and no hyperplane ofX contains a vertex ofX,
any hyperplane intersects (and is contained in) exactly one componentYi . Furthermore
any two hyperplanes which intersect inX must lie in the same componentYi and intersect
there. It follows that the componentsYi are in bijective correspondence with components
of the transversality graph ofX. This correspondence is easily seen to be aG-map, so the
stabiliser of a vertex of typeB is just the stabiliser of the corresponding component of the
transversality graph. So we have:

Lemma 3 (The collapsing lemma).Let X be a CAT(0) cube complex with disconnected
transversality graph, and let G be a group acting essentially on X with one orbit of
hyperplanes. Then there is an essential action of G on a tree T with every edge stabiliser
a subgroup of the stabiliser of a component of the transversality graph.

Proof. We have already constructed the treeT above. The action of the groupG on the
cube complexX permutes both the separating vertices ofX and the components of its
transversality graph, and preserves adjacency relations between them, so we obtain an
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action ofG on T . The action respects the decomposition of the vertex set into vertices
of type A and type B, and so has no edge inversions. It follows that if there is a fixed
point for the action then there is a fixed vertex. Hence the action will be essential if
and only if there are no vertices fixed by the entire group. If a vertex of type A is
fixed byG then so is the corresponding separating vertex ofX, and this contradicts the
fact that the action ofG on X is essential. If a vertex of type B is fixed byG thenG

preserves the corresponding component of the transversality graph. ButG acts transitively
on hyperplanes so in this case there can be only one component in the transversality graph,
which is again a contradiction.✷

Our next proposition describes the stabilisers of hyperplanes and of components of the
transversality graph for a CAT(0) cube complex on which a group acts with one orbit of
hyperplanes.

Proposition 4. Let (G,H,A) be a triple with splitting obstruction SA(G,H) = HFH ,
and let X be the associated CAT(0) cube complex. Then the stabiliser H of the hyperplane
{A,A∗} contains H as a subgroup of index at most 2 and if HFH is non-empty then the
subgroup 〈HFH 〉 contains H . The stabiliser of the component of the transversality graph
containing {A,A∗} is H if HFH is empty and 〈HFH 〉 = 〈H,F 〉, otherwise.

Proof. It is obvious that the stabiliser of the pair{A,A∗} contains the stabiliser ofA as a
subgroup of index at most 2, soH containsH as a subgroup of index at most 2. IfHFH

is non-empty then we may choose an elementk ∈ HFH so that the four intersections
A∩ kA,A∩ kA∗,A∗ ∩ kA,A∗ ∩ kA∗ are all non-empty. Now for any elementg ∈ H we
have eithergA = A andgA∗ = A∗ or gA = A∗ andgA∗ = A. In either case the four
intersectionsA ∩ kgA,A ∩ kgA∗,A∗ ∩ kgA,A∗ ∩ kgA∗ are all non-empty sokg lies in
HFH . It follows thatg ∈ 〈HFH 〉 as required.

If HFH is empty then there are no hyperplanes transverse to{A,A∗} so the
transversality graph is totally disconnected and the stabiliser of the component containing
{A,A∗} is H . If HFH is non-empty letH denote the hyperplane{A,A∗}. A hyperplane
gH 
=H lies in the same component of the transversality graph asH if and only if there is a
sequencee = g0, g1, . . . , gn = g with gi+1H transverse togiH for i = 2, . . . , n, i.e., if and
only if g−1

i gi+1 ∈ HFH , if and only if gi+1 ∈ giHFH . Since we start withg1 = e ∈H it
follows thatgH is in the same component of the transversality graph asH if and only if
g ∈ 〈HFH 〉. Now an elementg ∈ G preserves the component of the transversality graph
containingH if and only if gH lies in the same component asH, i.e., if and only ifg ∈H

or g ∈ 〈HFH 〉. SinceH < 〈HFH 〉 we see that the stabiliser is precisely〈HFH 〉 as
required.

Finally sinceH <H < 〈HFH 〉 we have〈HFH 〉 = 〈H,F 〉. ✷
Proposition 5. Let (G,H,A) be a triple with splitting obstruction SA(G,H) = HFH ,
and let X be the associated CAT(0) cube complex. The following are equivalent:

(i) The transversality graph of X is disconnected.
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(ii) The subgroup 〈HFH 〉 is a proper subgroup of G.
(iii) The subgroup 〈HFH 〉 is an infinite index subgroup of G.

Proof. (i) ⇔ (ii) If HFH is empty then both statements are true since the transversality
graph is totally disconnected and there is a bijection between components of the
transversality graph and cosets ofH sinceG acts transitively on hyperplanes. IfHFH

is non-empty then by Proposition 4 the subgroup〈H,F 〉 is the stabiliser of the component
of the transversality graph containing{A,A∗} and again, sinceG acts transitively on the
set of components of the transversality graph there is a bijection between this set and the
set of left cosets of the stabiliser.

(ii) ⇔ (iii) Both statements are true ifHFH is empty and in any case it is obvious that
(iii) implies (ii). Suppose now thatHFH is non-empty and〈HFH 〉 is a proper subgroup
of G so by the equivalence of (i) and (ii) the transversality graph is disconnected. By the
collapsing lemma there is an essential action ofG on a treeT with vertices the separating
vertices ofX together with the components of the transversality graph ofX, and as already
noted there is a bijection between this latter set and cosets of〈HFH 〉 in G. If 〈HFH 〉 has
finite index inG then there are only finitely many such components, andG has a bounded
orbit in its action onT , which contradicts essentiality.✷
Theorem A. Let G be a finitely generated group with a subgroup H , a subset A satisfying
conditions (a)–(c), with non-empty splitting obstruction HFH for some subset F in G. If
the subgroup 〈HFH 〉 is a proper subgroup of G then G splits over a subgroup of 〈HFH 〉.

Proof. By Proposition 5 the Sageev cubing has a separating vertex, so by Lemmas 2 and 3
we obtain the required essential action ofG on a treeT . Edge stabilisers all lie in stabilisers
of components of the transversality graph, and according to Proposition 4 these are all
conjugate into〈HFH 〉. It follows thatG splits over a conjugate of a subgroup of〈HFH 〉
and hence over a subgroup of〈HFH 〉 as required. ✷
Remark 6. The subgroup of〈HFH 〉 over whichG splits is the stabiliser of an edge in the
tree, which is necessarily the intersection of the two vertex stabilisers corresponding to the
end points of the edge. One of the vertices has stabiliser conjugate to the subgroup〈HFH 〉
as remarked above, since it is the stabiliser of a vertex of type B. In the statement of the
theorem we have not bothered to remark that the other vertex stabiliser is the stabiliser of
a vertex of type A so is the stabiliser of a separating vertex in the complex. Hence we can
arrange that the splitting subgroup is actually the intersection of〈HFH 〉 with the stabiliser
of a separating vertex in the cube complex.

We now turn our attention to Theorem B. Again we interpret the stated condition on
the singularity obstruction in terms of the topology of the cube complex, and then apply a
result of Dunwoody’s to obtain the required splitting of the group.
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Proposition 7. Let (G,H,A) be a triple with G and H both finitely generated and
with splitting obstruction SA(G,H) = HFH , and let X be the associated CAT(0) cube
complex. Then the following are equivalent:

(i) The transversality graph of the cubing is locally finite.
(ii) Each hyperplane in the cubing is compact.
(iii) The splitting obstruction HFH lies in the commensurator CommGH of H in G.

Proof. (i) ⇔ (ii) Note that sinceG acts transitively on hyperplanes the transversality graph
is locally finite if and only if some vertex of the graph has finite valency. As remarked
above the hyperplaneH is a CAT(0) cube complex whose cell decomposition is given by
the intersection ofH with cells of X which it intersects and the hyperplanes ofH are
in bijective correspondence with the hyperplanes ofX which are transverse to it [9]. It
follows that the transversality graph for the cube complexH is the full subgraph of the
transversality graph forX spanned by those vertices adjacent toH. This is finite if and
only if the transversality graph ofX is locally finite. Now the maximal cells in any CAT(0)
cube complex are defined uniquely by the hyperplanes they intersect so maximal cubes are
in bijective correspondence with maximal complete subgraphs of the transversality graph.
The equivalence of (i) and (ii) is immediate.

(i) ⇒ (iii) Note thatH is always a subgroup of its own commensurator, CommGH , and
so the splitting obstructionHFH is a subset of CommGH if and only if F ⊆ CommGH .
SinceH preserves the hyperplane{A,A∗} it permutes the hyperplanes transverse to
it, and if the transversality graph is locally finite then there are only finitely many of
these, soH has a finite index subgroupH0 which preserves all of them. It follows that
the stabiliser of any hyperplane transverse to{A,A∗} contains a finite index subgroup
of H . Transversality is a symmetric relation so this shows that stabilisers of transverse
hyperplanes are commensurable, and so for anyg ∈ HFH , the subgroupsH andHg are
commensurable.

(iii) ⇒ (i) SinceH is finitely generated we may add the generators ofH to the generating
set forG to ensure that the coboundary of the setA is connected in the Cayley graph
of G. It follows that translates(gA,gA∗) and (A,A∗) are transverse if and only if
their coboundaries intersect. Since the coboundaries areH -finite this ensures that the
singularity obstruction isH -finite, so we may assume thatF is finite. For eachf ∈ F

defineHf = H ∩Hf . Since eachf lies in the commensurator ofH , Hf is a finite index
subgroup of bothH andHf , and asF is finite the intersection of these subgroups, which
we shall denoteH0, has finite index inH and hence inHf . For eachf choose a left
transversalTf to H0 in Hf .

Now the setHF is a disjoint union of the setsff−1Hf asf ranges overF , and each
of these sets may be rewritten asf TfH0. LettingS denote the union overF of the subsets
f Tf we see thatHF is contained inSH0 and henceHFH ⊆ SH . It follows that any
g for which {gA,gA∗} is transverse to{A,A∗} can be written in the formsh for some
s ∈ S andh ∈ H . But sinceH preserves the hyperplane{A,A∗}, there are at most|S|
distinct hyperplanes transverse to{A,A∗}. As G acts transitively on the hyperplanes the
transversality graph is locally finite.✷
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Theorem B. Let G be a finitely generated group with a finitely generated subgroup H ,
and a subset A satisfying conditions (a)–(c), with non-empty splitting obstruction HFH

for some finite subset F in G. If the subgroup 〈HFH 〉 lies in the commensurator of H in
G then G splits over a subgroup commensurable with H .

Proof. By Proposition 7 the hyperplane{A,A∗} is compact so it intersects only finitely
many edges. It follows that the 1-skeleton of the cube complex is separated by these edges,
and, since the action is essential there are translates of this cut lying arbitrarily far from
it on either side (this was Sageev’s original definition of essentiality in [11]). It follows
that the 1-skeleton of the cube complex is a graph with more than one end. According to
Dunwoody [2] given any groupG acting with unbounded orbits on a graphΓ with more
than one end we obtain a splitting of the groupG over the stabiliser of some finite subset
of the edges ofΓ . Applying this result to the action ofG on the 1-skeleton of the cube
complexX we obtain a splitting ofG over a subgroup commensurable with the stabiliser
of an edge and hence commensurable with the corresponding hyperplane stabiliser. By
Proposition 4 this is (a conjugate of) at most an index 2 extension ofH . ✷

The result in [2] used above can be viewed as a generalisation of Stallings’ theorem
concerning finitely generated groups with more than one end. In a more recent paper [8].
I give a new geometric proof of Stallings’ theorem which can be adapted to prove
Dunwoody’s result as well using methods similar to those used here.

3. Example

In this section we will illustrate Theorems A and B by considering the special case of
an infinite cyclic subgroup of the fundamental group of a closed orientable surfaceΣ of
genus at least 2. It is technically convenient, but not necessary, to equipΣ with a metric of
constant negative curvature so that its universal cover is the hyperbolic planeH

2 and the
fundamental groupG of Σ acts by orientation preserving isometries onH

2. LetH = 〈h〉 be
a maximal cyclic subgroup ofG; we will first illustrate how to construct a properH -almost
invariant subsetA ⊂ G from this action, and then show how to interpret the conditions of
Theorems A and B in terms of it.

The subgroupH acts freely and properly discontinuously on the universal coverH
2 of

Σ and there is a geodesic line� in H
2 along whichh translates the plane. This line cuts

H
2 into two infinite components�±, and sinceG acts cocompactly onH2, given any point

p ∈ H
2 there are points in the orbit ofp on both sides of the line.

Choose a pointp in H
2 such that none of the pointsg(p) lie on � for anyg ∈ G, and

letA = {g ∈ G | g(p) ∈ �+}. Since the action ofG preserves orientation onH2 no element
preserving� switches sides, so the stabiliser of� is exactly the stabiliser of�+ and is equal
to the left stabiliser of the subsetA. By construction the stabiliser of� in G containsH , and
sinceG acts freely and properly discontinuously the stabiliser is infinite cyclic. SinceH is
a maximal infinite cyclic subgroup it is the line stabiliser, and therefore the left stabiliser
of A. We claim thatA is a properH -almost invariant set.



G.A. Niblo / Topology and its Applications 119 (2002) 17–31 27

First note that for any elementx ∈ G the setA + Ax consists of those elementsg ∈ G

such that exactly one of the elementsg or gx−1 lies inA, i.e.,g ∈ A + Ax if and only if
every path inH2 joining g(p) to gx−1(p) crosses the line�. Equivalentlyg ∈ A + Ax if
and only if the lineg−1(�) crosses every path fromp to x−1(p). Now pick a path fromp
to x−1(p); sinceG acts properly discontinuously onH2 and discretely on the translates of
� there are only finitely many translatesg−1(�) which intersect this path and sog−1 lies in
one of finitely many left cosets ofH . It follows thatg is contained in finitely many right
cosets ofH , soA+Ax is H -finite for eachx ∈G.

If A isH -finite then the set{g(p) | g ∈A} is contained in the set{hnxi(p) | n ∈ Zxi ∈ S}
for some finite setS ⊂ G. It follows that every translate ofp lying in �+ lies in a bounded
neighbourhood of the line�, where the bound is given by the maximum distance from the
pointsxi(p) to �. A simple inspection shows that there are points arbitrarily far from� in
�+ and sinceG acts co-compactly on the planeH2 every point inH

2 is uniformly close
to the orbit ofp and this is a contradiction. The same argument shows thatA∗ is also not
H -finite, soA is a properH -almost invariant set.

Now consider the splitting obstructionSA(G,H). Note that if a translateg� is disjoint
from � then the two lines cut the planeH2 into exactly three components, and it follows
that at least one of the subsetsA ∩ g−1A,A ∩ g−1A∗,A∗ ∩ g−1A,A∗ ∩ g−1A∗ must
be empty (exactly which is empty depends on which of the four subsets�± ∩ g�± is
empty). On the other hand, since� is a geodesic, if� is not equal tog� but intersects it
then the intersection is a single point and the two lines cutH

2 into four infinite pieces.
Each of the components must contain at least one translate ofp and so the four subsets
A∩ g−1A,A∩ g−1A∗,A∗ ∩ g−1A,A∗ ∩ g−1A∗ are all non-empty in this case. It follows
easily that an elementg ∈ G lies in the splitting obstructionSA(G,H) if and only if the
lines� andg� cross (i.e., they intersect but are not equal).

SinceH acts co-compactly on� it has a compact fundamental domain and sinceG

acts properly discontinuously onH2 there are only finitely many linesg� which cross the
fundamental domain. Hence there is a finite setF ⊂ G such that the only lines crossing�
in the fundamental domain are the lines inF�. A translateg� lies in the setF� if and only
if g ∈ FH and a lineg′� crosses� if and only if hng′� crosses the fundamental domain for
somen, and sog′� crosses� if and only if g′ ∈HFH .

Adapting the argument in Proposition 4 it is easy to see that the subgroup〈HFH 〉 is the
stabiliser of a component of the union of translates of� under the action ofG, so〈HFH 〉
is a proper subgroup ofG if and only if the set of lines{g� | g ∈ G} is disconnected; in this
case we can obtain a splitting geometrically as follows.

Let N denote the closure of anε neighbourhood ofG� in H
2. The components of

N are in bijective correspondence with the left cosets of〈HFH 〉 and choosingε to be
sufficiently small we may ensure that any elementg ∈ G takingN to intersect itself must
take a translate of� in N to intersect another such translate. The componentN0 stabilised
by 〈HFH 〉 then projects to a compact embedded subsurface inΣ . If any component of
the complement of the image is a disc then this disc lifts to a union of discs in the universal
cover. Any of these discs which are incident withN0 must have their entire boundary in
N0 otherwise some other component ofN will intersect the boundary ofN0, which is a
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contradiction. So we may expandN0 to include these discs and obtain a new surface which
projects to a subsurface ofΣ and such that the inclusion of this subsurface isπ1-injective.
If the inclusion is surjective then the stabiliser ofN0 must surject onG which it does not do,
so the image ofN0 is a properπ1-injective subsurface which carries the subgroup〈HFH 〉.
Choosing any component of the boundary of this subsurface, Van Kampen’s theorem yields
a splitting ofG over the corresponding cyclic subgroup as an amalgamated free product or
an HNN extension.

One situation whereHFH is guaranteed to be a proper subgroup ofG is when its rank
is less than or equal to 2g − 1. Since〈HFH 〉 = 〈H,F 〉 andH is cyclic, this is guaranteed
when|F | � 2g − 2. But we have seen that|F | measures the number of self intersection
points of the curve, so we get examples whenever we choose a curve with self intersection
number at most 2g−2. An alternative way to view this is that a curve with self intersection
number less than 2g− 2 cannot be a filling curve, which can be easily established using an
Euler characteristic argument.

To apply Theorem B we need to know that the splitting obstructionHFH lies in the
commensurator of the cyclic subgroupH . SinceΣ is a surface of genusg � 2 andH is
a maximal cyclic subgroup, it is its own commensurator. The assumption that the splitting
obstructionSA(G,H) lies in the commensurator is therefore equivalent to the assertion that
it is empty, i.e., that the image of� in Σ is an embedded curve. Applying Van Kampen’s
theorem we obtain a splitting ofG over H as required. To obtain a more interesting
example we choose an elementk ∈ G which has infinite order but does not generate a
maximal cyclic subgroup, for examplek = h2. We can then deform the geodesic line�
to a quasi-geodesic�′ with stabiliser exactlyK = 〈k〉, and repeat the construction above
to obtain a properK-almost invariant subsetB ⊂ G. Now the commensurator ofK is
preciselyH , so if the singularity obstructionSB(G,K) lies in the commensurator ofK it
lies entirely inH . Since� is a geodesic, any elementg ∈ G which takes� to cross itself
must also take�′ to cross itself, since crossing is determined by the linking of the end
points of the geodesic and its translate, and the quasi-geodesic shares the same end points.
It follows thatSA(G,H) ⊂ SB(G,K) ⊂ H , and again we see that the image of� in Σ is
an embedded curve yielding a splitting ofG overH , which, as required, is commensurable
with 〈k〉.

4. Applications

As an application of Theorem A we have the following generalisation of a result
of Shalen’s concerning surface subgroups of the fundamental group of an aspherical
3-manifold. Briefly it asserts that if a subgroupH with e(G,H) � 2 is contained
in sufficiently many finite index subgroups ofG then G has a finite index subgroup
which splits. This is analogous to Shalen’s theorem which asserts that if an immersed
incompressible surface in a 3-manifold lifts by degree 1 to sufficiently many finite covers
of the 3-manifold then the 3-manifold has a finite cover which contains an embedded
incompressible surface. The connection is spelt out in [7].
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Theorem C. Let G be a group with a subgroup H and a subset A satisfying conditions
(a)–(c), with singularity obstruction HFH for some finite subset F in G. If H is contained
in a chain of proper finite index subgroups G|F |+1 ⊂G|F | ⊂ · · · ⊂G1 =G then for some i
the subgroup Gi splits over a subgroup of 〈H,Fi〉 where Fi denotes the subset F ∩Gi .

Proof. For eachi let Ai denote the intersection ofA with Gi . SinceH is contained in
all the subgroupsGi and eachGi has finite index inG, the triple(Gi,H,Ai) satisfies
conditions (a)–(c). It is easy to see that the splitting obstructionSAi (Gi,H) takes the form
HFiH , whereFi = F ∩ Gi . If Fi = Fi+1 for somei, then the subgroup〈H,Fi〉 is a
proper subgroup ofGi , since it lives insideGi+1, and we can apply Theorem A to obtain
a splitting ofGi over a subgroup of〈H,Fi〉. If on the other handFi+1 is always a proper
subset ofFi , thenF|F |+1 is the empty set, andG|F |+1 splits overH . ✷

As an application of Theorem B we have:

Proposition 8. Let G be a group with a subgroup H and a subset A satisfying conditions
(a)–(c), and suppose that AH = A. If there is no subgroup H ′ of infinite index in H and
subset B in G for which the triple (G,H ′,B) satisfies conditions (a)–(c)then G splits over
a subgroup commensurable with H .

Proof. According to Kropholler [6] the fact thatA is right invariant underH implies that
for any elementg ∈ SA(G,H), the subgroupH ∩ Hg admits a subsetB ⊂ G satisfying
conditions (a)–(c). It follows from the hypotheses that for any suchg the subgroup
H ∩ Hg has finite index inH . Since the splitting obstruction is closed under inversion
the subgroupH ∩ Hg−1

also has finite index inH and so any element inSA(G,H) lies
in the commensurator ofH in G. Now by Theorem B the groupG splits over a subgroup
commensurable withH . ✷

This is a special case of:

Conjecture 9. If (G,H,A) is a triple satisfying conditions (a)–(c) and alsoA =AH , then
G splits over a subgroup commensurable with a subgroup ofH .

This conjecture has been verified in the case whenH is polycyclic [3], or a quasi-convex
subgroup of a word hyperbolic group [12]. Proposition 8 was also noted independently
in [14]. It immediately gives:

Corollary 10. Let G be the fundamental group of a closed aspherical 3-manifold and
H a subgroup of G isomorphic to the fundamental group of a closed surface. If there is a
subset A ⊂G satisfying conditions (a)–(c)and also AH =A then G splits over a subgroup
commensurable with H .

Proof. A subgroupH ′ of infinite index inH is free, and an aspherical open 3-manifold
with free fundamental group has one end, so the quotient of the universal cover of the 3-
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manifoldM by a subgroup of infinite index inH has one end. Since the action ofG on
the universal cover is co-compact the number of ends of this quotient is the same as the
number of ends of the quotient of the Cayley graph ofG under the action ofH ′, and so
according to Scott [13] equal toe(G,H ′). Sincee(G,H ′) = 1 there is no subsetB such
that the triple(G,H ′,B) satisfies conditions (a)–(c). It follows from Proposition 8 that the
groupG splits over a subgroup commensurable withH . ✷

It is worth remarking in passing that this corollary can be generalised to the situation of
co-dimension 1 subgroups of Poincaré duality groups.

Finally we consider the situation of pairs of subgroupsH,K < G stabilising subsets
A,B in G, respectively, both satisfying conditions (a)–(c) for their corresponding
stabilisers. As Sageev remarks in his thesis [11], it is possible to use the subsetsA and
B together with their complements and all the translates of these sets to construct a cube
complexX on whichG acts with two orbits of hyperplanes. In general we expect neither
system to give rise to a splitting ofG, however the arguments in Section 2 may be adapted
with little effort to show the following:

Theorem D. Let G be a finitely generated group and suppose that G has two subsets
A and B , with stabilisers H and K respectively, satisfying conditions (a)–(c) for their
respective stabilisers and with splitting obstructions HFH and KF ′K , respectively.
Assume furthermore that for any element g ∈ G at least one of the four intersections
A∩ gB,A∩ gB∗,A∗ ∩ gB,A∗ ∩ gB∗ is empty. Then G splits over subgroups of 〈HFH 〉
and of 〈KF ′K〉.

The result is analogous to the observation that if an irreducible 3-manifold contains
disjoint immersed incompressible surfaces then it contains an embedded incompressible
surface. In the case of 3-manifolds the proof proceeds by taking a regular neighbourhoodof
one of the surfaces and examining its boundary components. Standard surgery techniques
and applications of Dehn’s lemma yield an incompressible surface since the components of
the complement of these bounding surfaces cannot all be handlebodies, containing as they
do immersed incompressible surfaces. Another way to state the 3-manifold result is that
any immersed incompressible surface in a non-Haken 3-manifold must have complement
a union of handlebodies.

To prove Theorem D one shows that as in Theorem A the hypotheses ensure that the
corresponding cube complex has a separating vertex and then uses that fact to build a
Bass–Serre tree as before. To check that the edge stabilisers lie in〈HFH 〉 or 〈KF ′K〉 one
notices that these are precisely the stabilisers of components of the transversality graph.
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