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In the area of homogeneous, isotropic, linear elastic rough surface normal contact, many classic statistical
models have been developed which are only valid in the early contact when real area of contact is infin-
itesimally small, e.g., the Greenwood–Williamson (GW) model. In this article, newly developed statistical
models, built under the framework of the (i) GW, (ii) Nayak–Bush and (iii) Greenwood’s simplified elliptic
models, extend the range of application of the classic statistical models to the case of nearly complete con-
tact. Nearly complete contact is the stage when the ratio of the real area of contact to the nominal contact
area approaches unity. At nearly complete contact, the non-contact area consists of a finite number of the
non-contact regions (over a finite nominal contact area). Each non-contact region is treated as a mode-I
‘‘crack’’. The area of each non-contact region and the corresponding trapped volume within each non-
contact region are determined by the analytical solutions in the linear elastic fracture mechanics, respec-
tively. For a certain average contact pressure, not only can the real area of contact be determined by the
newly developed statistical models, but also the average interfacial gap. Rough surface is restricted to the
geometrically-isotropic surface, i.e., the corresponding statistical parameters are independent of the
direction of measurement. Relations between the average contact pressure, non-contact area and average
interfacial gap for different combinations of statistical parameters are compared between newly devel-
oped statistical models. The relations between non-contact area and average contact pressure predicted
by the current models are also compared with that by Persson’s theory of contact. The analogies between
the classic statistical models and the newly developed models are also explored.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Elastic rough surface contact models have been developed for
more than 50 years since the first one created by Archard (1957).
Because of the complexity of the boundary conditions on the con-
tact interfaces, i.e., the surface traction distribution and surface
displacement field, the elastic rough surface contact problem can-
not be completely solved analytically except for the case when
contact becomes complete.1 The statistical based model is one of
the approximate models and was first introduced by Greenwood
and Williamson (1966). This is the first model combining the
random process with the elastic contact model (Hertzian spherical
contact model). Nayak, 1971 modeled the rough surface as a two-
dimensional (2D) isotropic, Gaussian, random process, which is re-
ferred to as Nayak’s random theory. Bush and Thomas, 1982 applied
Nayak’s random theory in the elastic rough surface contact model
(Nayak–Bush model) by assuming that the asperities are axisymmet-
ric. Bush et al., 1975 developed, up till now, the most complete sta-
tistical model (BGT model) based on Nayak’s random theory.
Utilization of the Hertzian elliptic contact model complicates the
BGT model. Greenwood, 2006 reduced the complexity of the BGT
model by introducing an mildly Hertzian elliptic contact model
which is only valid for the elliptic asperities with similar principle
curvatures. This model is referred to as Greenwood’s simplified elliptic
model. A good agreement can be found between the BGT model and
Greenwood’s simplified elliptic model (Greenwood, 2006). Those
statistical models, discussed above, are now referred to as the classic
statistical models. One of the main assumptions adopted in the
classic statistical models is that the interactions between the neigh-
boring contacting asperities, due to the elasticity of the substrate, are
ignored, which limits the application of the classic statistical models
within the light load (real area of contact � nominal contact area)
range.

Nearly all the newly developed statistical models (Bush et al.,
1976; O’Callaghan and Cameron, 1976; Francis, 1977; McCool and
Gassel, 1981) after the Greenwood and Williamson (GW) model re-
strict their application within the case of early contact where the real
area of contact is infinitesimally small. Few attempts have been
made to introduce the asperity interaction (equivalently, the elastic-
ity of the substrate) in the classic statistical model (Zhao and Chang,
2001, e.g., Ciavarella et al., 2008). Nearly complete contact is defined
as the stage where isolated non-contact regions (easily visualized as
‘‘islands’’) of infinitesimally small areas are surrounded by the
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Nomenclature

A real area of contact, i.e., size of domain Xc

A� contact ratio, A� ¼ A=An

An nominal contact area, i.e., the size of X
C rigid body displacement on the plane z ¼ 0 of an elastic

half-space
CðrÞ circumference of an ellipse
C1;C2 constants, C1 ¼ a= 2a� 3ð Þ and C2 ¼ C1

12
a
� �1=2

E Young’s modulus of equivalent rough surface
E½�� average value of the process inside the square bracket

E� effective material modulus, 1
E� ¼

1�m2
1

E1
þ 1�m2

2
E2

Ei; i ¼ 1;2 Young’s modulus of rough surface 1 and 2
KI stress intensity factor of a mode-I crack
P total contact load over the domain X
P� dimensionless contact load at early contact,

P� ¼ P=ðE�AnÞ
R average radius of curvature of the asperities
S power spectrum density of a rough surface
V variance of the ‘‘pressure surface’’, p ¼ pcðx; yÞ, V ¼

ffiffiffiffiffiffiffi
mp

0

q
X nominal contact domain
Xc;Xnc contact and non-contact domains
U probability density function of the asperity height of a

rough surface (or ‘‘pressure surface’’)
a bandwidth parameter: a ¼ m0m4

m2
2

ap
1 dimensionless parameter ap

1 ¼
mp

0ffiffiffiffiffi
mp

2

p 1
E�r

A non-contact area, i.e., size of domain Xnc

A� non-contact ratio, i.e., A� ¼ 1� A�

An area of each non-contact region
Vi trapped volume within a non-contact region
�g average interfacial gap
�g� dimensionless average interfacial gap, �g� ¼ �g=r
�p average pressure over the domain X
�p� dimensionless average pressure, �p� ¼ �p=rp

s in modified

GW model and �p� ¼ �p=
ffiffiffiffiffiffiffi
mp

0

q
in modified Nayak–Bush

and Greenwood’s simplified model
�pc critical value of the average pressure across which

rough contact becomes complete
J Jacobian
g peak density in a random process ½1=m2�
j1, j2 half of the positive maximum and minimum principle

‘‘curvatures’’ of the asperity of the ‘‘pressure surface’’,
p ¼ �pcðx; yÞ [Pa=m2]

j�1;j
�
2 dimensionless principle curvatures of the local asperi-

ties, j�i ¼ ji=
ffiffiffiffiffiffiffi
m4
p

; i ¼ 1;2
jm mean (positive) curvature
F , F�1 Fourier transform and inverse Fourier transform opera-

tors
m Poisson’s ratio of equivalent rough surface
mi; i ¼ 1;2 Poisson’s ratio of rough surface 1 and 2
r root mean square roughness of the surface
rs root meant square of the asperity height
erfcðÞ complementary error function
erfðÞ error functioneAi tensile stress area, i.e., the area of tensile stress in

p2ðx; yÞ within each non-contact region

n; f new coordinates, n ¼ x0, f ¼
ffiffiffiffi
j2
j1

q
y0

ni; i ¼ 1; . . . ;6 random variables in the Nayak’s random theory
an; bn semi-major and semi-minor axes of the elliptic non-

contact region, An

d surface separation between mean levels of two nomi-
nally flat rough surface or between mean level of an
effective rough surface and a rigid flat

d� dimensionless surface separation, d� ¼ d=rh
s in original

GW model and d� ¼ d=
ffiffiffiffiffiffiffi
mh

0

q
in original Nayak–Bush

and Greenwood’s simplified model
e eccentricity
gðrÞ crack opening displacement of an axisymmetric mode-I

crack
gðx; yÞ gap distribution between the contact interfaces
h height of the equivalent rough surface, h ¼ h1 þ h2
hi; i ¼ 1;2 height of rough surface 1 and 2, E½hi� ¼ 0
m distance between mean level and mean asperity

level
mi; i ¼ 0;2;4 spectral moments of an isotropic rough surface
p normal contact pressure distribution acting on the

boundary, z ¼ 0, of a half-space
p1 contact pressure distribution at complete contact (see

Eq. (9))
p2 contact pressure distribution acting only on the non-

contact regions (see Eq. (10))
pc normal traction distribution at complete contact where

uzðx; yÞ ¼ hðx; yÞ
qx, qy tangential traction distributions in the x and y directions

on the boundary, z ¼ 0, of a half-space

r polar coordinate, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ f2

q
s semi-sum of the dimensionless principle curvatures of

the local asperities: j�1 and j�2, i.e., s ¼ �ðj�1 þ j�2Þ
u dimensionless (negative) mean curvature, u ¼ �jm=

ffiffiffiffiffiffiffi
m4
p

ui; i ¼ x; y; z surface displacement fields due to the given traction
distributions on the boundary, z ¼ 0, of a half-space

w amplitude of the frequency vector w
wx;wy frequency components in the x and y directions
x0; y0 local coordinates of each non-contact region centered

about its centroid (see Fig. 6)
x; y; z Cartesian coordinates
E complete elliptic integral of second kind
w frequency vector contains the frequencies in the x and y

directions

Superscript
h for the rough surface
p for the ‘‘pressure surface’’
* dimensionless symbol, except for the effective material

modulus, E�

Abbreviation
GW Greenwood and Williamson model
BGT Bush, Gibson and Thomas model
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contact area (likewise visualized as the ‘‘sea’’) when the average con-
tact pressure is extremely high. The systematic study of nearly com-
plete contact has received less attention compared to the early
contact case even though it has many applications, such as the leak-
age of static seals, electrical contacts and tire/road interaction.

Johnson et al. (1985) derived the asymptotic solutions of the
rough contact problem of an elastic half-space with slightly (bi-)
sinusoidal waviness in contact with a rigid flat at nearly complete
contact. They treated the gaps between the deformed waviness
and the rigid flat as mode-I ‘‘cracks’’. Based on the concept of the
stress intensity factor (SIF) in fracture mechanics, they obtained
the approximate analytic solution to the relation between the
average contact pressure and non-contact area within a complete
period.
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Fig. 1. Elastic contact between (a) two half-spaces with rough surfaces, h1ðx; yÞ and
h2ðx; yÞ, on z ¼ 0 plane; (b) one half-space with the equivalent rough surface
hðx; yÞ ¼ h1ðx; yÞ þ h2ðx; yÞ on z ¼ 0 plane and a rigid flat.
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Manners and Greenwood (2006) explored the possibility of
obtaining an asymptotic solution at nearly complete rough
surface contact. They assumed that each ‘‘crack’’ formed between
the rough surface and the rigid flat can be closed by introducing a
parabolic tensile stress distribution acting on its surface.
Eliminating this tensile stress distribution may form a non-con-
tact region which can be determined by setting the corresponding
SIF to zero.

Salganik et al. (2009) reported their previous works on the
nearly complete rough surface contact. They treated the gaps
between the contact interfaces as sockets. They derived the non-
contact area and the pressure distribution at the edge of the
contact area as a function of the average pressure acting remotely.
In their work, they mentioned the idea of building the solution
under the framework of the GW model, however according to
the cited articles, their model only includes one socket, i.e., only
one non-contact region over the entire nominal contact area,
which is unrealistic.

The above three articles form the basis of the current study. The
pressure distribution at the almost complete contact will be
approximated by the method used by Johnson et al. (1985).
The size of each non-contact region will be calculated based on
the method reported by Manners and Greenwood (2006). Three
new statistical models, which is referred to as the modified statisti-
cal models, are developed under the frameworks of the classic
statistical models, namely, the GW, Nayak–Bush and Greenwood’s
simplified elliptic models. Final forms of the non-contact area and
the average interfacial gap, which will be discussed later, are de-
rived in terms of the average contact pressure.

Persson (2002) developed an original model for the elastic,
isotropic, Gaussian surface contact. This model together with all
the models based on it are referred to as Persson’s theory of
contact. Persson’s theory of contact (Persson, 2002; Manners
and Greenwood, 2006) gives a strikingly simple relation between
the average pressure and real area of contact between a
nominally flat rough surface and a rigid flat throughout the whole
range from the first touch to the complete contact. Persson
(2007) also extended his original contact theory in order to
predict the average interfacial separation which is the
distance between the mean level of a deformed rough surface
and a rigid flat. In the end of the current study, Persson’s theory
of contact is compared with the newly developed statistical
models.
2 The additional requirement for the half-space approximation is that the mean
square slope of the roughness is much less than one. The half-space approximation is
adopted in the majority of the numerical deterministic models (Stanley and Kato,
1997; Polonsky and Keer, 2000; Liu et al., 1999), even though it is not always declared
explicitly.
2. Statement of problem

Fig. 1(a) schematically shows the frictionless, non-adhesive,
dry contact occurring between two homogeneous, isotropic, lin-
ear elastic half-spaces with nominally flat rough surfaces on the
boundaries (z ¼ 0 planes). Note that the effect of gas or liquid
sealed between the contact interfaces is neglected. h1ðx; yÞ and
h2ðx; yÞ are the heights of rough surfaces of two contact bodies
over the entire z ¼ 0 planes. Two rough interfaces are assumed
to be smooth only within a certain range of wavelengths, since,
in practice, the rough surfaces data are measured from the sur-
faces of finite sizes with limited resolutions. The upper limit is
the dimension of the nominal contact area and the lower limit
twice the resolution. The Young’s modulus and Poisson’s ratio
of two contact bodies are Ei and mi, i ¼ 1;2, respectively. Surface
separation between the mean levels of the two nominally
undeformed rough surfaces, h1ðx; yÞ and h2ðx; yÞ, is d.

The above elastic contact problem is equivalent to the one
between a rigid flat and an elastic half-space, see Fig. 1(b), with
an equivalent rough surface, hðx; yÞ ¼ h1ðx; yÞ þ h2ðx; yÞ, Young’s
modulus, E, and Poisson’s ratio, m, so that
1� m2

E
¼ 1� m2

1

E1
þ 1� m2

2

E2
; ð1Þ

where E� ¼ E=ð1� m2Þ is referred to as the effective material modulus.
A rigorous proof of the above equivalence can be found in the work
of Barber (2003).

Let us define the entire z ¼ 0 plane of the equivalent rough sur-
face as domain X. Since the height of the equivalent rough surface,
hðx; yÞ ¼ h1ðx; yÞ þ h2ðx; yÞ, is absolutely negligible compared with
the dimensions of the domain X (infinite), the equivalent rough
contact body in Fig. 1(b) can be approximated by an elastic half-
space.2 Then the above rough contact problem is transformed into
a classic problem of an elastic half-space occupying z P 0. The nor-
mal contact pressure, pðx; yÞ, and tangential traction, qxðx; yÞ and
qyðx; yÞ, distributions on the domain X, give rise to the surface dis-
placement fields, ui, i ¼ x; y; z. The normal contact pressure, pðx; yÞ,
and the corresponding surface displacement, uzðx; yÞ, must satisfy
the following inequalities:

pðx; yÞ > 0;uzðx; yÞ ¼ hðx; yÞ � d; ðx; yÞ 2 Xc;

pðx; yÞ ¼ 0; gðx; yÞ > 0; ðx; yÞ 2 Xnc; ð2Þ

where Xc and Xnc are the contact and non-contact domains, respec-
tively. gðx; yÞ is the gap between the contact interfaces. Due to the
frictionless assumption, in-plane traction is zero, i.e., qxðx; yÞ ¼
qyðx; yÞ ¼ 0. Since the normal displacement, uzðx; yÞ, is dominant,
the in-plane displacement fields, uxðx; yÞ and uyðx; yÞ, are ignored.

Before we move to the next section, one important point needs
to be mentioned here. Since the domain X is infinite, the real area
of contact, A, and contact load, P, are infinite too. The finite contact
ratio, A�, and the average contact pressure, �p, i.e.,

A� ¼ lim
An!1

A=An and �p ¼ lim
An!1

1
An

Z
An

pðx; yÞdA; ð3Þ

are more reasonable to describe the infinite rough surface contact.
An is the nominal contact area which is the size of domain X.
3. Contact pressure distribution at nearly complete contact

The above 3-dimensional (3D) elastic mixed boundary-value
problem can only be solved analytically for several limited cases,
e.g., the Hertzian contact of parabolic surfaces. Currently, the rough
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surface contact problems are mainly solved deterministically by
the numerical models using various iterative methods (Stanley
and Kato, 1997; Polonsky and Keer, 2000; Liu et al., 1999).

Let E½�� be the symbol of taking the average value. In the current
study, the rough surface is measured from its mean level, i.e.,
E½h� ¼ 0. When the rough surface comes into complete contact with
the rigid flat, the corresponding surface deformation is

uzðx; yÞ ¼ hðx; yÞ þ C; ð4Þ

where the constant term, C, denotes the uniform (rigid body) dis-
placement of the boundary of the half-space. The corresponding
contact pressure distribution, pðx; yÞ, between the interfaces is

pðx; yÞ ¼ pcðx; yÞ þ �p; ð5Þ

where E½pc� ¼ 0. It is very obvious that terms in pðx; yÞ, namely,
pcðx; yÞ and �p, give rise to the corresponding surface deformation
fields, hðx; yÞ and C, respectively. A schematic representation of
the pressure distribution, pcðx; yÞ, is illustrated in Fig. 2 at the stage
of complete contact. In order to achieve the non-adhesive (non-neg-
ative pressure) contact, the value of �p needs to satisfy the following
inequality

�p P jminðpcÞj: ð6Þ

There is a critical value �pc ¼ jminðpcÞj of �p above which the con-
tact becomes complete. Details of the derivation of pcðx; yÞ can be
found in Appendix A.

Fig. 3 illustrates the contact domain, Xc , and non-contact
domain, Xnc , at nearly complete contact, i.e., �pc � �p! 0þ. At this
point, the non-contact domain, Xnc , consists of infinite sparsely dis-
tributed small non-contact regions of size Ai. Thus, the non-contact
ratio, A� ¼ 1� A�, is

A� ¼ lim
An!1

1
An

X1
i¼1

Ai: ð7Þ

At nearly complete contact, the corresponding pressure distri-
bution, pðx; yÞ, may be approximated by Eq. (5). The accuracy of
this equation depends on �pc � �p. As �pc � �p increases, the error
brought by Eq. (5) may be amplified. However, if we restrict our
analysis within a reasonable range of �pc � �p, the pressure distribu-
tion predicted by Eq. (5) may not deviate much from the real
solution. In the non-contact domain, Xnc , the contact pressure,
pðx; yÞ, is zero. Consequently, a truncated form of Eq. (5) may be
used to approximate the corresponding pressure distribution for
the nearly complete contact case:

pðx; yÞ ¼
pcðx; yÞ þ �p ðx; yÞ 2 Xc;

0 ðx; yÞ 2 Xnc;

�
ð8Þ

where �p < �pc . This truncation method has already been used by
Johnson et al. (1985) in approximating the contact pressure
rigid flat

p = 0

p = p (x,y)c

p

x

half-space

(+)

(-)

mean pressure level mean pressure “asperity” level

mp

Fig. 2. The cross-section of a part of the normal traction distribution, pcðx; yÞ, due to
a given surface displacement uzðx; yÞ ¼ hðx; yÞ on the domain X.

Xnc .
between a slightly (bi-) sinusoidal waviness and a rigid flat at nearly
complete contact case.

Fig. 4(a) shows the cross-section of a part of the contact pres-
sure distribution, pðx; yÞ, and the corresponding deformed profile
of the rough surface. According to Eqs. (5) and (8), pðx; yÞ for the
nearly complete contact is obtained by the superposition of
p1ðx; yÞ as shown in Fig. 4(a) and p2ðx; yÞ as shown in Fig. 4(c):

p1ðx; yÞ ¼ pcðx; yÞ þ �p ðx; yÞ 2 X; ð9Þ

and

p2ðx; yÞ ¼
0 ðx; yÞ 2 Xc;

� pcðx; yÞ þ �p½ � ðx; yÞ 2 Xnc;

�
ð10Þ
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Fig. 6. Schematic representations of (i) an elliptic non-contact region of semi-axes
ai and bi (ai P bi) in the local coordinates x0 and y0; (ii) a circular non-contact region
of radius bi in the local coordinates n and f after coordinate transformations.
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Assuming that the negative pressure in p1ðx; yÞ is negligible
comparing to the positive part (this is true at nearly complete con-
tact), then the average pressure in Fig. 4(a) and (b) can be treated
as the same (see the average pressure distributions on the far ends
in Fig. 4(a) and (b)).

Since the geometry of the rough surface, hðx; yÞ, and the corre-
sponding pressure distribution, pcðx; yÞ, at complete contact are
very similar, the terminologies, such as asperity and valley, can
also be applied to describe the corresponding geometrical feature
of pcðx; yÞ. Here we refer to the geometry of the pressure distribu-
tion as the ‘‘pressure surface’’.

When �pc � �p! 0þ, the positive pressure distribution, p2ðx; yÞ, in
Fig. 4(c) is equivalent to a group of valleys of the ‘‘pressure surface’’
p1ðx; yÞ below the p ¼ 0 level in Fig. 5(a). Additionally, p2ðx; yÞ is
also equivalent to a group of asperities of the ‘‘pressure surface’’
p ¼ �pcðx; yÞ above the p ¼ �p level in Fig. 5(b). eAi in Fig. 4(c) repre-
sents each bearing area of the pressure distribution p2ðx; yÞ on the
p ¼ 0 level. Equivalently, we can also find eAi in Fig. 5(b) on the level
p ¼ �p. eAi is referred to as the ‘‘tensile pressure area’’ in the current
study.

Usually the asperities of the rough surface are approximated by
the parabolic form (i.e., Hertz contact) in the classic statistical
models, e.g., the GW (Greenwood and Williamson, 1966), Nayak–
Bush (Bush and Thomas, 1982) and BGT (Bush et al., 1975) models.
Similarly, the geometry of p2ðx; yÞ within each non-contact region
can also be described by the parabolic form:

p2ðx0; y0Þ ¼ ðp� �pÞ � j1x02 � j2y02 ðx0; y0Þ 2 Ai; ð11Þ

where x0 and y0 are the local coordinates in each non-contact region.
p is the height of the local asperity of the ‘‘pressure surface’’
p ¼ �pcðx; yÞ in Fig. 5(b). j1 and j2 are positive maximum and min-
imum semi-principle curvatures of the ‘‘pressure surface’’
p ¼ �pcðx; yÞ along the principle axes x0 and y0 which are illustrated
for a typical non-contact region in Fig. 6. Note that the dimensions
of j1 and j2 are Pa=m2

� �
. It is obvious that the shape of the non-

contact region is elliptic (j1 > j2) or circular (j1 ¼ j2) from the
above parabolic form of pressure distribution and is also reasonable
to be applied to approximate the shapes of the real non-contact re-
gions at nearly complete contact.

Fig. 6 illustrates a typical elliptic contact region of semi-axes ai

and bi (ai P bi), respectively. Using the following coordinate
transformations

n ¼ x0; f ¼
ffiffiffiffiffiffi
j2

j1

r
y0;
p

mean pressure level

mean pressure level

       p 

p

(a)

(b)

A1 . . . .

       p 

˜ Ai˜

Fig. 5. Schematic representations of (a) the valleys (shaded parts) of the ‘‘pressure surface
pðx; yÞ ¼ �pcðx; yÞ.
we can redefine p2ðx0; y0Þ in polar coordinates as follows

p2ðrÞ ¼ ðp� �pÞ � j1r2; jrj 6 bi; ð12Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ f2

p
.

According to the above discussion, we may draw the following
conclusion: Non-contact regions occur at the same locations as those
asperities of the ‘‘pressure surface’’, p ¼ �pcðx; yÞ, which are above the
level p ¼ �p. Consequently, the distribution of the non-contact re-
gions is naturally related with that of the asperities of the ‘‘pres-
sure surface’’, p ¼ �pcðx; yÞ. In the rest of this article, the
terminology, ‘‘pressure surface’’, is reserved only for describing the
geometry of the pressure distribution, p ¼ �pcðx; yÞ. In the following
two sections, analytical methods in fracture mechanics are applied
to determine the area of each non-contact region and the corre-
sponding trapped volume.

4. Area of the ‘‘cracks’’

One of the assumptions adopted in the classic statistical models,
e.g., the GW (Greenwood and Williamson, 1966), Nayak–Bush
(Bush and Thomas, 1982) and BGT models (Bush et al., 1975), is
that the interaction between neighboring contacting asperities is
negligible. This is the main reason that the classic statistical mod-
els are only valid in the early contact. Similarly, this assumption
can be applied in the current study with a different statement:
the interaction between neighboring non-contact regions is negli-
gible. This assumption is reasonable because the pressurized non-
contact regions of negligibly small sizes are distributed remotely at
the case of nearly complete contact, see Fig. 4(c). Consequently,
each non-contact region can be studied individually and one of
which is illustrated in Fig. 7(a). The pressure distribution, pðrÞ,
can be described in polar coordinates at the vicinity of each
p  = p (x,y) + c
p 

x
 . .

p = -p (x,y) c

1

x

’’ p1ðx; yÞ ¼ pcðx; yÞ þ �p and (b) the asperities (shaded parts) of the ‘‘pressure surface’’
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non-contact region due to the axisymmetric form of Eq. (12).
According to the previously described decomposition of pðrÞ,
Fig. 7(a) can be treated in the same way as the superposition of
Fig. 7(b) and (c).

Fig. 7(a) shows the details of the contact between a nominally
flat rough surface and a rigid flat at nearly complete contact at
the vicinity of a non-contact region which can be treated as a
mode-I ‘‘crack’’. Fig. 7(b) shows an uncracked body where the
gap is closed due to the negative (tensile) pressure distribution
acting on the ‘‘crack’’ surface. Fig. 7(c) shows a cracked body with
the pressure distribution, p2ðrÞ of Eq. (12), acting only on the
‘‘crack’’ surface.

According to Buckner’s principle (Buckner, 1958), the stress
intensity factors (SIF), KI , at the edges (A and B) of the ‘‘crack’’, in
Fig. 7(a) and (c) are the same. However, it is obvious that no stress
singularity exists at those edges since the contact pressure there
are zero. As a matter of fact, SIF is zero: KI ¼ 0.

The SIF for the case shown in Fig. 7(c) can be calculated by the
following Green’s function developed by Barenblatt (1962)

KI ¼
2ffiffiffiffiffiffiffiffi
pbi

p Z bi

0

rpðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

i � r2
q dr ¼ 2biffiffiffiffiffiffiffiffi

pbi

p ðp� �pÞ � 2
3
j1b2

i

� 	
; ð13Þ

where p2ðrÞ is replaced by Eq. (12) and bi is the radius of the non-
contact region, Ai, defined in coordinates (n; f), see Fig. 6. Setting
KI ¼ 0 in Eq. (13), we have the semi-minor axis of the elliptic
non-contact region defined in coordinates ðx0; y0Þ

bi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðp� �pÞ

2j1

s
; ð14Þ
p(r)

(a)
p

r
g(r)

p = p

(+)
(-)

p(r)

(b)
p

r

2b0

p = p

(+)

(-)

2bi

p

r

2bi

2b0

1

p(r)
2

(c)

A B

A B(+)

(-)

Fig. 7. Schematic representations of (a) contact pressure distribution, pðrÞ, and
deformed rough surface at the vicinity of a non-contact region, Ai; (b) contact
pressure distribution, p1ðrÞ, when the gap is closed; (c) contact pressure distribu-
tion, p2ðrÞ, acting only on the non-contact region, Ai .
which is derived by Manners and Greenwood (2006). According to

the relation f ¼
ffiffiffiffi
j2
j1

q
y0, we can also have the semi-major axis of

the elliptic non-contact region

ai ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðp� �pÞ

2j2

s
: ð15Þ

Johnson et al. (1985) derived the expression of bi in another way.
Firstly, they obtained the crack opening displacement, gðrÞ, shown
in Fig. 7(a), based on Sneddon’s solution (Sneddon, 1946). Since
there’s no singularity at the edges of the contact region, the deriv-
ative dgðrÞ=dr ¼ 0 when r ¼ bi. Derivation of bi can be found in
Appendix B and the expression of bi is exactly the same as Eq. (14).

Now, the area of the elliptic non-contact region is

Ai ¼ paibi ¼
3
2
p

p� �pffiffiffiffiffiffiffiffiffiffiffi
j1j2
p : ð16Þ

For a special case when an asperity of the ‘‘pressure surface’’ is
axisymmetric, i.e., j ¼ j1 ¼ j2, the area of non-contact region is

Ai ¼
3
2
p p� �p

j
: ð17Þ

According to the statistical contact theory, the contact ratio,
A�ð�pÞ, may then be calculated using the following integral:

1� A�ð�pÞ ¼ gp
ZZZ

Aiðp;j1;j2ÞUpðp;j1;j2Þdj1dj2dp; ð18Þ

where gp is the asperity density of the ‘‘pressure surface’’ and Up is
the probability density function (PDF) of the asperity heights of the
‘‘pressure surface’’.

Setting p2ðrÞ in Eq. (12) to zero, we can obtain the semi-axes a0

and b0 of the ‘‘tensile stress area’’ eAi : b0 ¼
ffiffiffiffiffiffi
p��p
j1

q
and a0 ¼

ffiffiffiffiffiffi
p��p
j2

q
and

the relation between eAi and Ai is

Ai ¼
3
2
eAi: ð19Þ

Note that Ai is larger than the corresponding tensile pressure
area. Theoretically, Ai should be equal to eAi in order to guarantee
that the contact pressures, pðrÞ, at the contact edges, e.g., A and B
in Fig. 7, are zero. However, since Ai > eAi; pðrÞ must have a sudden
jump from zero (non-contact region) to positive (contact region)
values at edges A and B after the superposition of p1ðrÞ and p2ðrÞ,
which is against the zero boundary condition. This paradox can
be explained by the fact that the form of the tensile pressure distri-
bution, p2ðrÞ, is over-simplified as parabolic.

5. Trapped volume in a single ‘‘crack’’

Based on the crack opening displacement, gðrÞ, derived in
Eq. (B.1) in the Appendix B, the trapped volume, Vi, between each
‘‘crack’’ surface and the rigid flat is

Vi ¼
Z bi

0
gðrÞCðrÞdr: ð20Þ

Note that the ‘‘crack’’ opening displacement, gðrÞ, is defined in
polar coordinates. CðrÞ is the circumference of the boundary on
which ‘‘crack’’ opening displacements share the same value of
gðrÞ. In polar coordinates, this boundary is a circle of radius r.
Transforming back to the coordinates x0 and y0, this boundary be-
comes elliptic with the semi-axes: r

ffiffiffiffi
j1
j2

q
(major) and r (minor),

and CðrÞ may be written as

CðrÞ ¼ 4r
ffiffiffiffiffiffi
j1

j2

r
EðeÞ: ð21Þ

Now note that EðeÞ is the complete elliptic integral of the
second kind
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EðeÞ ¼
Z p=2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2 sin2ðhÞ

q
dh; ð22Þ

and e is the eccentricity of an elliptic crack defined as

e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

i � b2
i

a2
i

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j2=j1

p
: ð23Þ

Consequently, substituting Eqs. (14), (21), (23) and (B.1) into Eq.
(20), the following expression of Vi is obtained

Vi ¼
16

ffiffiffi
3
p

5
ffiffiffi
2
p

pE�
ðp� �pÞ5=2

j1
ffiffiffiffiffiffi
j2
p EðeÞ: ð24Þ

For the case when the asperities of the ‘‘pressure distribution’’
are axisymmetric, i.e., j ¼ j1 ¼ j2; e ¼ 0;Eð0Þ ¼ p=2, the expres-
sion of Vi is simplified to

Vi ¼
8
ffiffiffi
3
p

5
ffiffiffi
2
p

E�
ðp� �pÞ5=2

j3=2 : ð25Þ

Finally, the average interfacial gap, �g, can be determined accord-
ing to the statistical contact theory as

�g�ð�pÞ ¼ gp=r
ZZZ

Viðp;j1;j2ÞUpðp;j1;j2Þdj1dj2dp; ð26Þ

and �g� is the dimensionless form of �g normalized by the root mean
square (r.m.s) roughness r.
Up ¼

np
1 ¼ p

np
4 ¼

@

@

mp
0 ¼
6. Statistics of ‘‘pressure surface’’

It is widely accepted that a rough surface, hðx; yÞ, is a random
process, i.e., it does not have a deterministic form. Since the corre-
sponding ‘‘pressure surface’’ can be determined through the Fou-
rier transform of hðx; yÞ (see Appendix A), we can expect that the
‘‘pressure surface’’ is also a random process. Consequently, the
geometry of the ‘‘pressure surface’’ needs to be described statisti-
cally. In order to distinguish the statistics of the ‘‘pressure surface’’
from that of the rough surface, two superscripts ‘‘p’’ and ‘‘h’’ are de-
fined to denote the statistic parameters for the ‘‘pressure surface’’
and rough surface, respectively.

In the following sections, the discussion of the statistics of the
‘‘pressure surface’’ is limited to the case where the corresponding
rough surface, hðx; yÞ, is a random, isotropic, Gaussian surface. Then,
the joint PDF of the rough surface has the following form according
to Nayak’s random theory (Nayak, 1971)

Uh ¼ Uhðnh
1; n

h
2; . . . ; nh

6Þ; ð27Þ

which is in the function of 6 random variables, nh
i ; i ¼ 1; . . . ;6, where

nh
1 ¼ h; nh

2 ¼
@h
@x
; nh

3 ¼
@h
@y
;

nh
4 ¼

@2h
@x2 ; nh

5 ¼
@2h
@x@y

; nh
6 ¼

@2h
@y2 ; ð28Þ

where Uh denotes the probability of a rough surface point having a
certain combination of height, slopes and curvatures defined by
Eq. (28). The complete expression of Uh can be found in the work
of (Eq. (35) in Nayak (1971)).

For an isotropic surface, these random variables are related to
the spectral moments by

mh
0 ¼ E½ðnh

1Þ
2�; mh

2 ¼ E½ðnh
2Þ

2� ¼ E½ðnh
3Þ

2�; mh
4 ¼ E½ðnh

4Þ
2� ¼ E½ðnh

6Þ
2�:
ð29Þ

Two problems need to be answered before we apply Nayak’s
random theory to describe the statistics of the ‘‘pressure surface’’:
1. Under what condition is the ‘‘pressure surface’’ isotropic?
Isotropy of a surface means the identical statistics along any
directions. In a frequency domain, isotropy is represented by
the fact that the power spectrum density (PSD) of a surface,

SðwÞ ¼ SðwÞ, is only depend on the amplitude, w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

x þw2
y

q
,

of the frequency vector w ¼ ½wx;wy�. From Eq. (A.1), we can
obtain the following relation,
1
2

E�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

x þw2
y

q
hðwÞ; ð30Þ
which is the transfer function between the spectrums of the rough
surface, �hðx; yÞ, and the corresponding ‘‘pressure surface’’,
�pcðx; yÞ. Taking square of the above transfer function, we can have
the relation between the power spectrum density of the rough
surface and the ‘‘pressure surface’’,
ðwÞ ¼ 1
4
ðE�Þ2w2S½�h�ðwÞ: ð31Þ
Thus, the ‘‘pressure surface’’ is isotropic as long as the rough surface
is isotropic.
2. Under what condition is the ‘‘pressure surface’’ Gaussian?

Manners and Greenwood (2006) pointed out that ‘‘A key feature
of the Gaussian profile is that it can be regarded as being the
sum of an infinite number of infinitesimally small, uncorrelated,
sinusoidal waves’’. According to Eq. (A.2) in Appendix A, the
‘‘pressure surface’’ is Gaussian as long as the corresponding
rough surface, hðx; yÞ, is Gaussian.
Thus, by following the expression of the above Uh, the joint PDF
of the ‘‘pressure surface’’ can be written as
Upðnp
1; n

p
2; . . . ; np

6Þ; ð32Þ
where
; np
2 ¼

@p
@x
; np

3 ¼
@p
@y
;

2p
x2 ; np

5 ¼
@2p
@x@y

; np
6 ¼

@2p
@y2 :

ð33Þ
For an isotropic ‘‘pressure surface’’, these random variables are
related to the spectral moments by
E½ðnp
1Þ

2�; mp
2 ¼ E½ðnp

2Þ
2� ¼ E½ðnp

3Þ
2�; mp

4 ¼ E½ðnp
4Þ

2� ¼ E½ðnp
6Þ

2�: ð34Þ
Note that the dimensions of mp
0, mp

2 and mp
4 are Pa2

h i
; Pa2=m2
h i

and
Pa2=m4
h i

.

7. Application of classic statistical models in the nearly
complete contact

In the previous sections, we derive (i) the area, Ai, of each non-
contact region (Eq. (16)); (ii) the trapped volume, Vi , within each
non-contact region (Eq. (24)) and (iii) the statistical framework,
i.e., the PDF, Up, and spectral moments, mp

n;n ¼ 0;2;4, of the ‘‘pres-
sure surface’’.

According to the expressions of contact ratio, A�, and average
interfacial gap, �g�, in Eqs. (18) and (26), an appropriate PDF, Up,
needs to be found. In the following sections, PDFs used in the
GW (Greenwood and Williamson, 1966), Nayak–Bush (Bush and
Thomas, 1982) and Greenwood’s simplified elliptic (Greenwood,
2006) models are applied to build three newly developed statistical
models for the case of nearly complete contact, respectively.

7.1. Modified Greenwood and Williamson (GW) model

In the original GW model, the PDF of the asperity is Gaussian
which depends only on one random variable, nh

1, and the effects
of the curvatures on the PDF are neglected. Similarly, the PDF of
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the asperity of the ‘‘pressure surface’’ can follow the same form of
that in the original GW model which can be written as

Upðnp
1Þ ¼

1ffiffiffiffiffiffiffi
2p
p

rp
s

exp �
np

1 �mp
� �2

2ðrp
s Þ

2

" #
; ð35Þ

where rp
s is the r.m.s of the asperity heights of the ‘‘pressure sur-

face’’, mp is the distance between the mean asperity level and mean
level of the ‘‘pressure surface’’ (see Fig. 2). In the original GW model,
the shape of each asperity is assumed to have a constant radius of
curvature, Rh, and thus a constant Rp is used to approximate the
average radius of curvature of the asperities of the ‘‘pressure sur-
face’’. Note that h and p on Rh and Rp are superscripts not powers
and the dimension of Rp is m2=Pa

� �
. Substituting 2j ¼ 1=Rp into

Eqs. (17) and (25), then the non-contact region, Ai, is

Ai ¼ 3pRpðnp
1 � �pÞ; ð36Þ

and the trapped volume, Vi, between each ‘‘crack’’ surface and the
rigid flat is

Vi ¼
16

ffiffiffi
3
p

5E�
ðRpÞ3=2ðnp

1 � �pÞ5=2
: ð37Þ

According to Eq. (18), the contact ratio, A�, is formulated as

1� A�ð�pÞ ¼ 3pgpRp
Z 1

�p
ðnp

1 � �pÞUpðnp
1Þdnp

1: ð38Þ

According to Eq. (26), the average gap, �g�, is

�g�ð�pÞ ¼ 16
ffiffiffi
3
p

5E�r
gpðRpÞ3=2

Z 1

�p
ðnp

1 � �pÞ5=2Upðnp
1Þdnp

1; ð39Þ

The infinite upper limit of the contact pressure stems naturally
from the Gaussian ‘‘pressure surface’’ as long as the corresponding
rough surface is Gaussian. Additionally, from Eq. (38), we can have
the following conclusion that a complete contact cannot be
achieved unless the average contact pressure, �p, approaches infin-
ity. This has also been discovered by Ciavarella et al. (2000),
Manners (2000), Persson (2002), Manners and Greenwood
(2006), Jackson (2011), etc. Recently, an interesting conclusion
has been drawn by Kudish et al. (2013) that the complete contact
of a twice continuously differentiable rough surface may be achieved
under a sufficiently large average pressure.

McCool (1987) collected the closed-form expressions of inputs
for the GW model derived by Nayak (1971) and Bush et al.
(1976). Equivalently they can be applied here to determine gp,
mp, Rp and rp

s

gp ¼ 1
6
ffiffiffi
3
p

p
mp

4

mp
2


 �
; mp ¼ 4

mp
0

pap


 �1=2

;

Rp ¼ 0:375
p

mp
4


 �1=2

; rp
s ¼ 1� 0:8968

ap


 �1=2

ðmp
0Þ

1=2
; ð40Þ

where ap is the bandwidth parameter of the ‘‘pressure surface’’:

ap ¼ mp
0mp

4

mp
2ð Þ

2.

The following dimensionless variables are now defined:
np�

1 ¼ np
1=r

p
s and �p� ¼ �p=rp

s as well as a dimensionless form of the
Gaussian distribution (Eq. (35))

Up�ðnp�
1 Þ ¼ rp

s U
pðnp�

1 Þ ð41Þ

Substituting the above dimensionless variables into Eqs. (38)
and (39), we have

1� A�ð�p�Þ ¼ 3pgpRprp
s

Z 1

�p�
ðnp�

1 � �p�ÞUp�ðnp�
1 Þdnp�

1 ; ð42Þ

�g�ð�p�Þ ¼ 16
ffiffiffi
3
p

5
gpðRpÞ3=2

E�r
ðrp

s Þ
5=2
Z 1

�p�
ðnp�

1 � �p�Þ5=2Up�ðnp�
1 Þdnp�

1 : ð43Þ
Substituting McCool’s input (Eq. (40)) and a new defined
dimensionless variable: ap

1 ¼
mp

0ffiffiffiffiffi
mp

2

p 1
E�r into the above equations,

the contact ratio is

1� A�ð�p�Þ ¼
ffiffiffiffiffiffiffi
3p
p

16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ap � 0:8968
p Z 1

�p�
ðnp�

1 � �p�ÞUp�ðnp�
1 Þdnp�

1 ; ð44Þ

and the average interfacial gap is

�g�ð�p�Þ=ap
1 ¼

ffiffiffi
3
p

10
ffiffiffi
2
p
ðpÞ1=4

ðap � 0:8968Þ5=4

ap

Z 1

�p�
ðnp�

1 � �p�Þ5=2Up�ðnp�
1 Þdnp�

1 :

ð45Þ
Note that for a given dimensionless average pressure, �p�, the

corresponding dimensionless non-contact area, 1� A�, and average
interfacial gap, �g�=ap

1, only depend on ap. In the following discussed

statistical models, �p� is all normalized by
ffiffiffiffiffiffiffi
mp

0

q
, while here in the

modified GW model �p� is normalized by rp
s . Since

rp
s ¼ 1� 0:8968

ap

� �1=2ðmp
0Þ

1=2, the above observation will still hold if

�p� used in the GW model is normalized by
ffiffiffiffiffiffiffi
mp

0

q
in stead of rp

s .

7.2. Modified Nayak–Bush model

Nayak (1971) developed a random theory to describe the statis-
tics of a random, isotropic, Gaussian rough surface by introducing
the joint PDF, Uh ¼ Uðnh

1; . . . ; nh
6Þ. The definitions of nh

1; . . . ; nh
6 can

be found in Eq. (28). Since the slopes of the peaks of the local asper-
ities are zero,

nh
2 ¼ nh

3 ¼ 0: ð46Þ

Nayak defined a (positive) mean curvature, jh
m, which is the

average of the principle curvatures, 2jh
1 and 2jh

2, of the local asper-
ity, i.e.,

jh
m ¼ jh

1 þ jh
2: ð47Þ

Since the sum of the principle curvatures of the asperity is equal
to the sum of the curvatures along any two orthogonal directions,
jh

m can also be written as

jh
m ¼ �

1
2

@2nh
1

@x2 þ
@2nh

2

@y2

 !
¼ �1

2
ðnh

4 þ nh
6Þ: ð48Þ

Embedding the zero slope condition (nh
2 ¼ nh

3 ¼ 0) and the above
equation in the expression of Uh and after tedious mathematical
manipulation, Nayak obtained the PDF of the asperity, Uhðnh

1;jh
mÞ,

in terms of two random variables, nh
1 and jh

m (see Eq. (61) in Nayak
(1971)).

Similarly, if we assume the rough surface is random, isotropic,
and Gaussian, we can obtain the PDF of the asperity of the ‘‘pres-
sure surface’’. Following the notation suggested by Greenwood
(2006), we have

Up�ðnp�
1 ;u

pÞ ¼ 3
ffiffiffiffiffiffi
C1
p

2p
exp �C1ðnp�

1 Þ
2

h i
3ðupÞ2 � 2þ 2 exp �3

2
ðupÞ2


 �� 	
� exp �1

2
3C1ðupÞ2 þ

ffiffiffi
3
p

C2upnp�
1

� � 	
;

ð49Þ

where

np�
1 ¼ np

1

. ffiffiffiffiffiffiffi
mp

0

q
; up ¼ �jp

m=
ffiffiffiffiffiffiffi
mp

4

q
;

C1 ¼ ap
.

2ap � 3ð Þ; C2 ¼ C1
12
ap


 �1=2

: ð50Þ

np�
1 is the dimensionless asperity height of the ‘‘pressure surface’’.

jp
m is the (positive) mean curvature of the asperity of the ‘‘pressure

surface’’, i.e.,
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jp
m ¼ �

1
2

@2np
1

@x2 þ
@2np

1

@y2

 !
¼ �1

2
np

4 þ np
6

� �
; ð51Þ

and up is a dimensionless (negative) mean curvature. Constants, C1

and C2, are only in terms of ap. It is obvious that Up�ðnp�
1 ; u

pÞ is
dimensionless.

Bush and Thomas (1982) applied the PDF of the asperity,
Uhðnh

1;jh
mÞ, derived by Nayak (1971) in the statistical elastic contact

model by assuming that the asperities are hemispheres of curva-
tures jh

m. Similarly, by assuming that the asperities of the ‘‘pressure
surface’’ are hemispheres and substituting 2j ¼ jp

m into Eqs. (17)
and (25), the non-contact region, Ai, is

Ai ¼
3p
jp

m
ðnp

1 � �pÞ; ð52Þ

and the trapped volume, Vi, between the ‘‘crack’’ surface and the
rigid flat is

Vi ¼
16

ffiffiffi
3
p

5E�
np

1 � �p
� �5=2

jp
mð Þ3=2 : ð53Þ

Replacing the variables, np
1, �p and jp

m, with the corresponding
dimensionless ones, the following forms can be derived

Ai ¼ 3p
mp

0

mp
4


 �1=2

ðnp�
1 � �p�Þð�upÞ�1

;

Vi ¼
16

ffiffiffi
3
p

5E�
ðmp

0Þ
5=4

ðmp
4Þ

3=4 np�
1 � �p�

� �5=2ð�upÞ�3=2
; ð54Þ

where �p� ¼ �p=
ffiffiffiffiffiffiffi
mp

0

q
.

According to Eqs. (18) and (26), we may have the contact ratio,
A�ð�p�Þ, and average interfacial gap, �g�ð�p�Þ, in the following forms

1� A�ð�p�Þ ¼
ffiffiffiffiffi
ap
p

2
ffiffiffi
3
p

Z 1

�p�

Z 0

�1
ðnp�

1 � �p�Þð�upÞ�1Up�ðnp�
1 ;u

pÞdupdnp�
1 ;

ð55Þ
and

�g�ð�p�Þ=ap
1 ¼

8
15p

ðapÞ1=4
Z 1

�p�

Z 0

�1
ðnp�

1 � �p�Þ5=2ð�upÞ�3=2Up�ðnp�
1 ; u

pÞdupdnp�
1 ;

ð56Þ

where ap
1 ¼

mp
0ffiffiffiffiffi
mp

2

p 1
E�r.

Note the similarity here to that declared in the end of
Section 7.1: for a fixed dimensionless average pressure, �p�, the
corresponding non-contact ratio, 1� A�, and average interfacial
gap, �g�=ap

1, are dependent only on the bandwidth parameter ap.

7.3. Modified Greenwood’s simplified elliptic model

Greenwood derived a joint PDF (see Eq. (9) in Greenwood
(2006)) based on Nayak’s random theory (Nayak, 1971), which is
in terms of nh�

1 , sh and rh. nh�
1 is the dimensionless asperity height

normalized by
ffiffiffiffiffiffiffi
mh

0

q
. sh and rh are the semi-sum and semi-difference

of the dimensionless principle curvatures of the local asperities

sh ¼ �ðjh�
1 þ jh�

2 Þ; rh ¼ jjh�
1 � jh�

2 j; ð57Þ

where jh�
1 and jh�

2 are the dimensionless (positive) semi-principle

curvatures, i.e., jh�
i ¼ jh

i =
ffiffiffiffiffiffiffi
mh

4

q
; i ¼ 1;2.

Assuming the rough surface is random, isotropic, and Gaussian,
the joint PDF of the asperities of the ‘‘pressure surface’’ can be
written as (see Eq. (9) in Greenwood (2006))

Up�ðnp�
1 ; s

p; rpÞ ¼ 27
2p

ffiffiffiffiffiffi
C1

p
exp �C1 np�

1 þ
3sp

2
ffiffiffiffiffi
ap
p


 �2
" #

ðspÞ2 � ðrpÞ2
h i

rp

exp �3
4
ðspÞ2 � 3

2
ðrpÞ2

� 	
;

ð58Þ
where np�
1 is the dimensionless asperity height of the ‘‘pressure

surface’’ normalized by
ffiffiffiffiffiffiffi
mp

0

q
. C1 is in terms of ap, i.e.,

C1 ¼ ap=ð2ap � 3Þ. It is obvious that the above PDF is dimensionless.
Since the expressions of non-contact region, Eq. (16), and

trapped volume, Eq. (24), are in terms of jp
1 and jp

2, we need to re-
place the variables, sp and rp, with jp�

1 and jp�
2 in the triple integrals

in Eqs. (18) and (26), the following relation is needed

dspdrp ¼ J
sp rp

jp�
1 jp�

2


 �
djp�

1 djp�
2 if jp�

1 P jp�
2 ; ð59Þ

where J is the Jacobian and can be easily evaluated: J �ð Þ ¼ 2. jp�
1 and

jp�
2 now denote the dimensionless asperities curvatures of the

‘‘pressure surface’’ i.e., jp�
i ¼ jp

i =
ffiffiffiffiffiffiffi
mp

4

q
; i ¼ 1;2.

Consequently, the PDF in terms of np�
1 ;j

p�
1 and jp�

2 is

Up�ðnp�
1 ;j

p�
1 ;j

p�
2 Þ ¼

108
p

ffiffiffiffiffiffi
C1

p
exp �C1 np�

1 �
3ðjp�

1 þ jp�
2 Þ

2
ffiffiffiffiffi
ap
p

� 	2
( )

jp�
1 jp�

2 ðj
p�
1 � jp�

2 Þ

� exp �9
4
ðjp�

1 Þ
2 þ ðjp�

2 Þ
2 � 2

3
jp�

1 jp�
2

� 	� �
:

ð60Þ

Rewriting Eqs. (16) and (24) in terms of dimensionless variables
np�

1 ;j
p�
1 and jp�

2 , we have

Ai ¼
3
2
p

ffiffiffiffiffiffiffi
mp

0

q
ffiffiffiffiffiffiffi
mp

4

q np�
1 � �p�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp�

1 jp�
2

q ; ð61Þ

and

Vi ¼
16

ffiffiffi
3
p

5
ffiffiffi
2
p

pE�
ðmp

0Þ
5=4

ðmp
4Þ

3=4

ðnp�
1 � �p�Þ5=2

jp�
1

ffiffiffiffiffiffiffi
jp�

2

q EðeÞ; ð62Þ

where the eccentricity is e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jp�

2 =j
p�
1

q
.

Consequently, substituting Eqs. (60)–(62) into Eqs. (18) and
(26), the contact ratio, A�, is then

1� A�ð�p�Þ ¼ ða
pÞ1=2

4
ffiffiffi
3
p

Z 1

�p�

Z 1

0

Z jp�
1

0

ðnp�
1 � �p�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp�

1 jp�
2

q Up�ðnp�
1 ;j

p�
1 ;j

p�
2 Þdj

p�
2 djp�

1 dnp�
1 ;

ð63Þ

and the average interfacial gap, �g�, is

�g�ð�p�Þ=ap
1 ¼

8
15

ffiffiffi
2
p

p2
ðapÞ1=4

Z 1

�p�

Z 1

0

Z jp�
1

0

� ðn
p�
1 � �p�Þ5=2

jp�
1

ffiffiffiffiffiffiffi
jp�

2

q EðeÞUp�ðnp�
1 ;j

p�
1 ;j

p�
2 Þdj

p�
2 djp�

1 dnp�
1 : ð64Þ

where ap
1 ¼

mp
0ffiffiffiffiffi
mp

2

p 1
E�r.

Note that a similar observation to that declared in the ends of
Sections 7.1,2: for a fixed dimensionless average pressure, �p�, the
corresponding non-contact ratio, 1� A�, and average interfacial
gap, �g�=ap

1, are dependent only on the bandwidth parameter ap.
Additionally, the modified Greenwood model is, so far, the most
complete statistical model among all the newly developed models.
8. Numerical results

In the previous sections, three statistical models are developed
(see Section 7) for the case of nearly complete contact based on the
GW, Nayak–Bush and Greenwood’s simplified elliptic contact
models. All three newly developed models are referred to as
modified statistical models. In this section, the numerical results of
the following models are discussed:
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1. ‘‘Original GW model’’: Statistical model developed by Green-
wood and Williamson (1966);

2. ‘‘Modified GW model’’: Statistical model (Eqs. (44) and (45))
based on original GW model applied in the case of nearly
complete contact, see Section 7.1;

3. ‘‘Original Nayak–Bush model’’: Statistical model developed by
Bush based on Nayak’s random theory (Bush and Thomas,
1982);

4. ‘‘Modified Nayak–Bush model’’: Statistical model (Eqs. (55) and
(56)) based on the Nayak–Bush model applied in the case of
nearly complete contact, see Section 7.2;

5. ‘‘Original Greenwood model’’: Greenwood’s simplified elliptic
model based on Nayak’s random theory and Hertzian mildly
elliptic contact model (Greenwood, 2006);

6. ‘‘Modified Greenwood model’’: Statistical model (Eqs. (63) and
(64)) based on Greenwood’s simplified elliptic model applied
in the case of nearly complete contact, see Section 7.3;

7. ‘‘Persson’s theory of contact’’: Persson’s model for nominally flat
elastic rough surfaces contact (Persson, 2002; Manners and
Greenwood, 2006).

Since to flatten a rough surface an infinite average pressure is
needed, we should find a reasonable range of �p� in which nearly
complete contact occurs. According to the Gaussian PDF of the
complete contact pressure distribution, see Eq. (35), the following
range

�p� ¼ ½0;mp þ 3rp
s �
� ffiffiffiffiffiffiffi

mp
0

q
: ð65Þ

may be used as an effective range of the variation of the dimension-
less average pressure, �p�. The value of the non-contact ratio, 1� A�,
at nearly complete contact is restricted to the range of ½0;0:1�. This
rough quantified range is only made to simplify the discussion be-
low. Before we discuss the solutions of the modified statistical mod-
els, Persson’s theory of contact also needs to be introduced briefly.

According to Manners and Greenwood (2006), Persson’s theory
of contact gives the following simple form of contact ratio to aver-
age pressure relation for the nominally flat rough contact:

A� ¼ erf �p=
ffiffiffiffiffiffiffi
2V
p� 

; ð66Þ

where erfðÞ is the error function. V ¼ mp
0 is the variance of the pres-

sure distribution, p ¼ pcðx; yÞ, at the case of complete contact.3 Con-
sequently, the above equation can be rewritten as

1� A�ð�p�Þ ¼ erfcð�p�=
ffiffiffi
2
p
Þ; ð67Þ

where erfcðÞ is the complementary error function. �p� is the dimen-

sionless average pressure normalized by
ffiffiffiffiffiffiffi
mp

0

q
.

Fig. 8 shows the non-contact ratio, 1� A�, to dimensionless
average pressure, �p�, relations predicted by the modified statistical
models and Persson’s theory of contact. For both cases considered,
ap ¼ 2 and ap ¼ 10, the nearly complete contact models all start
approximately from �p� ¼ 1. Let us focus on the range �p� P 1 in
Fig. 8(a) and (b). All three statistical models have nearly the same
predictions and gradually converge into an apparent universal
relation at extremely high loads, although those models differ from
Persson’s theory of contact in the early contact region (at low
loads). Note that Persson’s theory of contact is claimed to be exact
for complete contact but may not be for lower loads. Since Pers-
son’s model agrees qualitatively with the modified statistical mod-
els in the majority of the range of the nearly complete contact,
especially at extremely high load, they help confirm the validity
of each other to some extent. We can expect that the gaps will
3 Here we implicitly assume that the statistics of the ‘‘pressure distribution’’,
p ¼ �pcðx; yÞ, are the same.
gradually decrease and eventually close when �p� reaches infinity.
In the proceeding sections, we have the same observations for all
the modified statistical models that for a fixed �p�, the non-contact
ratio, 1� A�, is only in terms of ap. In Persson’s theory of contact,
however, the non-contact ratio, 1� A�, is constant for a fixed �p�,
see Eq. (67). For the case of low ap (ap ¼ 2), modified statistical
models follow closer to Persson’s theory of contact than that for
the case of high ap (ap ¼ 10).

Fig. 9 illustrates the detailed comparisons between the modified
statistical models. Predictions of the non-contact ratio, 1� A�, to
dimensionless average pressure relation, �p�, showed in Fig. 9(a)
and (c) are very close to each other, especially at the heavy load range
and for the cases with higher bandwidth parameter, ap. In Fig. 9(b)
and (d), the slopes of the relations between the non-contact ratio,
1� A�, and the dimensionless average interfacial gap, �g�=ap

1, pre-
dicted by modified statistical models are all slightly off the unity at
nearly complete contact regime, which indicates mildly nonlinear
relations for both cases, ap ¼ 2 and ap ¼ 10. As ap increases, this
non-linearity becomes more severe (slope is 1.11 for ap ¼ 2 and
1.14 for ap ¼ 10). In Fig. 9(b) and (d), the prediction of the modified
GW model is below that of modified Nayak–Bush and modified
Greenwood models, both of which are having nearly the same pre-
dictions for both cases: ap ¼ 2 and ap ¼ 10.

9. Discussions

9.1. Analogies between the statistical models at early and nearly
complete contact

Let us focus on the original Nayak–Bush and modified Nayak–
Bush models. Rewriting the contact ratio, A�, to surface separation,
d�, relation

A�ðd�Þ ¼
ffiffiffiffiffi
ah
p

6
ffiffiffi
3
p

Z 1

d�

Z 0

�1
ðnh�

1 � d�Þð�uhÞ�1
Uh�ðnh�

1 ;u
hÞduhdnh�

1 ; ðC:9Þ

in the original Nayak–Bush model and non-contact ratio, 1� A�, to
average pressure, �p�, relation

1� A�ð�p�Þ ¼
ffiffiffiffiffi
ap
p

2
ffiffiffi
3
p

Z 1

�p�

Z 0

�1
ðnp�

1 � �p�Þð�upÞ�1Up�ðnp�
1 ;u

pÞdupdnp�
1 ;

ð55Þ
in the modified Nayak–Bush model. If we check the expressions of
Up� (Eq. (49)) and Uh� (Eq. (C.7)), we may find that except for the dif-
ferent constant terms outside the integrals, the right hand side of
the above two equations are exactly the same by replacing the vari-
ables, np�

1 ;u
p and �p�, with nh�

1 ;u
h and d� in Eq. (55). Similar analogies

can also be found in the other statistical model pairs, e.g., original
Greenwood and modified Greenwood models.

Fig. 10 shows the detailed comparisons between the classic sta-
tistical models for low loads. Similar patterns in Fig. 9 can be found
here. The classic statistical models have nearly the same predic-
tions of the contact ratio, A�, to surface separation, d�, relations,
especially at the early contact where the contact ratio is infinites-
imally small, see Fig. 10(a) and (c). The contact ratio, A�, to dimen-

sionless contact load, P�=
ffiffiffiffiffiffiffi
mh

2

q
, relation is linear (at least very close

to linearity) at early contact when A� is vanishing. This phenome-
non is widely accepted and explored in details by Carbone and
Bottiglione (2008).

Rewriting the contact load, P�, to surface separation, d�, relation

P�ðd�Þ
ffiffiffiffiffiffiffi
mh

2

q�
¼ 2

9
ffiffiffi
3
p

p
ah
� �3=4

Z 1

d�

Z 0

�1
ðnh�

1 � d�Þ3=2ð�uhÞ�1=2
Uh�ðnh�

1 ;u
hÞduhdnh�

1 ;

ðD:8Þ

in the original Nayak–Bush model and the average interfacial gap,
�g�=ap

1, to the average pressure, �p�, relation
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Fig. 8. Non-contact ratio, 1� A� , to dimensionless average pressure, �p� , relations for two cases: (a) ap ¼ 2 and (b) ap ¼ 10.
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(a) (b)

(c) (d)

Fig. 9. Non-contact ratio, 1� A� , to dimensionless average pressure, �p� , relations for (a) ap ¼ 2 and (c) ap ¼ 10; Non-contact ratio, 1� A� , to dimensionless average interfacial
gap, �g� , for (b) ap ¼ 2 and (d) ap ¼ 10.
�g�ð�p�Þ=ap
1 ¼

8
15p

ðapÞ1=4
Z 1

�p�

Z 0

�1
ðnp�

1 � �p�Þ5=2ð�upÞ�3=2Up�ðnp�
1 ; u

pÞdupdnp�
1 ;

ð56Þ

in the modified Nayak–Bush model. Higher powers (5=2 and 3=2) of
both terms: np�

1 and ð�upÞ�1 when compared to (3=2 and 1=2) of nh�
1

and ð�uhÞ�1
cause more severe non-linearity as shown in Fig. 9(b)

and (d).

9.2. Connections between the statistical models at early and nearly
complete contact

When we are trying to connect these two different kinds of
statistical models: the classic and modified statistical models,
which describe the two extreme cases, namely, the early and
nearly complete contact, we meet a contrasting situation where
d� (variable in classic statistical models) and �g� (variable in
modified statistical model) has different meaning. In the following
paragraph, we will show that �g� and d� are indeed approximately
equivalent at nearly complete contact.

In the classic statistical models, e.g., the GW model, d� is defined
as the dimensionless surface separation between the mean level of
the undeformed rough surface and the rigid flat, which equivalent
to assuming that the substrate is rigid and only asperities super-
posed on it are elastic. This assumption is introduced because an
accurate description of the elasticity of the substrate is difficult
under the framework of the statistical models, except in an average
sense (Zhao and Chang, 2001; Ciavarella et al., 2008).



(a) (b)

(c) (d)

Fig. 10. Contact ratio, A� , to dimensionless surface separation, d� , relations for (a) ah ¼ 2 and (c) ah ¼ 10; Contact ratio, A� , to dimensionless contact load, P� , for (b) ah ¼ 2 and
(d) ah ¼ 10.

d

h(x,y)
u (x,y)z

mean level
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Undeformed
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Fig. 11. Schematic representation of the surface separation between the rigid flat
and deformed rough surface. Note that the uniform (rigid body) displacement of the
rough surface (the rigid flat) is neglected.
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Let us redefine d� as the surface separation between the rigid
flat and the mean level of the deformed rough surface, see Fig. 11.
Note that the uniform (rigid body) displacements of the rough sur-
face and rigid flat are neglected in Fig. 11. This new definition of d�

abandons the rigidity of the substrate and is still valid for the clas-
sic statistical models applied at early contact since local asperity
deformations are dominant comparing to that of the substrate.
As d� is decreased from infinity to zero, the rough contact transits
from first touch to complete contact.

Average interfacial gap is defined as: �g� ¼ 1
r

R
X gðx; yÞdA where

gðx; yÞ is the gap between the deformed surface and the rigid flat
at ðx; yÞ, see Fig. 11. Since we neglect the uniform (rigid body) dis-
placement of the rough surface and rigid flat, i.e., E½uz� ¼ 0, the fol-
lowing relation between �g� and d� is exact:

�g� ¼ d� � 1
r

Z
X

hðx; yÞ � uzðx; yÞdA: ð68Þ

As d� is decreased, especially at nearly complete contact, the dif-
ference between uzðx; yÞ and hðx; yÞ are more and more smaller.
Thus,

R
X hðx; yÞ � uzðx; yÞdA! 0 when non-contact area, 1� A�, is

vanishing and finally we have

�g� ¼ d�: ð69Þ

The above identity ensures that the classic statistical models
and the modified statistical model are two asymptotic solutions
of a universal statistical contact model.
9.3. Limitations of numerical deterministic model

Numerical deterministic models (Stanley and Kato, 1997, e.g.,
Polonsky and Keer, 2000; Liu et al., 1999) are not applied here to
validate the newly developed statistical models, since it is likely
to have inaccurate predictions when non-contact area, 1� A�, is
vanishing because of the insufficient population of (1) non-contact
regions and (2) sampling points within each of them. Hyun et al.
(2004) pointed out that the finite element (FE) model of the elastic
rough surface contact is also not accurate when A� is vanishing due
to the insufficient number of contact regions and sampling points
within each of them.

The newly developed statistical models solve the problem of
insufficient non-contact regions by using a continuous PDF to de-
scribe the distribution of the asperities of the ’’pressure surface’’.
The problem of insufficient sampling points in each non-contact
region is solved by introducing the concept of a ‘‘crack’’ which
has a certain deterministic profile. Consequently, the newly devel-
oped statistical models must have a broader range of application
and better accuracy than the numerical deterministic models in
nearly complete contact (when 1� A� is vanishing).

10. Conclusion

In the current work, the problem of the elastic contact between
a homogeneous, isotropic, linear elastic half-space with a nomi-
nally flat geometrically-isotropic rough surface on the boundary
and a rigid flat is solved at nearly complete contact. By introducing
the concept of a penny-shaped crack and the stress intensity factor,
the area of each non-contact region and the trapped volume
formed within each ‘‘crack’’ are determined respectively based on
the geometrical parameters (e.g., height and principle curvatures)
of the asperities of the ‘‘pressure surface’’. Knowing the PDF of
the asperities of the ‘‘pressure surface’’, statistical models, built un-
der the framework of the GW, Nayak–Bush and Greenwood’s sim-
plified elliptic models, are applied to determine the relations
between the contact ratio, A�, average pressure, �p�, and average
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interfacial gap, �g�, at nearly complete contact. The non-contact ra-
tio, 1� A�, to the average pressure, �p�, relations from the newly
developed statistical models have a good qualitative agreement
with that of Persson’s theory of contact at the majority of the range
of the nearly complete contact. Three different statistical models,
namely, the modified GW, modified Nayak–Bush and modified
Greenwood’s simplified models, have similar predictions of (i)
the non-contact ratio, 1� A�, to the average pressure, �p�, relation
and (ii) the non-contact ratio, 1� A�, to the average interfacial
gap, �g�. Similar patterns of the corresponding relation curves have
been found in the statistical models applied at both early and
nearly complete contact cases. Finally, we find that the classic sta-
tistical models and the newly developed models represent two
asymptotic solutions of a universal rough surface contact model
valid throughout the whole load range from first touch to complete
contact.
Appendix A. Analytical pressure distribution at complete
contact

Johnson et al. (1985) derived the analytical solution of a spatial
contact problem of an elastic half-space with slightly bi-sinusoidal
waviness in contact with a rigid flat at complete contact based on
the Westergaard solution (Westergaard, 1939)

pðx; yÞ ¼ p̂ cosðwxxÞ cosðwyyÞ;
m gives rise to

uzðx; yÞ ¼ D cosðwxxÞ cosðwyyÞ; ðA:1Þ

where p̂ ¼ 1
2 E�D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

x þw2
y

q
is the average pressure at complete con-

tact. wx and wy are the frequencies in the x and y directions.
Assume the surface displacement field is uzðx; yÞ ¼ hðx; yÞ with

E½h� ¼ 0. According to the above correlation, the pressure distribu-
tion pc corresponding to the surface displacement field,
uzðx; yÞ ¼ hðx; yÞ, can be derived through the Fourier transform
(Stanley and Kato, 1997)

pcðx; yÞ ¼ F�1 1
2

E�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

x þw2
y

q
F½hðx; yÞ�

� 	
; ðA:2Þ

where F �½ � and F�1 �½ � are the operators of Fourier transform and its
inverse. It is obvious to see that E½pc� ¼ 0 as long as E½h� ¼ 0.
Appendix B. Derivation of interfacial crack area

A penny-shaped crack, Fig. 7(c), under the action of an axisym-
metric pressure distribution, p2ðqÞ ¼ ðp� �pÞ � j1b2

nq2, has been
studied by Sneddon (1946) and the resultant crack opening dis-
placement, gðqÞ, can be obtained through a closed-form recurrence
relation (Sneddon, 1946; Johnson et al., 1985). The details of the
derivation of gðqÞ can be found in Johnson et al. (1985, Appendix
2). Here only the final expression of gðqÞ is given:

gðqÞ ¼ 4bn

9pE�
½9ðp� �pÞ � 2b2

nj1 � 4b2
nj1q2�ð1� q2Þ1=2

: ðB:1Þ

Since there’s no singularity at the edges of the contact region,
the crack surface separates smoothly, i.e., the derivative
dgðrÞ=dr ¼ 0 when r ¼ bn. The terms in the square bracket must
be zero in order to satisfied the above smoothness condition. Thus,
we have the

bn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðp� �pÞ

2j1

s
; ðB:2Þ

which is the same as that in Eq. (14) derived by Manners and
Greenwood (2006).
Appendix C. Classic statistical models

C.1. McCool’s input

The original McCool’s input (McCool, 1987) is applied to quan-
tify the input of the original GW model which can be stated in the
following form:

gh ¼ 1
6
ffiffiffi
3
p

p
mh

4

mh
2


 �
; mh ¼ 4

mh
0

pah


 �1=2

;

Rh ¼ 0:375
p

mh
4


 �1=2

; rh
s ¼ 1� 0:8968

ah


 �1=2

ðmh
0Þ

1=2
; ðC:1Þ

where gh
s is the asperity density. Rh is the average radius of curva-

tures of the asperities. rh
s is the root mean square (r.m.s) roughness

of the asperities. mh is the distance between the mean asperity level
and the mean level. mh

i ; i ¼ 0;2;4, are the spectral moments of the

rough surface. ah is the bandwidth parameter: ah ¼ mh
0mh

4

ðmh
2Þ

2 .

C.2. Original Greenwood–Williamson (GW) Model

The original Greenwood–Williamson (GW) model (Greenwood
and Williamson, 1966) consists of two integral equations for
dimensionless contact load, P� ¼ P=ðE�AnÞ, and contact ratio,
A� ¼ A=An,

P�ðd�Þ ¼ gh
s

4
3

ffiffiffiffiffi
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s Þ
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ðnh�
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1 Þdnh�
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s Þ
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1 � d�ÞUhðnh�
1 Þdnh�

1 ; ðC:2Þ

where d� ¼ d=rh
s is the dimensionless surface separation between

the rigid flat and the mean level of the rough surface. nh�
1 ¼ nh

1=rh
s

is the dimensionless asperity height. Uhðnh�
1 Þ is a Gaussian probabil-

ity density function (PDF) of the asperities distribution

Uhðnh�
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1ffiffiffiffiffiffiffi
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Defining the dimensionless Gaussian distribution

Uh�ðnh�
1 Þ ¼ rh

s U
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1ffiffiffiffiffiffiffi
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p exp �
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� 2
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2

264
375; ðC:4Þ

and substituting McCool’s input (Eq. (C.1)) and Eq. (C.4) into Eqs.
(C.2) we have

P�ðd�Þ=
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ðpÞ3=4 ða
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For a given dimensionless surface separation, d�, according to
Eq. (C.5), the corresponding contact ratio, A�, and the dimension-

less contact load, P�=
ffiffiffiffiffiffiffi
mh

2

q
, only in terms of ah. In the following

statistical model, d� is normalized by
ffiffiffiffiffiffiffi
mh

0

q
, while here d� is normal-

ized by rh
s . Since rh

s ¼ 1� 0:8968
ah

� 1=2
ðmh

0Þ
1=2, the truth, that the

dimensionless contact load, P�ðd�Þ=
ffiffiffiffiffiffiffi
mh

2

q
, and contact ratio, A�ðd�Þ,

are only dependent on ah, will still hold if d� used in the GW model

is normalized by
ffiffiffiffiffiffiffi
mh

0

q
in stead of rh

s .



1088 Y. Xu et al. / International Journal of Solids and Structures 51 (2014) 1075–1088
C.3. Original Nayak–Bush Model

Bush and Thomas (1982) applied the joint PDF (Eq. (61) in
Nayak (1971)) derived by Nayak, in the following statistical model:

P�ðd�Þ¼gh 4
3
ðmh

0Þ
3

mh
4

" #1=4Z 1

d�

Z 0

�1
ðnh�

1 �d�Þ3=2ð�uhÞ�1=2
Uh�ðnh�

1 ;u
hÞduhdnh�

1 ;

A�ðd�Þ¼ghp
ffiffiffiffiffiffiffi
mh

0

q
mh

4

Z 1

d�

Z 0

�1
ðnh�

1 �d�Þð�uhÞ�1
Uh�ðnh�

1 ;u
hÞduhdnh�

1 ; ðC:6Þ

where the dimensionless joint PDF, Uh�ðnh�
1 ;u

hÞ, is

Uh�ðnh�
1 ;u

hÞ ¼3
ffiffiffiffiffiffi
C1
p

2p
exp �C1ðnh�

1 Þ
2h i

� 3ðuhÞ2 � 2þ 2 exp �3
2
ðuhÞ2

� 	� �
exp �1

2
3C1ðuhÞ2 þ

ffiffiffi
3
p

C2uhnh�
1

h i� �
; ðC:7Þ

where nh�
1 and d� are the dimensionless asperity height and surface

separation normalized by
ffiffiffiffiffiffiffi
mh

0

q
, respectively. uh is a dimensionless

average curvature, uh ¼ �jm=
ffiffiffiffiffiffiffi
mh

4

q
.

Substituting McCool’s input (Eq. (C.1)) into Eqs. (C.6), we have

P�ðd�Þ=
ffiffiffiffiffiffiffi
mh

2

q
¼ 2

9
ffiffiffi
3
p

p
ah
� �3=4

Z 1

d�

Z 0

�1
ðnh�

1 �d�Þ3=2ð�uhÞ�1=2
Uh�ðnh�

1 ;u
hÞduhdnh�

1 ;

ðC:8Þ

A�ðd�Þ¼
ffiffiffiffiffi
ah
p

6
ffiffiffi
3
p

Z 1

d�

Z 0

�1
ðnh�

1 �d�Þð�uhÞ�1
Uh�ðnh�

1 ;u
hÞduhdnh�

1 : ðC:9Þ

For a given dimensionless surface separation, d�, according to
Eqs. (C.8) and (C.9), the corresponding contact ratio, A�, and the

dimensionless contact load, P�=
ffiffiffiffiffiffiffi
mh

2

q
, only in terms of ah, see Eqs.

(C.8) and (C.9).

C.4. Original Greenwood’s Simplified Elliptic Model

Greenwood (2006) obtained the following integral equations for
both dimensionless contact load, P�, and contact ratio, A�, as an
approximation to the BGT model (Bush et al., 1975)

P�ðd�Þ¼ghp

ffiffiffiffiffiffiffi
mh

0

mh
4

s Z 1

d�

Z 1

0
ðnh�

1 �d�Þ3=2
j�g
� �1=2

Uh�ðnh�
1 ;j

�
gÞdj�gdnh�

1 ;

A�ðd�Þ¼gh 4
3
ðmh

0Þ
3

mh
2

" #1=4 Z 1

d�

Z 1

0
ðnh�

1 �d�Þ j�g
� �1

Uh�ðnh�
1 ;j

�
gÞdj�gdnh�

1 ; ðC:10Þ

where the dimensionless joint PDF, Uh�ðn�;j�gÞ is

Uh�ðnh�
1 ;j

�
gÞ¼

9
2
ffiffiffiffiffiffiffi
2p
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ah

ah�1

r
j�g
� 3

erfc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ah�1

2ð2ah�3Þ

s
3j�g�

nh�
1

ffiffiffiffiffi
ah
p

ah�1

" #( )

�exp
�ahðnh�

1 Þ
2

2ðah�1Þ þ
3ðj�gÞ

2

2

" #
; ðC:11Þ

j�g is a dimensionless geometric curvature jg , i.e., j�g ¼ jh
g=

ffiffiffiffiffiffiffi
mh

4

q
.

nh�
1 is a dimensionless asperity height, i.e., nh�

1 ¼ nh
1=

ffiffiffiffiffiffiffi
mh

0

q
. d� is

dimensionless surface separation, d� ¼ d=
ffiffiffiffiffiffiffi
mh

0

q
. erfcðÞ is the

complementary error function.
Substituting McCool’s input (Eq. (C.1)) into Eqs. (C.10), we have
P�ðd�Þ=
ffiffiffiffiffiffiffi
mh

2

q
¼2ðahÞ3=4

9
ffiffiffi
3
p

p

Z 1

d�

Z 1

0
ðnh�

1 �d�Þ3=2
j�g
� �1=2

Uh�ðnh�
1 ;j

�
gÞdj�gdnh�

1 ;

A�ðd�Þ¼
ffiffiffiffiffi
ah
p

6
ffiffiffi
3
p

Z 1

d�

Z 1

0
ðnh�

1 �d�Þ j�g
� �1

Uh�ðnh�
1 ;j

�
gÞdj�gdnh�

1 : ðC:12Þ

Again we notice that, for a given dimensionless surface separa-
tion, d�, the corresponding contact ratio, A�, and the dimensionless

contact load, P�=
ffiffiffiffiffiffiffi
mh

2

q
, are only in terms of ah, see Eqs. (C.12).
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