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Abstract

We give here two su cient conditions for a bipartite balanced graph of order 2n to be bipancyclic. The 4rst one
concerns graphs that satisfy a “bipartite Ore’s condition”, that is graphs such that any two nonadjacent vertices in both
parts of the bipartition have degree sum at least n, and the second one is for bipartite balanced traceable graphs containing
an hamiltonian path whose extremities are nonadjacent and have degree sum at least n+ 1.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction and notations

We consider 4nite undirected graphs without loops or multiple edges. Given a graph G, we denote by V (G); E(G),
respectively, the sets of vertices and edges of G. For A ⊆ V (G); G[A] is the subgraph of G induced by A; for
x ∈ V (G); NA(x) = {v ∈ A: vx ∈ E(G)} and dA(x) = |NA(x)|; for A = V (G), we often write N (x) and d(x). The nota-
tion G ∪ H means the disjoint union of the two graphs G and H (in particular 2G = G ∪ G), and G + H the disjoint
union of G and H plus all the edges between G and H . For any integer l, we denote by Cl a cycle of length l. If
C = c1c2 · · · clc1; l¿ 3, is a cycle (represented by the sequence of the vertices passed through), let C[ci; cj] be the path
cici+1 · · · cj , and C−[ci; cj] the path cici−1 · · · cj , where the indices are taken modulo l. For a subset S of V (C); S+ (S−)
denotes the set of the successors (predecessors) of S on C according to the orientation induced by the increasing subscripts.
For two vertices u and v, a (u; v)-path is a path connecting u and v, and a hamiltonian (u; v)-path is a path connecting
u and v containing all the vertices of V (G). Given any (u; v)-path P and two vertices a and b of P, we will also write
P[a; b] for the subpath of P between a and b, including a and b.
The graph G is called hamiltonian if it contains a cycle through all the vertices of V (G) and pancyclic if it contains

cycles of every length between 3 and |V (G)|.
G is said to satisfy property Pk if any two nonadjacent vertices of G have degree sum at least k and the k-closure

of G; Clk(G), is the graph obtained from G by recursively joining pairs of nonadjacent vertices whose degree sum is at
least k until no such pair remains.
A bipartite graph G with edge-set E(G) will be denoted by G = (V1; V2; E(G)) where V1 and V2 are the two classes of

the bipartition. Moreover G is said to be balanced if |V1|= |V2|.
Given a bipartite balanced graph G = (V1; V2; E(G)), we say, as above, that G is hamiltonian if it contains a cycle

through all its vertices and bipancyclic if it contains cycles of every even length between 4 and |V (G)|.
Also G is said to satisfy property BPk if any two nonadjacent vertices x and y with x ∈ V1 and y ∈ V2 have degree sum

at least k and the k-biclosure of G; BClk(G), is the graph obtained from G by recursively joining pairs of nonadjacent
vertices that are not in the same part of the bipartition and whose degree sum is at least k until no such pair remains.
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For such a bipartite balanced graph G we de4ne a balanced independent set of G as an independent subset S of V (G)
such that |S ∩ V1|= |S ∩ V2|. The bipartite independence number �bip(G) of a balanced bipartite graph G is the order of a
largest balanced independent set of G. We denote by LG the complement of G with respect to K|V1|;|V2|. If G=(V1; V2; E(G))
and H = (V ′

1 ; V ′
2 ; E(H)), then their disjoint union G ∪ H is the bipartite graph (V1 ∪ V ′

1 ; V2 ∪ V ′
2 ; E(G) ∪ E(H)), and

G + H is the disjoint union of G and H plus all the edges between V1 and V ′
2 and between V ′

1 and V2. These last
de4nitions are valid even if G and H are not balanced and they are used also in the “degenerated” case V1 = ∅ or
V2 = ∅. Other notations and terminology can be found in [7].
In Section 2, at 4rst we recall some well-known results concerning hamiltonicity and pancyclicity of graphs of order

n in relation with property Pn (i.e. Ore’s condition) and closures Cln and Cln+1. Those general results have a “bipartite
version” for balanced bipartite graphs of order 2n considering property BPn+1 and biclosures BCln+1 and BCln+2. We then
give two new su cient conditions for a bipartite balanced graph to be bipancyclic. The 4rst one (Theorem 11) is obtained
as a corollary of a characterization of bipartite balanced graphs that satisfy Property BPk ; 16 k 6 n + 1 (Theorem 10)
and the second one concerns bipartite balanced graphs that are traceable with degree condition on both extremities of a
hamiltonian path (Theorem 12).
In Sections 3, 4 and 5, we give the proofs of Theorems 10, 11 and 12, respectively.

2. Results

Let us 4rst recall the well-known Ore and Bondy’s results about property Pn.

Theorem 1 (Ore [15]). Let G be a graph of order n satisfying property Pn. Then G is hamiltonian.

Theorem 2 (Bondy [4]). Let G be a graph of order n satisfying property Pn. Then G is either pancyclic or the bipartite
complete graph Kn=2; n=2.

As a generalization of Theorem 1, Bondy and ChvOatal proved

Theorem 3 (Bondy and ChvOatal [6]). A graph G of order n is hamiltonian if and only if Cln(G) is hamiltonian.

There is no analogous result for pancyclicity but if we assume the closure to be complete, we obtain

Theorem 4 (Faudree et al. [9]). Let G be a graph of order n such that Cln+1(G) = Kn. Then G is pancyclic.

Considering now bipartite balanced graphs of order 2n, we get the analogous results replacing property Pn by BPn+1.

Theorem 5 (Moon and Moser [14]). Let G be a bipartite balanced graph of order 2n satisfying property BPn+1. Then
G is hamiltonian.

Theorem 6 (Bagga and Varma [3]). Let G be a bipartite balanced graph of order 2n satisfying property BPn+1. Then
G is bipancyclic.

Concerning biclosure, we also obtain analogous results to Theorems 3 and 4 as follows.

Theorem 7 (Bondy and ChvOatal [6]). A bipartite balanced graph G of order 2n is hamiltonian if and only if BCln+1(G)
is hamiltonian.

Theorem 8 (Amar et al. [1]). Let G be a bipartite balanced graph of order 2n such that BCln+2(G) = Kn; n. Then G is
bipancyclic.

In [9], Faudree et al. studied the structure of graphs of order n that satisfy Pk for some integer k; 16 k 6 n and
obtained the following characterization.

Theorem 9 (Faudree et al. [9]). Let G be a graph of order n¿ 4 that satis=es property Pk for some integer k; 16 k 6 n.
Then Clk+1(G) = Kn or G has one of following two forms:

(i) k ¿ n − 2 and G is isomorphic to Kk+2−n + (Kr ∪ K2n−k−2−r) or to LK k+2−n + (Kr ∪ K2n−k−2−r) for some integer r
with 16 r6 2n − k − 3.

(ii) k is even and G is isomorphic to A+C where A is any graph of order a with 06 a6k=2 and C is any (k=2−a)-regular
graph of order n − a.
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In this paper, we consider bipartite balanced graphs of order 2n that satisfy property BPk for some integer k; 16k 6 n+1,
and show that such graphs whose (k + 1)-biclosure is not complete have a structure belonging to one of the four cases
described below.

Theorem 10. Let G= (V1; V2; E(G)) be a bipartite balanced graph of order 2n satisfying property BPk for some integer
k; 16 k 6 n+ 1. Then BClk+1(G) = Kn; n except in the following cases:

1. k = n and G is isomorphic to Ka; a ∪ Kn−a; n−a for some a; (n − 1)=2¡ a6 n − 1.
2. k=n+1 and for some a; 16 a6 n−1, G is isomorphic either to K2;0+(Ka−1; a ∪Kn−a−1; n−a) or to K1;1+(Ka−1; a−1∪

Kn−a; n−a) or to LK1;1 + (Ka−1; a−1 ∪ Kn−a; n−a).
3. k is even and G is isomorphic to A+C where C is a (k=2− a)-regular balanced bipartite graph and A is a balanced

bipartite graph on 2a vertices, 06 a6 k=2.
4. There exists some positive integer � ¡ k=2 and disjoint subgraphs �1 and �2 of G satisfying 16 |V (�2)∩ V1|6 k − �

and |V (�2) ∩ V2|6 � such that G is isomorphic to �1 + �2 and the vertices of �1 satisfy the degree condition in G

dG(x) =

{
� if x ∈ V (�1) ∩ V1;

k − � if x ∈ V (�1) ∩ V2:

Using Theorem 10 and some results of Amar et al. [2], we then prove

Theorem 11. If a bipartite balanced graph G of order 2n, n¿ 6, satis=es property BPn, then G is bipancyclic or
isomorphic to LK�; n−�+� for some integer �6 n=2, where the bipartite graph � contains LK n−�; � as a spanning subgraph.

Notice that Theorem 11 has Theorem 6 as a corollary.
We also obtain another su cient condition for bipancyclicity as follows:

Theorem 12. If a bipartite balanced graph G=(V1; V2; E(G)) on 2n vertices contains a hamiltonian path connecting two
nonadjacent vertices u ∈ V1 and v ∈ V2 such that d(u) + d(v)¿ n+ 1, then G is bipancyclic.
If d(u)¿ (n + 1)=2; u is contained in a C4 and for every k; 36 k 6 n, there exists some C2k that contains both u

and v.

This last theorem is in fact the “balanced bipartite result” corresponding to the following one proved by
Faudree et al. [10].

Theorem 13 (Faudree et al. [10]). Let G be a graph of order n containing a hamiltonian (u; v)-path for a pair of
nonadjacent vertices u and v such that dG(u) + dG(v)¿ n. Then G is pancyclic. If d(u)¿ n=2; u is contained in a C3
and for every k; 46 k 6 n, there exists some Ck that contains both u and v.

3. Proof of Theorem 10

Suppose that H = BClk+1(G) �= Kn; n. Then, by BPk for G, n¿ 2 and the graph H satis4es the following property
denoted by (?):

(?) dH (x) + dH (y) = k for every nonedge (xy) in H with x in V1 and y in V2:

Let A; B; C denote the subsets of vertices with degree in H , respectively, strictly greater than, strictly less than and equal
to k=2. For i = 1; 2 put Ai = Vi ∩ A; Bi = Vi ∩ B; Ci = Vi ∩ C and ai; bi; ci their respective cardinalities.
First of all, we notice that the bipartite subgraphs induced in H by A and B are complete since two nonadjacent

vertices x ∈ A1; y ∈ A2 (x ∈ B1; y ∈ B2) have a degree-sum greater than k (less than k), respectively. Analogous arguments
imply that the vertices of A ∪ B are adjacent in H to the vertices of C that are not in the same part of the bipartition.
Consequently, H contains (Ka1 ; a2 ∪ Kb1 ; b2 )+ LK c1 ;c2 as a spanning subgraph. We deduce that if C1 �= ∅ then, by the de4nition
of C1, we have a2 +b26 k=2 and thus c2¿ n− k=2¿ n− (n+1)=2¿ 1

2 , i.e. c2¿ 1. In other words C2 �= ∅. Analogously,
C2 �= ∅ implies C1 �= ∅. Moreover if C1 = C2 = ∅ then at least one of B1 and B2 is not empty otherwise H would be
complete.
Without loss of generality, one of the following three cases occurs:
Case 1: C1 �= ∅ and C2 �= ∅ (k is even).
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By the de4nition of C1 and C2 we have ai + bi 6 k=2 and thus ci ¿ n − k=2 for i = 1; 2.
Subcase 1.1: 16 k 6 n.
Since, for i=1; 2; ci ¿ n−k=2¿ k=2, then necessarily B=∅ (if not, every vertex in Bi would be adjacent to at least k=2

vertices in Cj; j �= i). This implies that for every x in C1 and y in C2 we have dC(x)= k=2−a2 and dC(y)= k=2−a1. By
considering the number of edges between C1 and C2 we obtain (n−a1)(k=2−a2)=(n−a2)(k=2−a1), whence a1 =a2 and
c1 = c2. So H is isomorphic to Ka; a+C∗, where C∗ is a (k=2− a)-regular bipartite graph of order 2(n − a); 06 a6 k=2.

Subcase 1.2: k = n+ 1.

• If B=∅ then, by similar argument, we obtain H isomorphic to Ka; a+C∗ where C∗ is a ((n+1)=2−a)-regular bipartite
graph of order 2(n − a); 06 a6 (n+ 1)=2.

• If B1 �= ∅ then b2 + c26 (n − 1)=2. But since c2¿ (n − 1)=2, then necessarily b2 = 0; c2 = (n − 1)=2 and a2 = (n+1)=2.
By considering the degree of vertices of C1 and B1, we deduce that EH [C1; C2] = EH [B1; A2] = ∅.

Given y in A2; y has degree a1 + c1 but also k − (n − 1)=2 since y has no adjacency in B1 and every vertex in
B1 has degree (n − 1)=2, whence dH (y) = a1 + c1 = (n + 3)=2. Moreover, every vertex in C2 has exactly a1 + b1
neighbors and so a1 + b1 = (n + 1)=2, c1 = (n − 1)=2; a1 = 2 and b1 = (n − 3)=2. The graph H is isomorphic to
K2;0 + (K(n−3)=2; (n−1)=2 ∪ K(n−1)=2; (n+1)=2).

Case 2: C = ∅; B1 �= ∅ and B2 �= ∅.
H contains the spanning subgraph Ka1 ; a2 ∪ Kb1 ; b2 with ai + bi = n for i = 1; 2. Without loss of generality, assume that

a1 + b26 n6 a2 + b1. By considering the degree of the vertices of H , we deduce that 16 bi ¡ (n + 1)=2 and thus
(n − 1)=2¡ ai 6 n − 1; i= 1; 2. If a2 + b1¿ n+ 2 then dH (x) + dH (y)¿ a2 + b1¿ k + 1 for every x in A1 and y in B2,
whence y is adjacent to every vertex in A1 and hence it has degree n, a contradiction. Therefore n6 a2 + b16 n+ 1.

Subcase 2.1: a2 + b1 = n.
Then a1 = a2 = a and b1 = b2 = b.

• If k 6 n − 1 then BClk+1(Ka; a ∪ Kn−a; n−a) = Kn; n and thus H = Kn; n, a contradiction. Therefore k ¿ n.
• If k = n then H = Ka; a ∪ Kn−a; n−a (H cannot have additional edges, otherwise, by (?), we would get a vertex x ∈ B
with dH (x) = b+ a= n ¿ n=2, a contradiction).

• If k = n + 1 then b6dH (y)6 b + 1 for every y in B1. Otherwise, if dH (y)¿ b + 2 for some y in B1 then, since
dH (y)¡ k=26 n, there exists some x in A2 nonadjacent to y and dH (x) + dH (y)¿ a + b + 2 = k + 1, a contradiction
with (?).

Suppose now there exists some y in B1 (or B2) such that dH (y) = b. Then, by (?); dH (x) = a + 1 for every x in A2
and thus necessarily b¿ 2 and x is adjacent to some y′ in B1 − {y}. Because of dH (y′)¡ k=26 n there is an x′ in A2
nonadjacent to y′. Then, by (?), dH (x′)=n+1−dH (y′)6 n+1−(b+1)=a, a contradiction. We then have dH (y)=b+1
for every y in B1. Hence the vertices of B1 are adjacent to the same vertex x of A2, for otherwise if y1x1 ∈ E(H) and
y2x2 ∈ E(H) with x1 �= x2 then dH (y1) + dH (x2)¿ b + 1 + a + 1 = k + 1, a contradiction with (?) since y1x2 �∈ E(G).
Analogously with B2 instead of B1 and so H = K1;1 + (Ka−1; a−1 ∪ Kn−a; n−a).

Subcase 2.2: a2 + b1 = n+ 1.
Then H contains Ka; a+1 ∪ Kb; b−1 as a spanning subgraph, with b¿ 2 (a= a1; b= b1; a2 = a+1; b2 = b − 1) and there

are necessarily missing edges between A1 and B2 as between A2 and B1.
Let us choose x in A1 and y in B2 that are not adjacent. They satisfy dH (x)+dH (y)¿ a+1+ b= n+1, so necessarily

k = n+ 1; dH (x) = a+ 1 and dH (y) = b.
Assume there is some edge uv; u ∈ A1; v ∈ B2. Then dH (u)¿ a + 2 and every vertex in B2 has a degree sum with

vertex u greater than k, which implies by (?) that u is adjacent to every vertex in B2. Symmetrically, dH (v)¿ b+1 and
v is adjacent to every vertex in A1. We now observe that any two vertices u′ ∈ A1 and v′ ∈ B2 have degree sum greater
than k and so are adjacent, a contradiction.
We then deduce EH (A1; B2) = ∅ which implies b ¡ (n+ 1)=2¡ a+ 1.
If there exists y in B1 with dH (y) = b − 1, then, by (?), every vertex in A2 has degree equal to k − (b − 1) = a+ 2,

whence there are at least two vertices of B1 that are in the neighborhood of A2 and so have degree at least b. Again from
(?), such vertices are adjacent to every vertex in A2, and therefore, they would have degree n¿ k=2, which contradicts
the de4nition of B. Hence dH (y)¿ b for every y in B1.
Suppose that for every x in A2 we have dH (x)6 n − 1, that is x has (at least) one nonadjacency yx in B1. Thus

dH (x) + dH (yx) = k = n+ 1. Since dH (yx)¿ b, we deduce dH (x)6 a+ 1, and x has at most one neighbor in B1.
If dH (x) = a; x has no adjacency in B1 and every vertex in B1 has degree k − a= b+ 1, whence there is some x′ ∈ A2

with degree at least a+1 and so, from (?), adjacent to every vertex in B1, a contradiction with dH (x′)6 n−1. Therefore,
for every x in A2, we have dH (x) = a + 1. Consequently, dH (yx) = b and yx has exactly one neighbor in A2; this holds
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for every vertex yx in B1 being nonadjacent to x, hence for every vertex in B1 but the one which is adjacent to x. Since
each vertex in A2 has exactly one neighbor in B1 and |B1| = b ¡ a + 1 = |A2|, there is a vertex y in B1 which has at
least two neighbors in A2. Then dH (y)¿ b + 1 and it follows that y is adjacent to every vertex x in A2. This implies
dH (y) = n¿ k=2, a contradiction. So there exists a vertex in A2 with degree n.
We denote by S, the set of such vertices and by R its complement in A2. It follows R �= ∅, otherwise dH (y) = n¿ k=2

for every y in B1, a contradiction. Given an x in R, there is some y in B1 nonadjacent to x. Then dH (x)+dH (y)=n+1¿
a+ b − 1 + |S|= n+ |S| − 1. So 16 |S|6 2.
Assume 4rst |S| = 1 and {s}. We know (from b¿ 2 and |R| = a ¿ b − 1) that |R| is at least 2 and every vertex in

B1 is adjacent to s, whence either dH (x) = a and dH (y) = b + 1, or dH (x) = a + 1 and dH (y) = b. This is true for every
vertex y of B1 being nonadjacent to x.

• If dH (x) = a and dH (y) = b + 1 then y has exactly one neighbour x′ in R. Let y′ in B1 nonadjacent to x′. Then
dH (x′) + dH (y′) = n+ 1 and necessarily dH (x′) = a+ 1 and dH (y′) = b. Thus dH (x) + dH (y′) �= k, a contradiction with
(?) and with the fact that x is not adjacent to y′.

• If dH (x) = a + 1 and dH (y) = b, then y has no adjacency in R and then, given x′ in R we have, by (?), dH (x′) =
n + 1 − dH (y) = n + 1 − b = a + 1. Let z be the only neighbor of x in B1; z is adjacent to s and x and cannot be
adjacent to x′, otherwise it would have degree sum greater than k with every vertex in A2 and would be adjacent to
every vertex in A2. However we have dH (x′) + dH (z)¿ (a+ 1) + (b+ 1)¿ k, a contradiction with (?).
Therefore |S| = 2 and consequently dH (x) = a; dH (y) = b + 1. This is valid for every x ∈ R and every y ∈ B1 being
nonadjacent to x, hence for every y ∈ B1. Thus EH (B1; R) = ∅.

So H is isomorphic to K0;2 + (Ka; a−1 ∪ Kn−a; n−a−1).
Case 3: C = ∅; B2 = ∅; B1 �= ∅.
Then H contains Ka; n ∪ Kn−a;0 as spanning subgraph, where a= |A1|.
Suppose |B1|¿ 2.

• If k 6 n then, by de4nition of B1, for any two vertices x1 and x2 in B1 we have dH (x1) + dH (x2)¡ k 6 n. This implies
that there exists some y in A2 adjacent neither to x1 nor to x2. Then, by (?); dH (x1) + dH (y) = k = dH (x2) + dH (y)
and thus dH (x1) = dH (x2).

• If k = n + 1, assume that there exist two vertices x1 and x2 in B1 for which dH (x1)¡ dH (x2)¡ (n + 1)=2. Then
dH (x1)+dH (x2)6 2dH (x2)− 1¡ n, also there exists y in A2 adjacent neither to x1 nor to x2, in contradiction with (?)
and dH (x1)¡ dH (x2).
Hence all the vertices of B1 have the same degree � in H and � ¡ k=2 from de4nition of B1.
If S denotes the vertices of A2 with degree n and & = |S|, we clearly have &6 � ¡ k=2.

There is a vertex of A2 with degree at most n −1 and for every such vertex y there exists some x in B1 nonadjacent to y.
Then, by (?), dH (y) = k − dH (x) = k − � ¿ k=2.
Consequently, for some � ¡ k=2; H = Ka; & + �1; 16 a6 k − �; &6 � and

dH (x) =

{
� if x ∈ V (�1) ∩ V1;

k − � if x ∈ V (�1) ∩ V2:

Remark 1. With the above notations, in the case when &= �, we have E(B1; A2 − S) = ∅; a= k − � and H is isomorphic
to Kk−�; � + LK n−k+�; n−�, that is �1 = LKn−k+�; n−�.

We have now characterized the graph H but we need to go back to the initial graph G to achieve the proof of
Theorem 10. Let us notice that a vertex which has at least one nonadjacency in H has exactly the same neighbors in
G as in H but if it is adjacent to every possible vertex of H , it can have in H more neighbors than in G. Using this
observation, we examine the diRerent cases and subcases of the above proof.
In Subcases 1.1 and 1.2 when B = ∅, since H is isomorphic to Ka; a + C∗, where C∗ is a (k=2 − a)-regular bipartite

graph of order 2(n − a); 06 a6 k=2, we get G = A∗ + C∗, where C∗ is the same (k=2 − a)-regular bipartite graph of
order 2(n − a); 06 a6 k=2, and A∗ is a bipartite balanced graph of order 2a. This is Case 3 of Theorem 10.
In Subcase 1.2 when B �= ∅; H is isomorphic to K2;0 + (K(n−3)=2; (n−1)=2 ∪ K(n−1)=2; (n+1)=2); G is isomorphic to H and we

are in Case 2 of Theorem 10 with a= (n − 1)=2.
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In Subcase 2.1

• If k = n then G is isomorphic to H = Ka; a ∪ Kn−a; n−a; (n − 1)=2¡ a6 n − 1 and this is Case 1 of Theorem 10.
• If k=n+1; H=K1;1+(Ka−1; a−1∪Kn−a; n−a); (n−1)=2¡ a6 n−1 and G is isomorphic to K1;1+(Ka−1; a−1∪Kn−a; n−a)
or to LK1;1 + (Ka−1; a−1 ∪ Kn−a; n−a), that is Case 2 of Theorem 10.

In Subcase 2.2, G is isomorphic to H = K0;2 + (Ka; a−1 ∪ Kn−a; n−a−1); (n − 1)=2¡ a6 n − 2, that is also Case 2 of
Theorem 10
In Case 3, for some � ¡ k=2; H = Ka; & + �1; 16 a6 k − �; &6 �, with

dH (x) =

{
� if x ∈ V (�1) ∩ V1;

k − � if x ∈ V (�1) ∩ V2:

and G is isomorphic to �1 + �2, where �1 is the same as above and �2 is a subgraph of Ka; &.
We then are in Case 4 of Theorem 10 which is now proved.

Remark 2. The special case of Remark 1 when � = & corresponds to �1 = LKn−k+�; n−� and �2 is a bipartite subgraph
of Kk−�; �. Notice that if k = n; G is equal to LK�; n−� + �2 where �2 is a bipartite subgraph of Kn−�; �, and if moreover
�2 = LKn−�; �, we then obtain for G the graph K�; � ∪ Kn−�; n−�.

4. Proof of Theorem 11

Before proving Theorem 11 we 4rst give a useful result due to Amar, Ordaz, Raspaud, that can be found in [2]
(the fact that for G nonhamiltonian we have d(x1) = d(xn) = d(y1) = d(yn) = '(G) is not stated explicitly as a result by
itself but is a direct consequence of Claims 1–5 in the proof of Proposition 2 taking p= 1).

Theorem 14. Let G be a balanced bipartite graph of order 2n, with minimum degree '(G) and bipartite independence
number �bip(G). If �bip(G)6 2'(G)− 2, then G is hamiltonian except in the case �bip(G) = 2'(G)− 2 and G is either
isomorphic to 3Kp; p + K1;1 or to 3Kp; p + LK1;1 or it contains a cycle C = x1y1 : : : xn−1yn−1x1 of length 2n − 2 such that
G − C is an edge xnyn. Moreover, in this last case, if G − {xn; yn} �= Kn−1; n−1, w.l.o.g. we can suppose that xn is
adjacent to yn−1 but not to y1, and we get d(x1) = d(xn) = d(y1) = d(yn) = '(G); if G − {xn; yn} = Kn−1; n−1, then it
follows '(G) = 1 and in fact d(xn) = 1 or d(yn) = 1.

Proof of Theorem 11. Let G be a bipartite balanced graph of order 2n satisfying property BPn.

Claim 1. If BCln+1(G) is not equal to Kn; n, then one of the following occurs:

1. n is even and G is isomorphic to A+C where C is a (n=2− a)-regular balanced bipartite graph and A is a balanced
bipartite graph on 2a vertices, 06 a6 n=2.

2. There exist some positive integer � ¡6 n=2 and disjoint subgraphs �1 and �2 of G satisfying 16 |V (�2)∩V1|6 n−�
and |V (�2) ∩ V2|6 � such that G is isomorphic to �1 + �2 and the vertices of �1 satisfy the degree condition in G

dG(x) =

{
� if x ∈ V (�1) ∩ V1;

n − � if x ∈ V (�1) ∩ V2:

Proof. This claim is a direct consequence of Theorem 10 with k = n. The possible exception graph Ka; a ∪ Kn−a; n−a;
(n − 1)=2¡ a6 n − 1, obtained from Case 1 of Theorem 10, is in fact a subcase of the above Case 2 as noticed in
Remark 2 of the preceding section (and since a can be equal to n=2, we assume �6 n=2 and not � ¡ n=2).

Claim 2. �bip(G)6 2'(G).

Proof. Suppose that G contains an independent set LK �; � with � ¿ '(G), and let x be a vertex of degree '(G). Then for
each y nonadjacent to x; dG(y)¿ n − ' ¿ n − �. So there are at least n − ' vertices of degree at least n − � + 1, and
thus at least one of them is in LK �; � and has a neighbor in LK �; �, a contradiction.

Claim 3. G is hamiltonian or it is isomorphic to � + LK�; n−� where � ⊇ LKn−�; � with 16 �6 n=2.
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Proof. Suppose that G is not hamiltonian. Then by Theorem 14 and Claim 2 two cases can occur:
Case 1: �bip(G) = 2'(G)− 2.
If G is isomorphic to 3Kp; p+K1;1 or 3Kp; p+ LK1;1 then, by BPn, we get n=3p+1=4 which contradicts n¿ 6. Therefore,

by Theorem 14, G contains a cycle C = x1y1 · · · xn−1yn−1x1 such that G − C is an edge xnyn with xnyn−1 ∈ E(G) and
xny1 �∈ E(G). If G − {xn; yn} = Kn−1; n−1, then it follows that G is isomorphic to � + LK1; n−1, with � ⊇ LKn−1;1, i.e.
Claim 3 for � = 1. If G − {xn; yn} �= Kn−1; n−1, then, by Theorem 14, d(x1) = d(xn) = d(y1) = d(yn) = ' = '(G).
Since x1yn �∈ E(G) and xn−1yn �∈ E(G), using BPn, we get 2' = d(x1) + d(yn)¿ n and thus '¿ n=2. If we assume
' ¿ n=2 then for every x ∈ V1; y ∈ V2; d(x)+d(y)¿ 2'¿ n+1, thus G satis4es BPn+1 and is hamiltonian by Theorem 5,
a contradiction. Therefore, '(G)= n=2. Since G is not hamiltonian, we have necessarily (N+

C (xn)∪ N −
C (xn))∩ NC(yn)= ∅.

This implies that NC(xn) = {yn=2+1; : : : ; yn−1} and NC(yn) = {x2; : : : ; xn=2}. Let i ∈ {n=2 + 1; : : : ; n − 1}. It is easy to check
that xi is not adjacent to y1 otherwise we obtain a hamiltonian cycle C′ = xnynx2C[x2; xi]xiy1C−[y1; yi]yixn. Using a
similar argument, we get that xi is not adjacent to yn=2. Since d(xi)¿ ' = n=2 and |{yn=2+1; : : : ; yn−1}| = n=2 − 1, there
exists k ∈ {2; : : : ; n=2−1} such that xiyk is an edge of G. Then C′=xiyk C−[yk ; yi]yixnynxk+1C[xk+1; xi]xi is a hamiltonian
cycle, a contradiction.

Case 2: �bip(G) = 2'(G).
If BCln+1(G)=Kn; n, we know that G would be hamiltonian because of Theorem 7, a contradiction. Thus BCln+1(G) �=

Kn; n and Claim 1 can be applied.
Subcase 2.1: If G has form (1) in Claim 1, then '(G) = n=2 and a balanced independent set of cardinality �bip(G) =

2'(G) = n is necessarily a subset of A or of C. In the 4rst case, because of �bip(G) = n, we see that a= n=2, and C and
A are isomorphic to LKn=2; n=2, i.e., we have Claim 3 with � = n=2 and � = LKn=2; n=2; so we only consider the second case
when C contains an induced subgraph LKn=2; n=2. Since C is (n=2− a)-regular, every x ∈ LKn=2; n=2 has (n=2− a) neighbors in
C′ = C − LKn=2; n=2. Since |C′| = 2((n − a) − n=2) = 2(n=2 − a), every x in one of the two vertex-classes (the 4rst or the
second) of LKn=2; n=2 is adjacent to every y in the other vertex-class (the second or the 4rst, respectively) of C′, hence it
follows C = LKn=2; n=2 + C′. Since for every y in C′; n=2 − a = dC(y)¿ n=2 we get d(y)¿ n=2; |A| = a = 0, and G is
isomorphic to C = LKn=2; n=2 + �, with �= C′ = LKn=2; n=2, i.e. we have landed at Claim 3 with �= n=2. (By Remark 2, G is
also isomorphic to 2Kn=2; n=2.)

Subcase 2.2: If G has form (2) in Claim 1, the structure of G depends on the integer �6 n=2.
We 4rst suppose that we are in the case when � ¡ n=2.
We know that G is isomorphic to �1+�2 with dG(x)=� if x ∈ V (�1)∩V1 and dG(x)=n−� if x ∈ V (�1)∩V2. Let us recall

the exact structure of G that was obtained from Case 3 of the proof of Theorem 10 (since we have assumed � ¡ n=2). We
have V1 = A1 ∪ B1 where A1 corresponds to the vertices of V1 with degree (in the biclosure) more than n=2; |A1|= a¿ 1
and B1 consists of vertices of degree �. The set V2 = A2 has all its vertices of degree (in the biclosure) more than n=2
and contains a subset S of cardinality & whose vertices have degree n while the other vertices have degree n − �. The
graph �1 corresponds to the bipartite subgraph induced by (B1; V2 − S) and �2 is a subgraph of Ka; & with the same vertex
set. These properties imply &6 �, '(G) = � and there is a balanced independent set of cardinality �bip(G) = 2'(G) = 2�
which is a subset of V (�1). Also we have n¿ a+ � and we will distinguish two cases corresponding to equality or strict
inequality in this formula.

• If n=a+�, we get &=� (namely, because every y ∈ A2−S is adjacent to all vertices of A1 and has degree dG(y)=n−�,
and since |A1| = a = n − �, it follows that the n − a = �¿ 1 vertices of B1 having degree � can be adjacent only to
vertices of S and therefore, &¿ �); so we are in the case of Remark 2, that is G= LK�; n−�+� where � contains LKn−�; �

as a spanning subgraph. This case corresponds to the exception graph of Claim 3 and is clearly not hamiltonian.
• If n ¿ a+ �, consider a balanced independent set (W1; W2); W1 ⊆ V1 ∩ V (�1); W2 ⊆ V2 ∩ V (�1).

Every vertex y in W2 satis4es dG(y)= n − � and so is adjacent to the n − a − � vertices in B1 − W1 which is not empty
by our assumption. Moreover, every vertex x in B1 − W1 has degree � and consequently has no neighbors out of W2. We
then deduce that S is empty, i.e. & = 0, since vertices of B1 − W1 should be adjacent to every vertex in S, and �1 is
isomorphic to Kn−a−�; � ∪ �0, where �0 is induced by (W1; V2 − W2). Therefore G is isomorphic to Ka;0 + (Kn−a−�; � ∪ �0).
On the other hand, let us consider the bipartite balanced graph G′ with 2(a+�) vertices equal to Ka;0 +(K0;2�+a−n ∪�0),

i.e. the subgraph of G obtained by suppressing B1 − W1 in V1 and a subset T in W2 with n − a − � vertices, which is
possible since �¿ n − a − � can be veri4ed.
The degree in G′ of the vertices of V (�0)∩V1 and V (�0)∩V2 is still equal to � and n−�, respectively, and every vertex

in V (�0)∩ V1 has at least one nonadjacency in V (�0)∩ V2. Using this remark together with n ¿ a+ �, it is easy to check
that the graph BCla+�+1(G′) is the complete bipartite graph Ka+�; a+�, and then, by Theorem 7, the graph G′ is hamiltonian.
We can easily extend a hamiltonian cycle of G′ to a hamiltonian cycle of G, replacing the edge uv; u ∈ A1 and v ∈ W2−T

(that necessarily exists if we assume that T �= W2, i.e. � ¿ n−a−�) by uwPtv where w ∈ NG(u)∩T; t ∈ NG(v)∩ (B1−W1)
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and P is a path from w to t containing all the vertices of the bipartite subgraph of G induced by (B1 − W1; T ). So G is
hamiltonian, a contradiction. Now we have to consider the case �= n − a − �, i.e. T =W2. Then it can be easily proved
that every x ∈ B1 − W1 is adjacent to every y ∈ W2 and nonadjacent to every y ∈ V2 − W2 and that every y ∈ V2 − W2
is adjacent to every x ∈ A1 ∪ W1. This implies that the subgraph of G induced by (B1 − W1; V2 − W2) is isomorphic to
LKn−a−�; n−� = LK�; n−� and, if � denotes the subgraph of G induced by (A1 ∪ W1; W2), that G is isomorphic to � + LK�; n−�

and � ⊇ LKn−�; �. Thus we have gotten the assertion of Claim 3 and the case when � ¡ n=2 is 4nished.
If we consider now the case when �=n=2, we can also obtain easily that G is isomorphic to LKn=2; n=2+� with � ⊇ LKn=2; n=2

as a spanning subgraph and Claim 3 is now proved.

Claim 4. If G is hamiltonian then it is bipancyclic.

Proof. Let I = {(i; j)=xiyj �∈ E(G)} and m= |E(G)|. Then d(xi) + d(yj)¿ n for each (i; j)∈ I .
Hence∑

(i; j)∈I

(d(xi) + d(yj))¿ n(n2 − m)⇔
n∑

i=1

d(xi)(n − d(xi)) +
n∑

j=1

d(yj)(n − d(yj))¿ n(n2 − m)

⇔
n∑

i=1

d2(xi) +
n∑

j=1

d2(yj)− 3nm+ n36 0:

By the Cauchy Schwarz inequality we have(
n∑

i=1

d(xi)

)2
6 n

n∑
i=1

d2(xi) and

(
n∑

i=1

d(yi)

)2
6 n

n∑
i=1

d2(yi):

This observation and the fact that
∑n

i=1 d(xi) =
∑n

i=1 d(yi) = m, imply
∑n

i=1 d2(xi)¿m2=n and
∑n

i=1 d2(yi)¿m2=n.
Using these minorations, we then obtain

2m2

n
− 3mn+ n36 0:

Therefore m¿ n2=2. We know from the following theorem of Schmeichel and Mitchem [13] that G is bipancyclic as
soon as m ¿ n2=2. If m = n2=2, then, by property BPn, we can show that G is n=2-regular which can be proved to be
impossible. Hence G is bipancyclic.

Theorem 15 (Mitchem and Schmeichel [13]). Let G be a hamiltonian bipartite balanced graph of order 2n and size m.
If m ¿ n2=2, then G is bipancyclic.

Claim 4 is now proved and also Theorem 11 which is a direct consequence of Claims 1–4.

5. Proof of Theorem 12

Let us 4rst recall the following result of Schmeichel and Mitchem that appears in the proof of Lemma 1 of [12].

Theorem 16. Let G be a bipartite graph containing a hamiltonian cycle C = x1y1 · · · xnynx1. If d(x1) + d(yn)¿ n + 2
then for every k; 26 k 6 n; G contains a cycle C2k of one of the following forms:

(1) x1ypxp+1yp+1 · · · xp+k−1ynx1 for some p; 16p6 n − k + 1,
(2) x1ypxp+1yp+1 · · · xnynxk+p−nyk+p−n · · · y1x1 for some p; n − k + 26p6 n − 1.

Proof of Theorem 12. Let P = x1y1x2y2 · · · xnyn be a hamiltonian path of G such that x1 = u; x2 = v.
We have assumed that d(u) = d(x1)¿ (n + 1)=2. Consequently, there exists some i6 n − 2 such that yi and yi+1

are adjacent to x1, and some j; 26 j6 n − 1, such that xjyn ∈ E(G) and yjx1 ∈ E(G). So G contains a C4 contain-
ing u and a C2n.
We now consider cycles of length 2k; 36 k 6 n − 1.
By the degree assumption, |{i=x1yi ∈ E(G) and ynxi+1 ∈ E(G)}|¿ 2. Let

d=max{i=x1yi ∈ E(G) and ynxi+1 ∈ E(G)}
and W = P[xd+1; yn]
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Without loss of generality, we assume that d¿ (n+ 1)=2. (Otherwise we can consider the path P−1 instead of P.)
We de4ne a bipartite balanced graph H on 2d vertices by

V (H) = {x1; : : : ; xd} ∪ {y1; : : : ; yd}
and

E(H) = {xiyi=16 i6d} ∪ {yixi+1=16 i6d − 1} ∪ {x1yi ∈ E(G)=16 i6d}
∪ {ydxi=16 i6d and ynxi ∈ E(G)}:

For any k; 26 k 6d − 1, we de4ne a bipartite graph Hk and an integer tk as follows: if ynxd ∈ E(G) then Hk = H
and tk = 0. If ynxd �∈ E(G), then Hk = H − {x1yd−k+1} and tk = 1 when x1yd−k+1 ∈ E(G), or Hk = H and tk = 0 when
x1yd−k+1 �∈ E(G).
Then dHk (x1) = d(x1) − dW (x1) − tk and dHk (yd)¿d(yn) − dW (yn) + 1 + tk and thus dHk (x1) + dHK (yd)¿ n + 2 −

dW (x1)− dW (yn). By de4nition of d we have dW (x1) + dW (yn)6 n − d. This implies dHk (x1) + dHK (yd)¿d+2 and Hk

is pancyclic from Theorem 16 and so contains a cycle C2k of form (1) or (2) described in Theorem 16.
If C2k contains an edge ydxi with i �= d and i �= 1 then in G we put

C2(k+1) = [C2k − {ydxi}] ∪ {ydxd+1; xd+1yn; ynxi}
and

C2(k+n−d) = [C2k − {ydxi}] ∪ {ynxi} ∪ P[yd; yn]:

If C2k contains x1yd and xdyd, then, by Theorem 16, C2k = x1ydxdyd−1 · · · xd−k yd−k+1x1. Since yd−k+1x1 ∈ E(Hk) and by
the de4nition of Hk , we know that ynxd ∈ E(G). In G we put

C2(k+1) = [C2k − {ydxd}] ∪ {ydxd+1; xd+1yn; ynxd}
and

C2(k+n−d) = [C2k − {ydxd}] ∪ {ynxd} ∪ P[yd; yn]:

Thus G contains a cycle C2m for every m; 36m6d and n − d + 26m6 n − 1, which contains both u and v.
Moreover, n − d+ 26d+ 1, since d¿ (n+ 1)=2.
Hence G is bipancyclic and every C2m; 36m6 n, contains both u and v.
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