

Available online at www.sciencedirect.com

Discrete Mathematics 286 (2004) $5-13$

www.elsevier.com/locate/disc

New sufficient conditions for bipancyclic bipartite graphs

Mohamed El Kadi Abderrezzak, Evelyne Flandrin

L.R.I., URA 410 C.N.R.S., Bat. 490, Universit ˆ e de Paris-sud, 91405-OrsayCedex, France

Received 1 November 2001; received in revised form 7 February 2003; accepted 7 November 2003

Available online 7 July 2004

Abstract

We give here two sufficient conditions for a bipartite balanced graph of order $2n$ to be bipancyclic. The first one concerns graphs that satisfy a "bipartite Ore's condition", that is graphs such that any two nonadjacent vertices in both parts of the bipartition have degree sum at least n , and the second one is for bipartite balanced traceable graphs containing an hamiltonian path whose extremities are nonadjacent and have degree sum at least $n + 1$.

c 2004 Elsevier B.V. All rights reserved.

Keywords: Graphs; Bipartite; Cycles; Pancyclic; Closure

1. Introduction and notations

We consider finite undirected graphs without loops or multiple edges. Given a graph G, we denote by $V(G), E(G)$, respectively, the sets of vertices and edges of G. For $A \subseteq V(G)$, G[A] is the subgraph of G induced by A; for $x \in V(G)$, $N_A(x) = \{v \in A: x \in E(G)\}\$ and $d_A(x) = |N_A(x)|$; for $A = V(G)$, we often write $N(x)$ and $d(x)$. The notation $G \cup H$ means the disjoint union of the two graphs G and H (in particular $2G = G \cup G$), and $G + H$ the disjoint union of G and H plus all the edges between G and H. For any integer l, we denote by C_l a cycle of length l. If $C = c_1c_2 \cdots c_l c_1$, $l \geq 3$, is a cycle (represented by the sequence of the vertices passed through), let $C[c_i, c_j]$ be the path $c_i c_{i+1} \cdots c_i$, and $C^{-}[c_i, c_j]$ the path $c_i c_{i-1} \cdots c_j$, where the indices are taken modulo l. For a subset S of $V(C)$, $S^{+}(S^{-})$ denotes the set of the successors (predecessors) of S on C according to the orientation induced by the increasing subscripts. For two vertices u and v, a (u, v) -path is a path connecting u and v, and a hamiltonian (u, v) -path is a path connecting u and v containing all the vertices of $V(G)$. Given any (u, v) -path P and two vertices a and b of P, we will also write $P[a, b]$ for the subpath of P between a and b, including a and b.

The graph G is called *hamiltonian* if it contains a cycle through all the vertices of $V(G)$ and *pancyclic* if it contains cycles of every length between 3 and $|V(G)|$.

G is said to satisfy property P_k if any two nonadjacent vertices of G have degree sum at least k and the k -closure of G, $Cl_k(G)$, is the graph obtained from G by recursively joining pairs of nonadjacent vertices whose degree sum is at least k until no such pair remains.

A bipartite graph G with edge-set $E(G)$ will be denoted by $G = (V_1, V_2, E(G))$ where V_1 and V_2 are the two classes of the bipartition. Moreover G is said to be balanced if $|V_1| = |V_2|$.

Given a bipartite balanced graph $G = (V_1, V_2, E(G))$, we say, as above, that G is *hamiltonian* if it contains a cycle through all its vertices and *bipancyclic* if it contains cycles of every even length between 4 and $|V(G)|$.

Also G is said to satisfy property BP_k if any two nonadjacent vertices x and y with $x \in V_1$ and $y \in V_2$ have degree sum at least k and the k-biclosure of G, $BCl_k(G)$, is the graph obtained from G by recursively joining pairs of nonadjacent vertices that are not in the same part of the bipartition and whose degree sum is at least k until no such pair remains.

E-mail address: fe@lri.fr (E. Flandrin).

For such a bipartite balanced graph G we define a *balanced independent* set of G as an independent subset S of $V(G)$ such that $|S \cap V_1| = |S \cap V_2|$. The *bipartite independence number* $\alpha_{\text{bip}}(G)$ of a balanced bipartite graph G is the order of a largest balanced independent set of G. We denote by \bar{G} the complement of G with respect to $K_{|V_1|,|V_2|}$. If $G=(V_1, V_2, E(G))$ and $H = (V'_1, V'_2, E(H))$, then their disjoint union $G \cup H$ is the bipartite graph $(V_1 \cup V'_1, V_2 \cup V'_2, E(G) \cup E(H))$, and $G + H$ is the disjoint union of G and H plus all the edges between V_1 and V_2' and between V_1' and V_2 . These last definitions are valid even if G and H are not balanced and they are used also in the "degenerated" case $V_1 = \emptyset$ or $V_2 = \emptyset$. Other notations and terminology can be found in [\[7\]](#page-8-0).

In Section 2, at first we recall some well-known results concerning hamiltonicity and pancyclicity of graphs of order n in relation with property P_n (i.e. Ore's condition) and closures Cl_n and Cl_{n+1} . Those general results have a "bipartite" version" for balanced bipartite graphs of order 2n considering property BP_{n+1} and biclosures BCI_{n+1} and BCI_{n+2} . We then give two new sufficient conditions for a bipartite balanced graph to be bipancyclic. The first one (Theorem 11) is obtained as a corollary of a characterization of bipartite balanced graphs that satisfy Property BP_k , $1 \le k \le n + 1$ (Theorem [10\)](#page-2-0) and the second one concerns bipartite balanced graphs that are traceable with degree condition on both extremities of a hamiltonian path (Theorem [12\)](#page-2-0).

In Sections [3,](#page-2-0) [4](#page-5-0) and [5,](#page-7-0) we give the proofs of Theorems [10,](#page-2-0) [11](#page-2-0) and [12,](#page-2-0) respectively.

2. Results

Let us first recall the well-known Ore and Bondy's results about property P_n .

Theorem 1 (Ore [\[15\]](#page-8-0)). *Let* G *be a graph of order* n *satisfying property* Pn. *Then* G *is hamiltonian*.

Theorem 2 (Bondy [\[4\]](#page-8-0)). *Let* G *be a graph of order* n *satisfying property* Pn. *Then* G *is either pancyclic or the bipartite complete graph* $K_{n/2,n/2}$.

As a generalization of Theorem 1, Bondy and Chvátal proved

Theorem 3 (Bondy and Chvátal [\[6\]](#page-8-0)). *A graph* G *of order n is hamiltonian if and only if* $Cl_n(G)$ *is hamiltonian.*

There is no analogous result for pancyclicity but if we assume the closure to be complete, we obtain

Theorem 4 (Faudree et al. [\[9\]](#page-8-0)). Let G be a graph of order n such that $Cl_{n+1}(G) = K_n$. Then G is pancyclic.

Considering now bipartite balanced graphs of order 2n, we get the analogous results replacing property P_n by BP_{n+1} .

Theorem 5 (Moon and Moser [\[14\]](#page-8-0)). Let G be a bipartite balanced graph of order 2n satisfying property BP_{n+1} . Then G *is hamiltonian*.

Theorem 6 (Bagga and Varma [\[3\]](#page-8-0)). Let G be a bipartite balanced graph of order 2n satisfying property BP_{n+1} . Then G *is bipancyclic*.

Concerning biclosure, we also obtain analogous results to Theorems 3 and 4 as follows.

Theorem 7 (Bondy and Chvátal [\[6\]](#page-8-0)). *A bipartite balanced graph* G *of order* 2n *is hamiltonian if and only if* $BCl_{n+1}(G)$ *is hamiltonian*.

Theorem 8 (Amar et al. [\[1\]](#page-8-0)). Let G be a bipartite balanced graph of order 2n such that $BCl_{n+2}(G) = K_{n,n}$. Then G is *bipancyclic*.

In [\[9\]](#page-8-0), Faudree et al. studied the structure of graphs of order *n* that satisfy P_k for some integer k, $1 \le k \le n$ and obtained the following characterization.

Theorem 9 (Faudree et al. [\[9\]](#page-8-0)). Let G be a graph of order $n \geq 4$ that satisfies property P_k for some integer $k, 1 \leq k \leq n$. *Then* $Cl_{k+1}(G) = K_n$ *or G has one of following two forms:*

- (i) $k \geq n-2$ and G is isomorphic to $K_{k+2-n} + (K_r \cup K_{2n-k-2-r})$ or to $\overline{K}_{k+2-n} + (K_r \cup K_{2n-k-2-r})$ for some integer r *with* $1 \leq r \leq 2n - k - 3$.
- (ii) k *is even and* G *is isomorphic to* $A+C$ *where* A *is any graph of order* a *with* $0 \le a \le k/2$ and C *is any* (k/2-a)-*regular graph of order* $n - a$.

In this paper, we consider bipartite balanced graphs of order 2n that satisfy property BP_k for some integer $k, 1 \le k \le n+1$, and show that such graphs whose $(k + 1)$ -biclosure is not complete have a structure belonging to one of the four cases described below.

Theorem 10. Let $G = (V_1, V_2, E(G))$ be a bipartite balanced graph of order 2n satisfying property BP_k for some integer k, $1 \leq k \leq n + 1$. *Then* $BCl_{k+1}(G) = K_{n,n}$ *except in the following cases:*

- 1. $k = n$ and G is isomorphic to $K_{a,a} \cup K_{n-a,n-a}$ for some a, $(n-1)/2 < a \leq n-1$.
- 2. $k = n+1$ *and for some* a, $1 \le a \le n-1$, G *is isomorphic either to* $K_{2,0} + (K_{a-1,a} \cup K_{n-a-1,n-a})$ *or to* $K_{1,1} + (K_{a-1,a-1} \cup K_{a-1,a-1})$ $K_{n-a,n-a}$) *or to* $\bar{K}_{1,1} + (K_{a-1,a-1} \cup K_{n-a,n-a}).$
- 3. k *is even and* G *is isomorphic to* $A + C$ *where* C *is a* (k/2 a)-regular balanced bipartite graph and A *is a balanced bipartite graph on* 2*a vertices*, $0 \le a \le k/2$.
- 4. *There exists some positive integer* $\gamma < k/2$ *and disjoint subgraphs* Γ_1 *and* Γ_2 *of* G *satisfying* $1 \le |V(\Gamma_2) \cap V_1| \le k \gamma$ *and* $|V(T_2) \cap V_2|$ ≤ γ *such that* G *is isomorphic to* $\Gamma_1 + \Gamma_2$ *and the vertices of* Γ_1 *satisfy the degree condition in* G

$$
d_G(x) = \begin{cases} \gamma & \text{if } x \in V(\Gamma_1) \cap V_1, \\ k - \gamma & \text{if } x \in V(\Gamma_1) \cap V_2. \end{cases}
$$

Using Theorem 10 and some results of Amar et al. [\[2\]](#page-8-0), we then prove

Theorem 11. If a bipartite balanced graph G of order $2n$, $n \ge 6$, satisfies property BP_n , then G is bipancyclic or *isomorphic to* \bar{K}_{n-n} + Γ for some integer $\gamma \leq n/2$, where the bipartite graph Γ contains \bar{K}_{n-n}, γ as a spanning subgraph.

Notice that Theorem 11 has Theorem [6](#page-1-0) as a corollary.

We also obtain another sufficient condition for bipancyclicity as follows:

Theorem 12. If a bipartite balanced graph $G = (V_1, V_2, E(G))$ on 2n vertices contains a hamiltonian path connecting two *nonadjacent vertices* $u \in V_1$ *and* $v \in V_2$ *such that* $d(u) + d(v) \ge n + 1$, *then* G *is bipancyclic.*

If $d(u) \geq (n+1)/2$, u *is contained in a* C₄ *and for every* k, $3 \leq k \leq n$, *there exists some* C_{2k} *that contains both* u *and* v.

This last theorem is in fact the "balanced bipartite result" corresponding to the following one proved by Faudree et al. [\[10\]](#page-8-0).

Theorem 13 (Faudree et al. [\[10\]](#page-8-0)). *Let* G *be a graph of order* n *containing a hamiltonian* (u; v)-*path for a pair of nonadjacent vertices* u and v such that $d_G(u) + d_G(v) \ge n$. Then G is pancyclic. If $d(u) \ge n/2$, u is contained in a C₃ *and for every* $k, 4 \leq k \leq n$, *there exists some* C_k *that contains both* u *and* v.

3. Proof of Theorem 10

Suppose that $H = BCl_{k+1}(G) \neq K_{n,n}$. Then, by BP_k for $G, n \geq 2$ and the graph H satisfies the following property denoted by (\star) :

(\star) $d_H(x) + d_H(y) = k$ for every nonedge (xy) in H with x in V_1 and y in V_2 .

Let A, B, C denote the subsets of vertices with degree in H , respectively, strictly greater than, strictly less than and equal to $k/2$. For $i = 1, 2$ put $A_i = V_i \cap A$; $B_i = V_i \cap B$; $C_i = V_i \cap C$ and a_i, b_i, c_i their respective cardinalities.

First of all, we notice that the bipartite subgraphs induced in H by A and B are complete since two nonadjacent vertices $x \in A_1$, $y \in A_2$ ($x \in B_1$, $y \in B_2$) have a degree-sum greater than k (less than k), respectively. Analogous arguments imply that the vertices of $A \cup B$ are adjacent in H to the vertices of C that are not in the same part of the bipartition. Consequently, H contains $(K_{a_1,a_2} \cup K_{b_1,b_2}) + \bar{K}_{c_1,c_2}$ as a spanning subgraph. We deduce that if $C_1 \neq \emptyset$ then, by the definition of C_1 , we have $a_2 + b_2 \le k/2$ and thus $c_2 \ge n - k/2 \ge n - (n+1)/2 \ge \frac{1}{2}$, i.e. $c_2 \ge 1$. In other words $C_2 \ne \emptyset$. Analogously, $C_2 \neq \emptyset$ implies $C_1 \neq \emptyset$. Moreover if $C_1 = C_2 = \emptyset$ then at least one of B_1 and B_2 is not empty otherwise H would be complete.

Without loss of generality, one of the following three cases occurs:

Case 1: $C_1 \neq \emptyset$ and $C_2 \neq \emptyset$ (*k* is even).

By the definition of C_1 and C_2 we have $a_i + b_i \le k/2$ and thus $c_i \ge n - k/2$ for $i = 1, 2$. *Subcase* 1.1: $1 \leq k \leq n$.

Since, for $i=1,2, c_i \ge n-k/2 \ge k/2$, then necessarily $B=\emptyset$ (if not, every vertex in B_i would be adjacent to at least $k/2$ vertices in C_i , $j \neq i$). This implies that for every x in C_1 and y in C_2 we have $d_C(x) = k/2 - a_2$ and $d_C(y) = k/2 - a_1$. By considering the number of edges between C₁ and C₂ we obtain $(n-a_1)(k/2-a_2)=(n-a_2)(k/2-a_1)$, whence $a_1 = a_2$ and $c_1 = c_2$. So H is isomorphic to $K_{a,a} + C^*$, where C^* is a $(k/2 - a)$ -regular bipartite graph of order $2(n - a)$; $0 \le a \le k/2$. *Subcase* 1.2: $k = n + 1$.

- If $B=\emptyset$ then, by similar argument, we obtain H isomorphic to $K_{a,a} + C^*$ where C^* is a $((n+1)/2-a)$ -regular bipartite graph of order $2(n - a)$, $0 \le a \le (n + 1)/2$.
- If $B_1 \neq \emptyset$ then $b_2 + c_2 \leq (n-1)/2$. But since $c_2 \geq (n-1)/2$, then necessarily $b_2 = 0$, $c_2 = (n-1)/2$ and $a_2 = (n+1)/2$. By considering the degree of vertices of C_1 and B_1 , we deduce that $E_H[C_1, C_2] = E_H[B_1, A_2] = \emptyset$.

Given y in A_2 , y has degree $a_1 + c_1$ but also $k - (n - 1)/2$ since y has no adjacency in B_1 and every vertex in B₁ has degree $(n - 1)/2$, whence $d_H(y) = a_1 + c_1 = (n + 3)/2$. Moreover, every vertex in C₂ has exactly $a_1 + b_1$ neighbors and so $a_1 + b_1 = (n + 1)/2$, $c_1 = (n - 1)/2$, $a_1 = 2$ and $b_1 = (n - 3)/2$. The graph H is isomorphic to $K_{2,0} + (K_{(n-3)/2,(n-1)/2} \cup K_{(n-1)/2,(n+1)/2}).$

Case 2: $C = \emptyset$, $B_1 \neq \emptyset$ and $B_2 \neq \emptyset$.

H contains the spanning subgraph $K_{a_1,a_2} \cup K_{b_1,b_2}$ with $a_i + b_i = n$ for $i = 1,2$. Without loss of generality, assume that $a_1 + b_2 \le n \le a_2 + b_1$. By considering the degree of the vertices of H, we deduce that $1 \le b_i < (n + 1)/2$ and thus $(n-1)/2 < a_i \le n-1$, $i=1,2$. If $a_2 + b_1 \ge n+2$ then $d_H(x) + d_H(y) \ge a_2 + b_1 \ge k+1$ for every x in A_1 and y in B_2 , whence y is adjacent to every vertex in A_1 and hence it has degree n, a contradiction. Therefore $n \le a_2 + b_1 \le n + 1$.

Subcase 2.1: $a_2 + b_1 = n$. Then $a_1 = a_2 = a$ and $b_1 = b_2 = b$.

- If $k \le n-1$ then $BCl_{k+1}(K_{a,a} \cup K_{n-a,n-a}) = K_{n,n}$ and thus $H = K_{n,n}$, a contradiction. Therefore $k \ge n$.
- If $k = n$ then $H = K_{a,a} \cup K_{n-a,n-a}$ (H cannot have additional edges, otherwise, by (\star) , we would get a vertex $x \in B$ with $d_H(x) = b + a = n > n/2$, a contradiction).
- If $k = n + 1$ then $b \le d_H(y) \le b + 1$ for every y in B_1 . Otherwise, if $d_H(y) \ge b + 2$ for some y in B_1 then, since $d_H(y) < k/2 \le n$, there exists some x in A_2 nonadjacent to y and $d_H(x) + d_H(y) \ge a + b + 2 = k + 1$, a contradiction with (\star) .

Suppose now there exists some y in B₁ (or B₂) such that $d_H(y) = b$. Then, by (\star) , $d_H(x) = a + 1$ for every x in A₂ and thus necessarily $b \ge 2$ and x is adjacent to some y' in $B_1 - \{y\}$. Because of $d_H(y') < k/2 \le n$ there is an x' in A_2 nonadjacent to y'. Then, by (\star) , $d_H(x') = n+1-d_H(y') \leq n+1-(b+1)=a$, a contradiction. We then have $d_H(y)=b+1$ for every y in B₁. Hence the vertices of B₁ are adjacent to the same vertex x of A₂, for otherwise if $y_1x_1 \in E(H)$ and $y_2x_2 \in E(H)$ with $x_1 \neq x_2$ then $d_H(y_1) + d_H(x_2) \geq b + 1 + a + 1 = k + 1$, a contradiction with (\star) since $y_1x_2 \notin E(G)$. Analogously with B₂ instead of B₁ and so $H = K_{1,1} + (K_{a-1,a-1} \cup K_{n-a,n-a}).$

Subcase 2.2: $a_2 + b_1 = n + 1$.

Then H contains $K_{a,a+1} \cup K_{b,b-1}$ as a spanning subgraph, with $b \ge 2$ $(a = a_1, b = b_1, a_2 = a + 1, b_2 = b - 1)$ and there are necessarily missing edges between A_1 and B_2 as between A_2 and B_1 .

Let us choose x in A_1 and y in B_2 that are not adjacent. They satisfy $d_H(x) + d_H(y) \ge a + 1 + b = n + 1$, so necessarily $k = n + 1$, $d_H(x) = a + 1$ and $d_H(y) = b$.

Assume there is some edge uv, $u \in A_1$, $v \in B_2$. Then $d_H(u) \ge a + 2$ and every vertex in B_2 has a degree sum with vertex u greater than k, which implies by (\star) that u is adjacent to every vertex in B₂. Symmetrically, $d_H(v) \geq b+1$ and v is adjacent to every vertex in A₁. We now observe that any two vertices $u' \in A_1$ and $v' \in B_2$ have degree sum greater than k and so are adjacent, a contradiction.

We then deduce $E_H(A_1, B_2) = \emptyset$ which implies $b < (n + 1)/2 < a + 1$.

If there exists y in B₁ with $d_H(y) = b - 1$, then, by (★), every vertex in A_2 has degree equal to $k - (b - 1) = a + 2$, whence there are at least two vertices of B_1 that are in the neighborhood of A_2 and so have degree at least b. Again from (\star), such vertices are adjacent to every vertex in A_2 , and therefore, they would have degree $n \geq k/2$, which contradicts the definition of B. Hence $d_H(y) \ge b$ for every y in B_1 .

Suppose that for every x in A₂ we have $d_H(x) \le n - 1$, that is x has (at least) one nonadjacency y_x in B₁. Thus $d_H(x) + d_H(y_x) = k = n + 1$. Since $d_H(y_x) \geq b$, we deduce $d_H(x) \leq a + 1$, and x has at most one neighbor in B_1 .

If $d_H(x) = a$, x has no adjacency in B₁ and every vertex in B₁ has degree $k - a = b + 1$, whence there is some $x' \in A_2$ with degree at least $a+1$ and so, from (\star) , adjacent to every vertex in B_1 , a contradiction with $d_H(x') \le n-1$. Therefore, for every x in A_2 , we have $d_H(x) = a + 1$. Consequently, $d_H(y_x) = b$ and y_x has exactly one neighbor in A_2 ; this holds for every vertex y_x in B_1 being nonadjacent to x, hence for every vertex in B_1 but the one which is adjacent to x. Since each vertex in A_2 has exactly one neighbor in B_1 and $|B_1| = b < a + 1 = |A_2|$, there is a vertex y in B_1 which has at least two neighbors in A_2 . Then $d_H(y) \ge b+1$ and it follows that y is adjacent to every vertex x in A_2 . This implies $d_H(v) = n \ge k/2$, a contradiction. So there exists a vertex in A_2 with degree n.

We denote by S, the set of such vertices and by R its complement in A_2 . It follows $R \neq \emptyset$, otherwise $d_H(y) = n \geq k/2$ for every y in B₁, a contradiction. Given an x in R, there is some y in B₁ nonadjacent to x. Then $d_H(x) + d_H(y)=n+1 \geq$ $a + b - 1 + |S| = n + |S| - 1$. So $1 \le |S| \le 2$.

Assume first $|S| = 1$ and $\{s\}$. We know (from $b \ge 2$ and $|R| = a > b - 1$) that $|R|$ is at least 2 and every vertex in B_1 is adjacent to s, whence either $d_H(x) = a$ and $d_H(y) = b + 1$, or $d_H(x) = a + 1$ and $d_H(y) = b$. This is true for every vertex y of B_1 being nonadjacent to x.

- If $d_H(x) = a$ and $d_H(y) = b + 1$ then y has exactly one neighbour x' in R. Let y' in B₁ nonadjacent to x'. Then $d_H(x') + d_H(y') = n + 1$ and necessarily $d_H(x') = a + 1$ and $d_H(y') = b$. Thus $d_H(x) + d_H(y') \neq k$, a contradiction with (\star) and with the fact that x is not adjacent to y'.
- If $d_H(x) = a + 1$ and $d_H(y) = b$, then y has no adjacency in R and then, given x' in R we have, by (\star) , $d_H(x') =$ $n+1-d_H(y) = n+1-b = a+1$. Let z be the only neighbor of x in B_1 , z is adjacent to s and x and cannot be adjacent to x', otherwise it would have degree sum greater than k with every vertex in A_2 and would be adjacent to every vertex in A₂. However we have $d_H(x') + d_H(z) \ge (a+1) + (b+1) > k$, a contradiction with (\star) . Therefore $|S| = 2$ and consequently $d_H(x) = a$, $d_H(y) = b + 1$. This is valid for every $x \in R$ and every $y \in B_1$ being

nonadjacent to x, hence for every $y \in B_1$. Thus $E_H(B_1, R) = \emptyset$.

So H is isomorphic to $K_{0,2} + (K_{a,a-1} \cup K_{n-a,n-a-1}).$ *Case* 3: $C = \emptyset$, $B_2 = \emptyset$, $B_1 \neq \emptyset$. Then H contains $K_{a,n} \cup K_{n-a,0}$ as spanning subgraph, where $a = |A_1|$. Suppose $|B_1| \geq 2$.

- If $k \le n$ then, by definition of B_1 , for any two vertices x_1 and x_2 in B_1 we have $d_H(x_1) + d_H(x_2) < k \le n$. This implies that there exists some y in A₂ adjacent neither to x_1 nor to x_2 . Then, by (\star) , $d_H(x_1) + d_H(y) = k = d_H(x_2) + d_H(y)$ and thus $d_H(x_1) = d_H(x_2)$.
- If $k = n + 1$, assume that there exist two vertices x_1 and x_2 in B_1 for which $d_H(x_1) < d_H(x_2) < (n + 1)/2$. Then $d_H(x_1) + d_H(x_2) \leq 2d_H(x_2) - 1 < n$, also there exists y in A_2 adjacent neither to x_1 nor to x_2 , in contradiction with (\star) and $d_H(x_1) < d_H(x_2)$.

Hence all the vertices of B_1 have the same degree γ in H and $\gamma < k/2$ from definition of B_1 . If S denotes the vertices of A_2 with degree n and $\beta = |S|$, we clearly have $\beta \le \gamma < k/2$.

There is a vertex of A_2 with degree at most $n-1$ and for every such vertex y there exists some x in B_1 nonadjacent to y. Then, by (\star) , $d_H(y) = k - d_H(x) = k - \gamma > k/2$.

Consequently, for some $\gamma < k/2$, $H = K_{a,\beta} + \Gamma_1$, $1 \le a \le k - \gamma$, $\beta \le \gamma$ and

$$
d_H(x) = \begin{cases} \gamma & \text{if } x \in V(\Gamma_1) \cap V_1, \\ k - \gamma & \text{if } x \in V(\Gamma_1) \cap V_2. \end{cases}
$$

Remark 1. With the above notations, in the case when $\beta = \gamma$, we have $E(B_1, A_2 - S) = \emptyset$, $a = k - \gamma$ and H is isomorphic to $K_{k-\gamma,\gamma} + \bar{K}_{n-k+\gamma,n-\gamma}$, that is $\Gamma_1 = \bar{K}_{n-k+\gamma,n-\gamma}$.

We have now characterized the graph H but we need to go back to the initial graph G to achieve the proof of Theorem [10.](#page-2-0) Let us notice that a vertex which has at least one nonadjacency in H has exactly the same neighbors in G as in H but if it is adjacent to every possible vertex of H, it can have in H more neighbors than in G. Using this observation, we examine the different cases and subcases of the above proof.

In Subcases 1.1 and 1.2 when $B = \emptyset$, since H is isomorphic to $K_{a,a} + C^*$, where C^* is a $(k/2 - a)$ -regular bipartite graph of order $2(n - a)$; $0 \le a \le k/2$, we get $G = A^* + C^*$, where C^* is the same $(k/2 - a)$ -regular bipartite graph of order 2(n − a); $0 \le a \le k/2$, and A^* is a bipartite balanced graph of order 2a. This is Case 3 of Theorem [10.](#page-2-0)

In Subcase 1.2 when $B \neq \emptyset$, H is isomorphic to $K_{2,0} + (K_{(n-3)/2,(n-1)/2} \cup K_{(n-1)/2,(n+1)/2})$, G is isomorphic to H and we are in Case 2 of Theorem [10](#page-2-0) with $a = (n-1)/2$.

In Subcase 2.1

- If $k = n$ then G is isomorphic to $H = K_{a,a} \cup K_{n-a,n-a}$, $(n-1)/2 < a \leq n-1$ and this is Case 1 of Theorem [10.](#page-2-0)
- If $k = n+1$, $H = K_{1,1} + (K_{a-1,a-1} \cup K_{n-a,n-a})$, $(n-1)/2 < a \le n-1$ and G is isomorphic to $K_{1,1} + (K_{a-1,a-1} \cup K_{n-a,n-a})$ or to $\bar{K}_{1,1} + (K_{a-1,a-1} \cup K_{n-a,n-a})$, that is Case 2 of Theorem [10.](#page-2-0)

In Subcase 2.2, G is isomorphic to $H = K_{0,2} + (K_{a,a-1} \cup K_{n-a,n-a-1}), (n-1)/2 < a \leq n-2$, that is also Case 2 of Theorem [10](#page-2-0)

In Case 3, for some $\gamma < k/2$, $H = K_{a,\beta} + \Gamma_1$, $1 \le a \le k - \gamma$, $\beta \le \gamma$, with

$$
d_H(x) = \begin{cases} \gamma & \text{if } x \in V(\Gamma_1) \cap V_1, \\ k - \gamma & \text{if } x \in V(\Gamma_1) \cap V_2. \end{cases}
$$

and G is isomorphic to $\Gamma_1 + \Gamma_2$, where Γ_1 is the same as above and Γ_2 is a subgraph of $K_{\alpha,\beta}$.

We then are in Case 4 of Theorem [10](#page-2-0) which is now proved. \Box

Remark 2. The special case of Remark 1 when $\gamma = \beta$ corresponds to $\Gamma_1 = \bar{K}_{n-k+\gamma,n-\gamma}$ and Γ_2 is a bipartite subgraph of $K_{k-\gamma,\gamma}$. Notice that if $k = n$, G is equal to $\overline{K}_{\gamma,n-\gamma} + \Gamma_2$ where Γ_2 is a bipartite subgraph of $K_{n-\gamma,\gamma}$, and if moreover $\overline{Y}_2 = \overline{K}_{n-\gamma,\gamma}$, we then obtain for G the graph $K_{\gamma,\gamma} \cup K_{n-\gamma,n-\gamma}$.

4. Proof of Theorem [11](#page-2-0)

Before proving Theorem [11](#page-2-0) we first give a useful result due to Amar, Ordaz, Raspaud, that can be found in [\[2\]](#page-8-0) (the fact that for G nonhamiltonian we have $d(x_1) = d(x_n) = d(y_1) = d(y_n) = \delta(G)$ is not stated explicitly as a result by itself but is a direct consequence of Claims $1-5$ in the proof of Proposition 2 taking $p = 1$).

Theorem 14. *Let* G *be a balanced bipartite graph of order* 2n, *with minimum degree* '(G) *and bipartite independence number* $\alpha_{\text{bin}}(G)$. *If* $\alpha_{\text{bin}}(G) \leq 2\delta(G) - 2$, then G is hamiltonian except in the case $\alpha_{\text{bin}}(G) = 2\delta(G) - 2$ and G is either *isomorphic to* $3K_{p,p} + K_{1,1}$ *or to* $3K_{p,p} + \bar{K}_{1,1}$ *or it contains a cycle* $C = x_1y_1 \ldots x_{n-1}y_{n-1}x_1$ *of length* $2n - 2$ *such that* $G - C$ *is an edge* $x_n y_n$. Moreover, *in this last case*, *if* $G - \{x_n, y_n\} \neq K_{n-1,n-1}$, *w.l.o.g. we can suppose that* x_n *is adjacent to* y_{n-1} *but not to* y_1 *, and we get* $d(x_1) = d(x_n) = d(y_1) = d(y_n) = \delta(G)$; *if* $G - \{x_n, y_n\} = K_{n-1,n-1}$ *, then it follows* $\delta(G) = 1$ *and in fact* $d(x_n) = 1$ *or* $d(y_n) = 1$.

Proof of Theorem [11.](#page-2-0) Let G be a bipartite balanced graph of order $2n$ satisfying property BP_n .

Claim 1. *If* $BCl_{n+1}(G)$ *is not equal to* $K_{n,n}$ *, then one of the following occurs:*

- 1. n *is even and* G *is isomorphic to* $A + C$ *where* C *is a* $(n/2 a)$ -regular balanced bipartite graph and A *is a balanced bipartite graph on* 2*a vertices*, $0 \le a \le n/2$.
- 2. *There exist some positive integer* $\gamma < \le n/2$ *and disjoint subgraphs* Γ_1 *and* Γ_2 *of* G *satisfying* $1 \le |V(\Gamma_2) \cap V_1| \le n-\gamma$ *and* $|V(T_2) \cap V_2|$ ≤ γ *such that* G *is isomorphic to* $\Gamma_1 + \Gamma_2$ *and the vertices of* Γ_1 *satisfy the degree condition in* G

$$
d_G(x) = \begin{cases} \gamma & \text{if } x \in V(\Gamma_1) \cap V_1, \\ n - \gamma & \text{if } x \in V(\Gamma_1) \cap V_2. \end{cases}
$$

Proof. This claim is a direct consequence of Theorem [10](#page-2-0) with $k = n$. The possible exception graph $K_{a,a} \cup K_{n-a,n-a}$; $(n-1)/2 < a \le n-1$, obtained from Case 1 of Theorem [10,](#page-2-0) is in fact a subcase of the above Case 2 as noticed in Remark 2 of the preceding section (and since a can be equal to $n/2$, we assume $\gamma \leq n/2$ and not $\gamma < n/2$). \Box

Claim 2. $\alpha_{\text{bin}}(G) \leq 2\delta(G)$.

Proof. Suppose that G contains an independent set $\overline{K}_{\alpha,\alpha}$ with $\alpha > \delta(G)$, and let x be a vertex of degree $\delta(G)$. Then for each y nonadjacent to x, $d_G(y) \ge n - \delta > n - \alpha$. So there are at least $n - \delta$ vertices of degree at least $n - \alpha + 1$, and thus at least one of them is in $\bar{K}_{\alpha,\alpha}$ and has a neighbor in $\bar{K}_{\alpha,\alpha}$, a contradiction. \Box

Claim 3. G is hamiltonian or it is isomorphic to $\Gamma + \overline{K}_{\gamma,n-\gamma}$ where $\Gamma \supseteq \overline{K}_{n-\gamma,\gamma}$ with $1 \leq \gamma \leq n/2$.

Proof. Suppose that G is not hamiltonian. Then by Theorem [14](#page-5-0) and Claim [2](#page-5-0) two cases can occur: *Case* 1: $\alpha_{\text{bin}}(G) = 2\delta(G) - 2$.

If G is isomorphic to $3K_{p,p}+K_{1,1}$ or $3K_{p,p}+\bar{K}_{1,1}$ then, by BP_n , we get $n=3p+1=4$ which contradicts $n \ge 6$. Therefore, by Theorem [14,](#page-5-0) G contains a cycle $C = x_1y_1 \cdots x_{n-1}y_{n-1}x_1$ such that $G - C$ is an edge x_ny_n with $x_ny_{n-1} \in E(G)$ and $x_ny_1 \notin E(G)$. If $G - \{x_n, y_n\} = K_{n-1,n-1}$, then it follows that G is isomorphic to $\Gamma + \overline{K}_{1,n-1}$, with $\Gamma \supseteq \overline{K}_{n-1,1}$, i.e. Claim [3](#page-5-0) for $\gamma = 1$. If $G - \{x_n, y_n\} \neq K_{n-1,n-1}$, then, by Theorem [14,](#page-5-0) $d(x_1) = d(x_n) = d(y_1) = d(y_n) = \delta = \delta(G)$. Since $x_1y_n \notin E(G)$ and $x_{n-1}y_n \notin E(G)$, using BP_n , we get $2\delta = d(x_1) + d(y_n) \geq n$ and thus $\delta \geq n/2$. If we assume $\delta > n/2$ then for every $x \in V_1$, $y \in V_2$, $d(x) + d(y) \ge 2\delta \ge n+1$, thus G satisfies BP_{n+1} and is hamiltonian by Theorem [5,](#page-1-0) a contradiction. Therefore, $\delta(G) = n/2$. Since G is not hamiltonian, we have necessarily $(N_C^+(x_n) \cup N_C^-(x_n)) \cap N_C(y_n) = \emptyset$. This implies that $N_c(x_n) = \{y_{n/2+1},...,y_{n-1}\}\$ and $N_c(y_n) = \{x_2,...,x_{n/2}\}\$. Let $i \in \{n/2+1,...,n-1\}$. It is easy to check that x_i is not adjacent to y₁ otherwise we obtain a hamiltonian cycle $C' = x_n y_n x_2 C[x_2, x_i] x_i y_1 C^{-}[y_1, y_i] y_i x_n$. Using a similar argument, we get that x_i is not adjacent to $y_{n/2}$. Since $d(x_i) \ge \delta = n/2$ and $|\{y_{n/2+1},...,y_{n-1}\}| = n/2 - 1$, there exists $k \in \{2, ..., n/2-1\}$ such that x_iy_k is an edge of G. Then $C' = x_iy_kC^{-}[y_k, y_i]y_ix_ny_nx_{k+1}C[x_{k+1}, x_i]x_i$ is a hamiltonian cycle, a contradiction.

Case 2: $\alpha_{\text{bip}}(G) = 2\delta(G)$.

If $BCl_{n+1}(G) = K_{n,n}$, we know that G would be hamiltonian because of Theorem [7,](#page-1-0) a contradiction. Thus $BCl_{n+1}(G) \neq$ $K_{n,n}$ and Claim [1](#page-5-0) can be applied.

Subcase 2.1: If G has form (1) in Claim [1,](#page-5-0) then $\delta(G) = n/2$ and a balanced independent set of cardinality $\alpha_{\text{bio}}(G)$ $2\delta(G) = n$ is necessarily a subset of A or of C. In the first case, because of $\alpha_{\text{bip}}(G) = n$, we see that $a = n/2$, and C and A are isomorphic to $\bar{K}_{n/2,n/2}$, i.e., we have Claim [3](#page-5-0) with $\gamma = n/2$ and $\Gamma = \bar{K}_{n/2,n/2}$; so we only consider the second case when C contains an induced subgraph $\bar{K}_{n/2,n/2}$. Since C is $(n/2 - a)$ -regular, every $x \in \bar{K}_{n/2,n/2}$ has $(n/2 - a)$ neighbors in $C' = C - \overline{K}_{n/2,n/2}$. Since $|C'| = 2((n - a) - n/2) = 2(n/2 - a)$, every x in one of the two vertex-classes (the first or the second) of $\bar{K}_{n/2,n/2}$ is adjacent to every y in the other vertex-class (the second or the first, respectively) of C', hence it follows $C = \overline{K}_{n/2,n/2} + C'$. Since for every y in C', $n/2 - a = d_C(y) \ge n/2$ we get $d(y) \ge n/2$, $|A| = a = 0$, and G is isomorphic to $C = \bar{K}_{n/2,n/2} + \Gamma$ $C = \bar{K}_{n/2,n/2} + \Gamma$ $C = \bar{K}_{n/2,n/2} + \Gamma$, with $\Gamma = C' = \bar{K}_{n/2,n/2}$, i.e. we have landed at Claim [3](#page-5-0) with $\gamma = n/2$. (By Remark 2, G is also isomorphic to $2K_{n/2,n/2}$.)

Subcase 2.2: If G has form (2) in Claim [1,](#page-5-0) the structure of G depends on the integer $\gamma \le n/2$.

We first suppose that we are in the case when $\gamma < n/2$.

We know that G is isomorphic to $\Gamma_1 + \Gamma_2$ with $d_G(x) = \gamma$ if $x \in V(\Gamma_1) \cap V_1$ and $d_G(x) = n - \gamma$ if $x \in V(\Gamma_1) \cap V_2$. Let us recall the exact structure of G that was obtained from Case 3 of the proof of Theorem [10](#page-2-0) (since we have assumed $\gamma < n/2$). We have $V_1 = A_1 \cup B_1$ where A_1 corresponds to the vertices of V_1 with degree (in the biclosure) more than $n/2$, $|A_1| = a \ge 1$ and B_1 consists of vertices of degree γ . The set $V_2 = A_2$ has all its vertices of degree (in the biclosure) more than $n/2$ and contains a subset S of cardinality β whose vertices have degree n while the other vertices have degree $n - \gamma$. The graph Γ_1 corresponds to the bipartite subgraph induced by $(B_1, V_2 - S)$ and Γ_2 is a subgraph of $K_{a,b}$ with the same vertex set. These properties imply $\beta \leq \gamma$, $\delta(G) = \gamma$ and there is a balanced independent set of cardinality $\alpha_{\text{bin}}(G) = 2\delta(G) = 2\gamma$ which is a subset of $V(T_1)$. Also we have $n \ge a + \gamma$ and we will distinguish two cases corresponding to equality or strict inequality in this formula.

- If $n=a+\gamma$, we get $\beta=\gamma$ (namely, because every $y \in A_2-S$ is adjacent to all vertices of A_1 and has degree $d_G(y)=n-\gamma$, and since $|A_1| = a = n - \gamma$, it follows that the $n - a = \gamma \geq 1$ vertices of B_1 having degree γ can be adjacent only to vertices of S and therefore, $\beta \ge \gamma$; so we are in the case of Remark [2,](#page-5-0) that is $G = \overline{K}_{\gamma,n-\gamma} + \Gamma$ where Γ contains $\overline{K}_{n-\gamma,\gamma}$ as a spanning subgraph. This case corresponds to the exception graph of Claim [3](#page-5-0) and is clearly not hamiltonian.
- If $n > a + \gamma$, consider a balanced independent set (W_1, W_2) , $W_1 \subseteq V_1 \cap V(\Gamma_1)$, $W_2 \subseteq V_2 \cap V(\Gamma_1)$.

Every vertex y in W_2 satisfies $d_G(y) = n - \gamma$ and so is adjacent to the $n - a - \gamma$ vertices in $B_1 - W_1$ which is not empty by our assumption. Moreover, every vertex x in $B_1 - W_1$ has degree γ and consequently has no neighbors out of W_2 . We then deduce that S is empty, i.e. $\beta = 0$, since vertices of $B_1 - W_1$ should be adjacent to every vertex in S, and Γ_1 is isomorphic to $K_{n-a-\gamma,\gamma} \cup \Gamma_0$, where Γ_0 is induced by $(W_1, V_2 - W_2)$. Therefore G is isomorphic to $K_{a,0} + (K_{n-a-\gamma,\gamma} \cup \Gamma_0)$.

On the other hand, let us consider the bipartite balanced graph G' with $2(a+\gamma)$ vertices equal to $K_{a,0} + (K_{0,2+\gamma-a-n} \cup F_0)$, i.e. the subgraph of G obtained by suppressing $B_1 - W_1$ in V_1 and a subset T in W_2 with $n - a - \gamma$ vertices, which is possible since $\gamma \geqslant n - a - \gamma$ can be verified.

The degree in G' of the vertices of $V(T_0) \cap V_1$ and $V(T_0) \cap V_2$ is still equal to γ and $n-\gamma$, respectively, and every vertex in $V(F_0) \cap V_1$ has at least one nonadjacency in $V(F_0) \cap V_2$. Using this remark together with $n > a + \gamma$, it is easy to check that the graph $BCl_{a+\gamma+1}(G')$ is the complete bipartite graph $K_{a+\gamma,a+\gamma}$, and then, by Theorem [7,](#page-1-0) the graph G' is hamiltonian.

We can easily extend a hamiltonian cycle of G' to a hamiltonian cycle of G, replacing the edge uv, $u \in A_1$ and $v \in W_2-T$ (that necessarily exists if we assume that $T \neq W_2$, i.e. $\gamma > n - a - \gamma$) by *uwPtv* where $w \in N_G(u) \cap T$, $t \in N_G(v) \cap (B_1 - W_1)$ and P is a path from w to t containing all the vertices of the bipartite subgraph of G induced by $(B_1 - W_1, T)$. So G is hamiltonian, a contradiction. Now we have to consider the case $\gamma = n - a - \gamma$, i.e. $T = W_2$. Then it can be easily proved that every $x \in B_1 - W_1$ is adjacent to every $y \in W_2$ and nonadjacent to every $y \in V_2 - W_2$ and that every $y \in V_2 - W_2$ is adjacent to every $x \in A_1 \cup W_1$. This implies that the subgraph of G induced by $(B_1 - W_1, V_2 - W_2)$ is isomorphic to $\overline{K}_{n-a-\gamma,n-\gamma} = \overline{K}_{\gamma,n-\gamma}$ and, if Γ denotes the subgraph of G induced by $(A_1 \cup W_1, W_2)$, that G is isomorphic to $\Gamma + \overline{K}_{\gamma,n-\gamma}$ and $\Gamma \supseteq \overline{K}_{n-\gamma,\gamma}$. Thus we have gotten the assertion of Claim [3](#page-5-0) and the case when $\gamma < n/2$ is finished.

If we consider now the case when $\gamma=n/2$, we can also obtain easily that G is isomorphic to $\bar{K}_{n/2,n/2}+ \Gamma$ with $\Gamma \supseteq \bar{K}_{n/2,n/2}$ as a spanning subgraph and Claim [3](#page-5-0) is now proved. \Box

Claim 4. *If* G *is hamiltonian then it is bipancyclic*.

Proof. Let $I = \{(i, j)|x_i y_j \notin E(G)\}\$ and $m = |E(G)|$. Then $d(x_i) + d(y_i) \geq n$ for each $(i, j) \in I$. Hence

$$
\sum_{(i,j)\in I} (d(x_i) + d(y_j)) \ge n(n^2 - m) \Leftrightarrow \sum_{i=1}^n d(x_i)(n - d(x_i)) + \sum_{j=1}^n d(y_j)(n - d(y_j)) \ge n(n^2 - m)
$$

$$
\Leftrightarrow \sum_{i=1}^n d^2(x_i) + \sum_{j=1}^n d^2(y_j) - 3nm + n^3 \le 0.
$$

By the Cauchy Schwarz inequality we have

$$
\left(\sum_{i=1}^n d(x_i)\right)^2 \leq n \sum_{i=1}^n d^2(x_i) \quad \text{ and } \quad \left(\sum_{i=1}^n d(y_i)\right)^2 \leq n \sum_{i=1}^n d^2(y_i).
$$

This observation and the fact that $\sum_{i=1}^{n} d(x_i) = \sum_{i=1}^{n} d(y_i) = m$, imply $\sum_{i=1}^{n} d^2(x_i) \geq m^2/n$ and $\sum_{i=1}^{n} d^2(y_i) \geq m^2/n$. Using these minorations, we then obtain

$$
\frac{2m^2}{n} - 3mn + n^3 \leq 0.
$$

Therefore $m \ge n^2/2$. We know from the following theorem of Schmeichel and Mitchem [\[13\]](#page-8-0) that G is bipancyclic as soon as $m > n^2/2$. If $m = n^2/2$, then, by property BP_n , we can show that G is $n/2$ -regular which can be proved to be impossible. Hence G is bipancyclic.

Theorem 15 (Mitchem and Schmeichel [\[13\]](#page-8-0)). *Let* G *be a hamiltonian bipartite balanced graph of order* 2n *and size* m. *If* $m > n^2/2$, *then G is bipancyclic*.

Claim 4 is now proved and also Theorem [11](#page-2-0) which is a direct consequence of Claims [1–](#page-5-0)4. \Box

5. Proof of Theorem [12](#page-2-0)

Let us first recall the following result of Schmeichel and Mitchem that appears in the proof of Lemma 1 of [\[12\]](#page-8-0).

Theorem 16. Let G be a bipartite graph containing a hamiltonian cycle $C = x_1y_1 \cdots x_ny_nx_1$. If $d(x_1) + d(y_n) \ge n + 2$ *then for every* $k, 2 \leq k \leq n$, G *contains a cycle* C_{2k} *of one of the following forms:*

(1) $x_1y_px_{p+1}y_{p+1} \cdots x_{p+k-1}y_nx_1$ *for some* $p, 1 \leq p \leq n-k+1$,

(2) $x_1y_px_{p+1}y_{p+1} \cdots x_ny_nx_{k+p-n}y_{k+p-n} \cdots y_1x_1$ *for some* $p, n-k+2 \leq p \leq n-1$.

Proof of Theorem [12.](#page-2-0) Let $P = x_1y_1x_2y_2 \cdots x_ny_n$ be a hamiltonian path of G such that $x_1 = u$, $x_2 = v$.

We have assumed that $d(u) = d(x_1) \geq (n+1)/2$. Consequently, there exists some $i \leq n-2$ such that y_i and y_{i+1} are adjacent to x_1 , and some j, $2 \le j \le n - 1$, such that $x_j y_n \in E(G)$ and $y_j x_1 \in E(G)$. So G contains a C_4 containing u and a C_{2n} .

We now consider cycles of length $2k$, $3 \le k \le n - 1$.

By the degree assumption, $|\{i/x_1y_i \in E(G) \text{ and } y_nx_{i+1} \in E(G)\}| \geq 2$. Let

$$
d = \max\{i/x_1y_i \in E(G) \text{ and } y_nx_{i+1} \in E(G)\}
$$

and $W = P[x_{d+1}, y_n]$

Without loss of generality, we assume that $d \ge (n + 1)/2$. (Otherwise we can consider the path P⁻¹ instead of P.) We define a bipartite balanced graph H on $2d$ vertices by

$$
V(H) = \{x_1, \ldots, x_d\} \cup \{y_1, \ldots, y_d\}
$$

and

$$
E(H) = \{x_i y_i/1 \le i \le d\} \cup \{y_i x_{i+1}/1 \le i \le d-1\} \cup \{x_1 y_i \in E(G)/1 \le i \le d\}
$$

 $\bigcup \{y_d x_i/1 \leq i \leq d \text{ and } y_n x_i \in E(G)\}.$

For any k, $2 \le k \le d - 1$, we define a bipartite graph H_k and an integer t_k as follows: if $y_n x_d \in E(G)$ then $H_k = H$ and $t_k = 0$. If $y_n x_d \notin E(G)$, then $H_k = H - \{x_1 y_{d-k+1}\}\$ and $t_k = 1$ when $x_1 y_{d-k+1} \in E(G)$, or $H_k = H$ and $t_k = 0$ when $x_1y_{d-k+1} \not\in E(G)$.

Then $d_{H_k}(x_1) = d(x_1) - d_W(x_1) - t_k$ and $d_{H_k}(y_d) \geq d(y_n) - d_W(y_n) + 1 + t_k$ and thus $d_{H_k}(x_1) + d_{H_k}(y_d) \geq n + 2 - 1$ $d_W(x_1) - d_W(y_n)$. By definition of d we have $d_W(x_1) + d_W(y_n) \le n - d$. This implies $d_{H_k}(x_1) + d_{H_k}(y_d) \ge d + 2$ and H_k is pancyclic from Theorem [16](#page-7-0) and so contains a cycle C_{2k} of form (1) or (2) described in Theorem [16.](#page-7-0)

If C_{2k} contains an edge $y_d x_i$ with $i \neq d$ and $i \neq 1$ then in G we put

$$
C_{2(k+1)} = [C_{2k} - \{y_d x_i\}] \cup \{y_d x_{d+1}, x_{d+1} y_n, y_n x_i\}
$$

and

$$
C_{2(k+n-d)} = [C_{2k} - \{y_d x_i\}] \cup \{y_n x_i\} \cup P[y_d, y_n].
$$

If C_{2k} contains x_1y_d and x_dy_d , then, by Theorem [16,](#page-7-0) $C_{2k} = x_1y_dx_dy_{d-1} \cdots x_{d-k}y_{d-k+1}x_1$. Since $y_{d-k+1}x_1 \in E(H_k)$ and by the definition of H_k , we know that $y_nx_d \in E(G)$. In G we put

$$
C_{2(k+1)} = [C_{2k} - \{y_d x_d\}] \cup \{y_d x_{d+1}, x_{d+1} y_n, y_n x_d\}
$$

and

$$
C_{2(k+n-d)} = [C_{2k} - \{y_d x_d\}] \cup \{y_n x_d\} \cup P[y_d, y_n].
$$

Thus G contains a cycle C_{2m} for every m; $3 \le m \le d$ and $n - d + 2 \le m \le n - 1$, which contains both u and v. Moreover, $n - d + 2 \le d + 1$, since $d \ge (n + 1)/2$.

Hence G is bipancyclic and every C_{2m} , $3 \le m \le n$, contains both u and v. \square

References

- [1] D. Amar, O. Favaron, P. Mago, O. Ordaz, Biclosure and bistability in a balanced bipartite graph, J. Graph Theory 20 (1995) 513–529.
- [2] D. Amar, O. Ordaz, A. Raspaud, Hamiltonian properties and the bipartite independence number, Discrete Math. 161 (1996) 207–215.
- [3] K. Bagga, B. Varma, Bipartite graphs and degree conditions, in: Graph Theory, Combinatorics, Algorithms and Applications, Proc. 2nd Int. Conf., San Francisco, CA, 1989, 1991, pp. 564–573.
- [4] J.A. Bondy, Pancyclic graphs I, J. Combin. Theory 11 (1971) 80–84.
- [6] J.A. Bondy, V. Chvátal, A method in graph theory, Discrete Math. 15 (1976) $111-136$.
- [7] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan Press, New York, 1976.
- [9] R. Faudree, O. Favaron, E. Flandrin, H. Li, The complete closure of a graph, J. Graph Theory 17 (1993) 481–494.
- [10] R. Faudree, O. Favaron, E. Flandrin, H. Li, Pancyclism and small cycles in graphs, Discuss. Math.—Graph Theory 16 (1996) $27 - 40$
- [12] E. Mitchem, J. Schmeichel, Bipartite graphs with cycles of all even length, J. Graph Theory 6 (1982) 429–439.
- [13] E. Mitchem, J. Schmeichel, Pancyclic and bipancyclic graphs. A survey. Graphs and applications, in: F. Harary, J.S. Maybees (Eds.), Proceedings of the First Colorado Symposium on Graph Theory, Wiley, New York, 1985, pp. 271–278.
- [14] J. Moon, M. Moser, On hamiltonian bipartite graphs, Israel J. Math. 1 (1963) 357–369.
- [15] O. Ore, Notes on Hamilton circuits, Amer. Math. Monthly 67 (1960) 55.