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Abstract

We give here two sufficient conditions for a bipartite balanced graph of order 2n to be bipancyclic. The first one
concerns graphs that satisfy a “bipartite Ore’s condition”, that is graphs such that any two nonadjacent vertices in both
parts of the bipartition have degree sum at least n, and the second one is for bipartite balanced traceable graphs containing
an hamiltonian path whose extremities are nonadjacent and have degree sum at least n + 1.

(© 2004 Elsevier B.V. All rights reserved.

Keywords: Graphs; Bipartite; Cycles; Pancyclic; Closure

1. Introduction and notations

We consider finite undirected graphs without loops or multiple edges. Given a graph G, we denote by V(G),E(G),
respectively, the sets of vertices and edges of G. For 4 C V(G), G[A] is the subgraph of G induced by A4; for
X€EV(G), Nu(x) ={v€Ad: vtx€EE(G)} and du(x) = |Na(x)|; for 4 = V(G), we often write N(x) and d(x). The nota-
tion G U H means the disjoint union of the two graphs G and H (in particular 2G = G U G), and G + H the disjoint
union of G and H plus all the edges between G and H. For any integer /, we denote by C; a cycle of length /. If
C=cicr---cic1, 1 =3, is a cycle (represented by the sequence of the vertices passed through), let C[c;, c;] be the path
cicip1 -+ - ¢j, and C~[c1,¢;] the path ¢ici—; - - - ¢j, where the indices are taken modulo /. For a subset S of V(C), ST (§7)
denotes the set of the successors (predecessors) of S on C according to the orientation induced by the increasing subscripts.
For two vertices u and v, a (u,v)-path is a path connecting # and v, and a hamiltonian (u,v)-path is a path connecting
u and v containing all the vertices of V(G). Given any (u,v)-path P and two vertices a and b of P, we will also write
Pla,b] for the subpath of P between a and b, including a and b.

The graph G is called hamiltonian if it contains a cycle through all the vertices of V(G) and pancyclic if it contains
cycles of every length between 3 and |V(G)|.

G is said to satisfy property P; if any two nonadjacent vertices of G have degree sum at least k and the k-closure
of G, Cli(G), is the graph obtained from G by recursively joining pairs of nonadjacent vertices whose degree sum is at
least & until no such pair remains.

A bipartite graph G with edge-set £(G) will be denoted by G = (11, V2, E(G)) where V; and V5 are the two classes of
the bipartition. Moreover G is said to be balanced if |Vi| = |V3].

Given a bipartite balanced graph G = (V1, 15,E(G)), we say, as above, that G is hamiltonian if it contains a cycle
through all its vertices and bipancyclic if it contains cycles of every even length between 4 and |V(G)|.

Also G is said to satisfy property BP; if any two nonadjacent vertices x and y with x € /4 and y € 5 have degree sum
at least k£ and the k-biclosure of G, BCIi(G), is the graph obtained from G by recursively joining pairs of nonadjacent
vertices that are not in the same part of the bipartition and whose degree sum is at least & until no such pair remains.
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For such a bipartite balanced graph G we define a balanced independent set of G as an independent subset S of V' (G)
such that |S N Vi|=|SNV5|. The bipartite independence number owi,(G) of a balanced bipartite graph G is the order of a
largest balanced independent set of G. We denote by G the complement of G with respect to Ky i) If G=(N, 1, E(G))
and H = (V/,V),E(H)), then their disjoint union G U H is the bipartite graph (V4 U 1/, 1 U V5, E(G) U E(H)), and
G + H is the disjoint union of G and H plus all the edges between ¥} and /' and between ¥; and V5. These last
definitions are valid even if G and H are not balanced and they are used also in the “degenerated” case Vi = () or
V5 = (). Other notations and terminology can be found in [7].

In Section 2, at first we recall some well-known results concerning hamiltonicity and pancyclicity of graphs of order
n in relation with property B, (i.e. Ore’s condition) and closures C/, and Cl,i. Those general results have a “bipartite
version” for balanced bipartite graphs of order 2n considering property BB and biclosures BC/,+1 and BCl,1>. We then
give two new sufficient conditions for a bipartite balanced graph to be bipancyclic. The first one (Theorem 11) is obtained
as a corollary of a characterization of bipartite balanced graphs that satisfy Property BP,, 1 <k <n+ 1 (Theorem 10)
and the second one concerns bipartite balanced graphs that are traceable with degree condition on both extremities of a
hamiltonian path (Theorem 12).

In Sections 3, 4 and 5, we give the proofs of Theorems 10, 11 and 12, respectively.

2. Results
Let us first recall the well-known Ore and Bondy’s results about property F,.
Theorem 1 (Ore [15]). Let G be a graph of order n satisfying property B,. Then G is hamiltonian.

Theorem 2 (Bondy [4]). Let G be a graph of order n satisfying property F,. Then G is either pancyclic or the bipartite
complete graph K> ..

As a generalization of Theorem 1, Bondy and Chvatal proved
Theorem 3 (Bondy and Chvatal [6]). A graph G of order n is hamiltonian if and only if Cl,(G) is hamiltonian.
There is no analogous result for pancyclicity but if we assume the closure to be complete, we obtain

Theorem 4 (Faudree et al. [9]). Let G be a graph of order n such that Cl,+,(G)=K,. Then G is pancyclic.
Considering now bipartite balanced graphs of order 2n, we get the analogous results replacing property B, by BE.1.

Theorem 5 (Moon and Moser [14]). Let G be a bipartite balanced graph of order 2n satisfying property BE,\. Then
G is hamiltonian.

Theorem 6 (Bagga and Varma [3]). Let G be a bipartite balanced graph of order 2n satisfying property BE 1. Then
G is bipancyclic.

Concerning biclosure, we also obtain analogous results to Theorems 3 and 4 as follows.

Theorem 7 (Bondy and Chvatal [6]). A bipartite balanced graph G of order 2n is hamiltonian if and only if BCl,+1(G)
is hamiltonian.

Theorem 8 (Amar et al. [1]). Let G be a bipartite balanced graph of order 2n such that BCl,2(G) = Ky ». Then G is
bipancyclic.

In [9], Faudree et al. studied the structure of graphs of order » that satisfy P; for some integer £, 1 <k < n and
obtained the following characterization.

Theorem 9 (Faudree et al. [9]). Let G be a graph of order n = 4 that satisfies property Py for some integer k,1 < k < n.
Then Cliy1(G) =K, or G has one of following two forms:

(1) k=n—2 and G is isomorphic to Ky.2—p + (Kr UKsy_i—2_,) or to Kiio_p + (K, UKay_s_2_,) for some integer r
with 1 <r <2n—k —3.

(i) k is even and G is isomorphic to A+C where A is any graph of order a with 0 < a<k/2 and C is any (k/2—a)-regular
graph of order n — a.
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In this paper, we consider bipartite balanced graphs of order 2n that satisfy property BP; for some integer k, 1<k < n+1,
and show that such graphs whose (k + 1)-biclosure is not complete have a structure belonging to one of the four cases
described below.

Theorem 10. Let G = (W1, V5, E(G)) be a bipartite balanced graph of order 2n satisfying property BP; for some integer
k, 1 <k <n+ 1. Then BCli11(G) =K, . except in the following cases:

1. k=n and G is isomorphic to Kyq U Ky—an—a for some a, (n—1)/2 <a<n-—1.

2. k=n+1 and for some a, 1 <a <n—1, G is isomorphic either to K> o+ (Kys—1,a UKy—a—1.n—a) 01 to K11 +(Ky—1,4—1U
Ky ana)orto Kii+ Kat1at UKy_an_a).

3. k is even and G is isomorphic to A+ C where C is a (k/2 — a)-regular balanced bipartite graph and A is a balanced
bipartite graph on 2a vertices, 0 < a < k/2.

4. There exists some positive integer y < k/2 and disjoint subgraphs I and I> of G satisfying 1 < |[V(I)NVi| <k—7y
and |V(I2) N V| <y such that G is isomorphic to IN + I and the vertices of I satisfy the degree condition in G

do() Y if xevV())nn,
G¢(X)=
k—y if xeV(h)NTh.

Using Theorem 10 and some results of Amar et al. [2], we then prove

Theorem 11. If a bipartite balanced graph G of order 2n, n = 6, satisfies property BE, then G is bipancyclic or
isomorphic to K, ,—,+ I for some integer y < n/2, where the bipartite graph I contains K,—,, as a spanning subgraph.
Notice that Theorem 11 has Theorem 6 as a corollary.

We also obtain another sufficient condition for bipancyclicity as follows:

Theorem 12. If a bipartite balanced graph G = (1, V>, E(G)) on 2n vertices contains a hamiltonian path connecting two
nonadjacent vertices u € Vi and v € V5 such that d(u) + d(v) = n+ 1, then G is bipancyclic.

If d(u) = (n+ 1)/2, u is contained in a Cs and for every k, 3 <k < n, there exists some Cy that contains both u
and v.

This last theorem is in fact the “balanced bipartite result” corresponding to the following one proved by
Faudree et al. [10].

Theorem 13 (Faudree et al. [10]). Let G be a graph of order n containing a hamiltonian (u,v)-path for a pair of
nonadjacent vertices u and v such that d¢(u) + dg(v) = n. Then G is pancyclic. If d(u) = n/2, u is contained in a Cs
and for every k, 4 < k < n, there exists some Cy that contains both u and v.

3. Proof of Theorem 10

Suppose that H = BCli11(G) # K, ». Then, by BP; for G, n > 2 and the graph H satisfies the following property
denoted by (% ):

(*) du(x)+du(y)=k for every nonedge (xy) in H with x in }; and y in J5.

Let 4, B, C denote the subsets of vertices with degree in H, respectively, strictly greater than, strictly less than and equal
to k/2. For i=1,2 put A, =V,NA4, B.=V,NB, C;i=V,NC and a;, b;,c; their respective cardinalities.

First of all, we notice that the bipartite subgraphs induced in H by A and B are complete since two nonadjacent
vertices x € A1, y €A4> (x € Bi, y € By) have a degree-sum greater than k (less than k), respectively. Analogous arguments
imply that the vertices of 4 U B are adjacent in H to the vertices of C that are not in the same part of the bipartition.
Consequently, H contains (Ku,.a, UK, 5, )+Ke,c, as a spanning subgraph. We deduce that if C; # () then, by the definition
of Ci, we have a, + by < k/2 and thus co > n—k/2 2n—(n+1)/2 > %, i.e. c2 = 1. In other words C, # . Analogously,
Cy # O implies C; # 0. Moreover if C; = C, = () then at least one of By and B, is not empty otherwise H would be
complete.

Without loss of generality, one of the following three cases occurs:

Case 1: C; # 0 and C, # () (k is even).
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By the definition of C; and C, we have a; + b; < k/2 and thus ¢; = n — k/2 for i = 1,2.

Subcase 1.1: 1 <k < n.

Since, for i=1,2, ¢; = n—k/2 > k/2, then necessarily B=1{ (if not, every vertex in B; would be adjacent to at least k/2
vertices in Cj, j # i). This implies that for every x in C; and y in C; we have dc(x)=k/2 —a, and dc(y)=k/2 —a,. By
considering the number of edges between C; and C, we obtain (n—a;)(k/2 —a2)=(n—a2)(k/2 — a1), whence a; =a, and
c¢1=c¢3. So H is isomorphic to K, .+ C*, where C* is a (k/2 — a)-regular bipartite graph of order 2(n —a), 0 < a < k/2.

Subcase 1.2: k=n+ 1.

e If B=() then, by similar argument, we obtain H isomorphic to K, ,+ C* where C* is a ((n+ 1)/2 — a)-regular bipartite
graph of order 2(n —a), 0 <a < (n+ 1)/2.

e If By # 0 then b2+ c2 < (n—1)/2. But since ¢z = (n— 1)/2, then necessarily b, =0, c2=(n—1)/2 and ax =(n+1)/2.
By considering the degree of vertices of C; and Bj, we deduce that Ey[Ci, Co] = En[Bi,42] = 0.

Given y in A,, y has degree a + ¢i but also £k — (n — 1)/2 since y has no adjacency in B; and every vertex in
B; has degree (n — 1)/2, whence dy(y) = a1 + ¢1 = (n + 3)/2. Moreover, every vertex in C, has exactly a; + b
neighbors and so a; + by = (n+ 1)/2, ¢ =(n — 1)/2, a1 =2 and by = (n — 3)/2. The graph H is isomorphic to
K0 + (Kin—3y2,(—1)2 U K 1y/2.(n41)/2)-

Case 2: C=10, By # () and By # 0.

H contains the spanning subgraph K 4, U Kp, 5, With a; + b; =n for i = 1,2. Without loss of generality, assume that
ar + by <n < ay + b. By considering the degree of the vertices of H, we deduce that 1 < b, < (n + 1)/2 and thus
(n—1)2<a<n—1,i=12.1fa+b; =n+2 then dy(x)+du(y) = ar+ by = k+1 for every x in 4; and y in B>,
whence y is adjacent to every vertex in 4; and hence it has degree n, a contradiction. Therefore n < a> +b; <n+ 1.

Subcase 2.1: a> + by =n.

Then ay =a> =a and by = b, = b.

o If k <n—1 then BClit1(Koa UKy—gn—a)= K, and thus H = K, ,, a contradiction. Therefore k£ > n.

o If k=nthen H=K,,UK,_4n,—a (H cannot have additional edges, otherwise, by (%), we would get a vertex x € B
with dy(x) =b + a=n > n/2, a contradiction).

o [f k=n+1 then b <dy(y)<b+1 for every y in Bi. Otherwise, if dy(y) = b + 2 for some y in B; then, since
di(y) < k/2 < n, there exists some x in 4, nonadjacent to y and dy(x) + du(y) = a+ b+ 2=k + 1, a contradiction
with (%).

Suppose now there exists some y in By (or B») such that dy(y) = b. Then, by (%), du(x) =a + 1 for every x in 4,
and thus necessarily » > 2 and x is adjacent to some )’ in By — {y}. Because of dy()") < k/2 < n there is an x’ in 4,
nonadjacent to y’. Then, by (%), diy(x')=n+1—dy(y") < n+1—(b+1)=a, a contradiction. We then have dy(y)=>b+1
for every y in Bi. Hence the vertices of By are adjacent to the same vertex x of A, for otherwise if yx; € E(H) and
yvoxa € E(H) with x1 # x» then dy(y1) +du(x2) =2 b+ 1+a+ 1 =k + 1, a contradiction with (%) since yix» € E(G).
Analogously with B, instead of B; and so H = Ki,1 + (Ka—1,4—1 U Ky—a.n—a).

Subcase 2.2: ap + by =n+ 1.

Then H contains K, q+1 UK »—1 as a spanning subgraph, with b > 2 (a=a1, b=b1, ax=a+1, b=>b—1) and there
are necessarily missing edges between A and B, as between 4, and Bj.

Let us choose x in 4; and y in B, that are not adjacent. They satisfy dy(x)+du(y) = a+1+b=n+1, so necessarily
k=n+1, dy(x)=a+1 and dy(y) =b.

Assume there is some edge uv, u€ A1, vE By. Then duy(u) = a + 2 and every vertex in B, has a degree sum with
vertex u greater than &, which implies by (%) that u is adjacent to every vertex in B,. Symmetrically, dy(v) > b+ 1 and
v is adjacent to every vertex in 4;. We now observe that any two vertices u' € 4, and v’ € B, have degree sum greater
than £ and so are adjacent, a contradiction.

We then deduce En(41,B>) =0 which implies b < (n+1)/2 <a+ 1.

If there exists y in By with dy(y) =5 — 1, then, by (%), every vertex in 4> has degree equal to k — (b —1)=a + 2,
whence there are at least two vertices of B; that are in the neighborhood of 4, and so have degree at least 5. Again from
(%), such vertices are adjacent to every vertex in A, and therefore, they would have degree n > k/2, which contradicts
the definition of B. Hence di(y) = b for every y in Bj.

Suppose that for every x in A, we have dy(x) <n — 1, that is x has (at least) one nonadjacency y, in B;. Thus
dy(x) +du(yy)=k=n+1. Since du(y:) = b, we deduce dy(x) < a -+ 1, and x has at most one neighbor in B;.

If dy(x) =a, x has no adjacency in B; and every vertex in By has degree k —a=b + 1, whence there is some x’ € 4>
with degree at least a+1 and so, from (%), adjacent to every vertex in By, a contradiction with dz(x") < n— 1. Therefore,
for every x in A,, we have du(x) =a + 1. Consequently, dy(yx) =b and y, has exactly one neighbor in 4,; this holds
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for every vertex y, in B; being nonadjacent to x, hence for every vertex in B; but the one which is adjacent to x. Since
each vertex in A, has exactly one neighbor in By and |Bi| =b < a+ 1 = |4,], there is a vertex y in B, which has at
least two neighbors in 4,. Then dy(y) = b+ 1 and it follows that y is adjacent to every vertex x in A,. This implies
dy(y)=n = k/2, a contradiction. So there exists a vertex in 4, with degree n.

We denote by S, the set of such vertices and by R its complement in 4,. It follows R # (), otherwise duy(y)=n > k/2
for every y in Bj, a contradiction. Given an x in R, there is some y in By nonadjacent to x. Then dy(x)+du(y)=n+1 >
a+b—14+|S|=n+|S]—1. S0 1 <|S| <2.

Assume first [S| =1 and {s}. We know (from b >2 and |R| =a > b — 1) that |R| is at least 2 and every vertex in
B is adjacent to s, whence either dy(x) =a and dy(y)=b+ 1, or dy(x) =a+ 1 and dy(y) = b. This is true for every
vertex y of B; being nonadjacent to x.

o If dy(x) =a and dy(y) = b + 1 then y has exactly one neighbour x" in R. Let y' in B, nonadjacent to x’. Then
dy(x’) +du(y’)=n+1 and necessarily dy(x')=a+ 1 and dy(y') =b. Thus dy(x) + du(y’) # k, a contradiction with
(%) and with the fact that x is not adjacent to y'.

o If dy(x) =a+ 1 and dy(y) = b, then y has no adjacency in R and then, given x’ in R we have, by (%), dy(x') =
n+1—dy(y)=n+1—b=a+ 1. Let z be the only neighbor of x in By, z is adjacent to s and x and cannot be
adjacent to x’, otherwise it would have degree sum greater than k with every vertex in 4> and would be adjacent to
every vertex in 4. However we have dy(x') + du(z) = (a+ 1)+ (b + 1) > k, a contradiction with ().

Therefore |S| =2 and consequently dy(x) =a, dy(y)=5b+ 1. This is valid for every x €R and every y € B; being
nonadjacent to x, hence for every y € B;. Thus Ey(Bi,R) = 0.

So H is isomorphic to Ko + (Kga—1 U Ky—gn—a—1)-
Case 3: C=10, B, =0, B # 0.
Then H contains Ky, U K,—q0 as spanning subgraph, where a = |4;|.
Suppose |Bi| = 2.

e If k < n then, by definition of B, for any two vertices x; and x» in By we have dy(x;)+ du(x2) < k < n. This implies
that there exists some y in A, adjacent neither to x; nor to x,. Then, by (%), du(x1) + du(y) =k = du(x2) + du(y)
and thus dH(xl) = dH(Xz).

e If £k =n + 1, assume that there exist two vertices x; and x» in B; for which du(x1) < du(x2) < (n + 1)/2. Then
dr(x1)+du(x2) < 2du(x2) — 1 < n, also there exists y in 4, adjacent neither to x; nor to x», in contradiction with (%)
and dy(x1) < du(x2).

Hence all the vertices of B have the same degree y in H and y < k/2 from definition of B).
If S denotes the vertices of 4> with degree n and =S|, we clearly have f§ <y < k/2.

There is a vertex of 4, with degree at most » — 1 and for every such vertex y there exists some x in B; nonadjacent to y.
Then, by (k), du(y)=k —du(x) =k —y > k/2.
Consequently, for some y <k/2, H=K,p+ 11, | <a<k—y f<yand

V if xeV(h)nn,
dH(x): .
k—y ifxeVi)Nh

Remark 1. With the above notations, in the case when =7, we have E(B1,4, —S)=0, a=k —y and H is isomorphic
to Ki—yy + Kn—kipn—y, that is I = Kn—kipn—y.

We have now characterized the graph H but we need to go back to the initial graph G to achieve the proof of
Theorem 10. Let us notice that a vertex which has at least one nonadjacency in H has exactly the same neighbors in
G as in H but if it is adjacent to every possible vertex of H, it can have in H more neighbors than in G. Using this
observation, we examine the different cases and subcases of the above proof.

In Subcases 1.1 and 1.2 when B =0, since H is isomorphic to K,, + C*, where C* is a (k/2 — a)-regular bipartite
graph of order 2(n — a), 0 < a < k/2, we get G =A" + C*, where C* is the same (k/2 — a)-regular bipartite graph of
order 2(n — a), 0 < a < k/2, and 4™ is a bipartite balanced graph of order 2a. This is Case 3 of Theorem 10.

In Subcase 1.2 when B # @), H is isomorphic to K0 + (Kn=3)2,(n=1)2 UK—1)2,(n+1)2), G 18 isomorphic to // and we
are in Case 2 of Theorem 10 with a = (n — 1)/2.
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In Subcase 2.1

e If k =n then G is isomorphic to H =K, o UK, —gn—a, (n —1)/2 <a <n—1 and this is Case 1 of Theorem 10.
o Ifk=n+1, H=Ki1+(Ka-1.a-1UKy—an—a), (n— 1)/2 <a <n—1 and G is isomorphic to Ki,1 + (Ko—1,a—1 UKy—a,n—a)
or to Ki,1 + (Ka—1,a—1 UKy—an—a), that is Case 2 of Theorem 10.

In Subcase 2.2, G is isomorphic to H = Ko + (Koa—1 U Ky—gn—a—1), (n —1)/2 < a <n — 2, that is also Case 2 of
Theorem 10
In Case 3, for some y < k/2, H=K,p+ 11, 1 <a<k—y, f<y, with

y if xeV(h)nnh,
dH(x): .
k—y if xeV(L)N W

and G is isomorphic to I + I3, where I is the same as above and I3 is a subgraph of K, g.

We then are in Case 4 of Theorem 10 which is now proved. [
Remark 2. The special case of Remark 1 when y = f8 corresponds to I = K, 4:,,—, and I> is a bipartite subgraph
of Ki_,,. Notice that if k =n,G is equal to K, ,—, + I> where I> is a bipartite subgraph of K,_,,, and if moreover
I =K,_,,, we then obtain for G the graph K, , UK, ,—,.

4. Proof of Theorem 11

Before proving Theorem 11 we first give a useful result due to Amar, Ordaz, Raspaud, that can be found in [2]
(the fact that for G nonhamiltonian we have d(x;) =d(x,)=d(y1) =d(y,) = d(G) is not stated explicitly as a result by
itself but is a direct consequence of Claims 1-5 in the proof of Proposition 2 taking p =1).

Theorem 14. Let G be a balanced bipartite graph of order 2n, with minimum degree 6(G) and bipartite independence
number owip(G). If owip(G) < 20(G) — 2, then G is hamiltonian except in the case owip(G) =20(G) — 2 and G is either
isomorphic to 3K, , + K11 or to 3K, , + Ki,1 or it contains a cycle C =x1y1...Xy—1Yu—1x1 of length 2n — 2 such that
G — C is an edge x,y,. Moreover, in this last case, if G — {xu, yn} # Ki—1.n—1, w.Lo.g. we can suppose that x, is
adjacent to y,— but not to y\, and we get d(x1)=d(x,)=d()=d(ya) =G); if G — {xn, yu} = Kn—1,n—1, then it
follows 6(G)=1 and in fact d(x,)=1 or d(y,) = 1.

Proof of Theorem 11. Let G be a bipartite balanced graph of order 2n satisfying property BPF,.

Claim 1. If BCl,1(G) is not equal to K, ,, then one of the following occurs:

1. n is even and G is isomorphic to A+ C where C is a (n/2 — a)-regular balanced bipartite graph and A is a balanced
bipartite graph on 2a vertices, 0 < a < n/2.

2. There exist some positive integer y < < n/2 and disjoint subgraphs I and I’> of G satisfying 1 < |V(I2)NW| <n—vy
and |V(I2) N W] <y such that G is isomorphic to TN + I and the vertices of I satisfy the degree condition in G

Y if xeV(I)NNh,
dg(x) =
n—y if xeV()N h.
Proof. This claim is a direct consequence of Theorem 10 with & = n. The possible exception graph K, . U Ky—4n—a,

(n—1)/2 <a<n-—1, obtained from Case 1 of Theorem 10, is in fact a subcase of the above Case 2 as noticed in
Remark 2 of the preceding section (and since a can be equal to n/2, we assume y < n/2 and not y < n/2). [l

Claim 2. o;y(G) < 25(G).

Proof. Suppose that G contains an independent set K, , with o > 5(G), and let x be a vertex of degree 5(G). Then for
each y nonadjacent to x, dg(y) =n — 0 >n — a. So there are at least n — J vertices of degree at least n — o + 1, and
thus at least one of them is in K, , and has a neighbor in K, ,, a contradiction. [

Claim 3. G is hamiltonian or it is isomorphic to T’ +IZ.,,,1_~,. where I' O IZ,,_M with 1 <y < n/2.
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Proof. Suppose that G is not hamiltonian. Then by Theorem 14 and Claim 2 two cases can occur:

Case 1: aip(G) =20(G) —

If G is isomorphic to 3K, p+K1 1 or 3K, p+K1 | then, by BER,, we get n=3 p+1=4 which contradicts n > 6. Therefore,
by Theorem 14, G contains a cycle C =x1y1 - -Xu—1Ys—1X1 such that G — C is an edge x,y, with x,y,—1 € E(G) and
xay1 € E(G). If G — {x4, ya} = Ku—1,0—1, then it follows that G is isomorphic to I' + K ,—1, with I' D K,_11, i.e.
Claim 3 for y = 1. If G — {xu, yn} # Ku—1.n—1, then, by Theorem 14, d(x1) = d(x,) = d(y1) = d(y,) = 0 = 6(G).
Since x1y, ¢ E(G) and x,—1y, € E(G), using BE, we get 20 =d(x1) + d(y,) = n and thus 6 > n/2. If we assume
d > n/2 then for every x € Vi, y € V3, d(x)+d(y) =20 = n+1, thus G satisfies BB+, and is hamiltonian by Theorem 5,
a contradiction. Therefore, (G)=n/2. Since G is not hamiltonian, we have necessarily (NZ (x,) UNZ (x4)) N Nc(yn) = 0.
This implies that Nc(x,) = {Yu2+1,.-., ¥u—1} and Ne(yn) ={x2,...,xupn}. Let i€ {n/2 +1,...,n— 1}. It is easy to check
that x; is not adjacent to y; otherwise we obtain a hamiltonian cycle C’ = x,y.x2C[x2,x:]x:y1C~ [¥1, yi]yixn. Using a
similar argument, we get that x; is not adjacent to y,,. Since d(x;) = 6 = n/2 and [{yw2t1,..., Yu—1}| =n/2 — 1, there
exists k € {2,...,n/2— 1} such that x;y, is an edge of G. Then C' =x;3%xC ™ [y, ¥i]yixn VuXi+1C[Xk11,X:]x; is @ hamiltonian
cycle, a contradiction.

Case 2: aip(G) = 26(G).

If BCl,+1(G)=K,,,, we know that G would be hamiltonian because of Theorem 7, a contradiction. Thus BCl,11(G) #
K, , and Claim 1 can be applied.

Subcase 2.1: If G has form (1) in Claim 1, then 6(G) =n/2 and a balanced independent set of cardinality owip(G) =
20(G)=nis necessarlly a subset of 4 or of C. In the first case, because of ab,p(G) =n, we see that a =n/2, and C and
A are isomorphic to K,2,, i.€., we have Claim 3 with y = n/2 and I = K,2,,2; so we only consider the second case
when C contains an induced subgraph K, . Since C is (#/2 — a)-regular, every x € K,2,,» has (n/2 — a) neighbors in
C' = C — Ko Since |C'| = 2((n — a) — n/2) = 2(n/2 — a), every x in one of the two vertex-classes (the first or the
second) of K, is adjacent to every y in the other vertex-class (the second or the first, respectively) of C’, hence it
follows C =K, w2t C’. Since for every y in C', nf2 —a=dc(y) =n/2 we get d(y) =n/2, |A|=a=0, and G is
isomorphic to C = Kn/z w2 + T, with I'=C’ =K, 42, .. we have landed at Claim 3 with y =n/2. (By Remark 2, G is
also isomorphic to 2K, /2.)

Subcase 2.2: If G has form (2) in Claim 1, the structure of G depends on the integer y < n/2.

We first suppose that we are in the case when y < n/2.

We know that G is isomorphic to I+ 13 with dg(x)=7 if x € V([1)NV and dg(x)=n—7y if x € V(I7)N V. Let us recall
the exact structure of G that was obtained from Case 3 of the proof of Theorem 10 (since we have assumed y < n/2). We
have Vi =A4; U B; where A; corresponds to the vertices of V7 with degree (in the biclosure) more than n/2, |4i|=a > 1
and B; consists of vertices of degree 7. The set V5 = A4, has all its vertices of degree (in the biclosure) more than n/2
and contains a subset S of cardinality i whose vertices have degree n while the other vertices have degree n — y. The
graph I7 corresponds to the bipartite subgraph induced by (Bi, /> —S) and I3 is a subgraph of K, s with the same vertex
set. These properties imply f <7, 6(G) =7y and there is a balanced independent set of cardinality opip(G) =25(G) =2y
which is a subset of V' (I1). Also we have n > a+ 7y and we will distinguish two cases corresponding to equality or strict
inequality in this formula.

o If n=a+y, we get f=y (namely, because every y € 4, —S is adjacent to all vertices of 4; and has degree dg(y)=n—7,
and since |4,| =a =n — 7, it follows that the n —a =7y > 1 vertices of B, havmg degree y can be adjacent only to
vertices of S and therefore, § > 7); so we are in the case of Remark 2, that is G =K, ,—, + I where I' contains K,_
as a spanning subgraph. This case corresponds to the exception graph of Claim 3 and is clearly not hamiltonian.

e If n > a+ 7, consider a balanced independent set (Wi, W), Wi C NV (L), Wo CVhn V().

Every vertex y in W, satisfies dg(y)=n —7 and so is adjacent to the n — a — 7y vertices in B; — W; which is not empty
by our assumption. Moreover, every vertex x in By — I has degree y and consequently has no neighbors out of #. We
then deduce that S is empty, i.e. f =0, since vertices of By — W should be adjacent to every vertex in S, and I] is
isomorphic to K,—.—,; U Iy, where I is induced by (W, V5 — W3). Therefore G is isomorphic to Kuo + (Ky—a—y,; U I0).

On the other hand, let us consider the bipartite balanced graph G’ with 2(a+7) vertices equal to Ky 0+ (Ko,2p+a—n UT0),
i.e. the subgraph of G obtained by suppressing By — W in Vi and a subset 7 in W, with n — a — 7y vertices, which is
possible since y > n — a — y can be verified.

The degree in G’ of the vertices of V(Ip)NV; and V(Iy)N V5 is still equal to y and n—y, respectively, and every vertex
in V(Ip) N 1 has at least one nonadjacency in V' (Ip) N V5. Using this remark together with n > a + 7, it is easy to check
that the graph BCl,1,11(G") is the complete bipartite graph K, 4+, and then, by Theorem 7, the graph G’ is hamiltonian.

We can easily extend a hamiltonian cycle of G’ to a hamiltonian cycle of G, replacing the edge uv, u € A4, and v € W —
(that necessarily exists if we assume that 7 # W, i.e. y > n—a—7) by uwPtv where w € Ng(u)NT, t € Ng(v)N(Bi — W)
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and P is a path from w to ¢ containing all the vertices of the bipartite subgraph of G induced by (By — W1,T). So G is
hamiltonian, a contradiction. Now we have to consider the case y=n —a — 7, i.e. T = W,. Then it can be easily proved
that every x € By — W is adjacent to every y &€ W, and nonadjacent to every y &€}, — W, and that every yels — W
is adjacent to every x € 4; U W. This implies that the subgraph of G induced by (B1 — M, V2 — W2) is isomorphic to
Ky—a—yn—y = Ky n—y and, if I' denotes the subgraph of G induced by (4; U Wi, W), that G is isomorphic to I' + K, ,—,
and I' O K,_,,. Thus we have gotten the assertion of Claim 3 and the case when y < n/2 is finished.

If we consider now the case when y=n/2, we can also obtain easily that G is isomorphic to Kn/z w2+T with I' D K,,/z n/2

as a spanning subgraph and Claim 3 is now proved. [
Claim 4. If G is hamiltonian then it is bipancyclic.

Proof. Let I = {(i,j)/xiy; € E(G)} and m = |E(G)|. Then d(x;) + d(y;) = n for each (i,j) €.
Hence

> (@) +d(y) =’ —m) <Y dx)(n—dex)+ Y d(y)(n—d(y;) = n(n’ —m)

(i,))el i=1 j=1
& )+ d(y) = 3nm+n’ <0.
i=1 j=1

By the Cauchy Schwarz inequality we have

n 2 n n 2 n
(Z d(x,»)> <ny d’(x;) and (Z d( y,-)> <ny_ d(y).
i=1 i=1 i=1 i=1

This observation and the fact that 37 | d(x;) = >_r, d(yi) = m, imply S0, d*(x;) > m’/n and 37 d*(y1) = m*/n.
Using these minorations, we then obtain
o
o _3mn+n’<0.
n

Therefore m > n*/2. We know from the following theorem of Schmeichel and Mitchem [13] that G is bipancyclic as
soon as m > n2/2. If m = n?/2, then, by property BB, we can show that G is n/2-regular which can be proved to be
impossible. Hence G is bipancyclic.

Theorem 15 (Mitchem and Schmeichel [13]). Let G be a hamiltonian bipartite balanced graph of order 2n and size m.
If m > n*/2, then G is bipancyclic.

Claim 4 is now proved and also Theorem 11 which is a direct consequence of Claims 1-4. [

5. Proof of Theorem 12
Let us first recall the following result of Schmeichel and Mitchem that appears in the proof of Lemma 1 of [12].

Theorem 16. Let G be a bipartite graph containing a hamiltonian cycle C =x1y1 -+ xpynx1. If d(x1) +d(yn) =n+ 2
then for every k, 2 <k <n, G contains a cycle Cy of one of the following forms:

(1) X1¥pXpi1Ypi1 -+ Xprk—1Yax1 for some p, 1 < p<n—k+1,
(2) X1YpXpt1Yp1 = XaYuXktp—nVit p—n - - - Y1X1 for some p, n —k+2< p<n-—1.

Proof of Theorem 12. Let P =x;yix2)2 - - - X, y» be a hamiltonian path of G such that x; =u, x, =v.

We have assumed that d(u) = d(x;) = (n + 1)/2. Consequently, there exists some i < n — 2 such that y; and yiy
are adjacent to x;, and some j, 2 <j<n — 1, such that x;y, € E(G) and y;x; € E(G). So G contains a C; contain-
ing u and a Cy,.

We now consider cycles of length 2k, 3 <k <n—1.

By the degree assumption, |{i/x1y; € E(G) and y,xi;1 € E(G)}| = 2. Let

d = max{i/x1y; € E(G) and y.xi1 € E(G)}
and W = Plxgo1, v
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Without loss of generality, we assume that d > (n + 1)/2. (Otherwise we can consider the path P! instead of P.)
We define a bipartite balanced graph H on 2d vertices by

V(H)={xl,...,xd}u{yl,...,yd}
and
EH)={xyi/1 <i<d}U{yixin/l <i<d—-1}U{x1y €E(G)/1 <i<d}
U{yaxi/1 <i<d and yx; € E(G)}.

For any k, 2 <k <d — 1, we define a bipartite graph H; and an integer # as follows: if y,x; € E(G) then Hy = H
and # = 0. If yuxqg € E(G), then Hy = H — {x1ya—k+1} and # = 1 when x1ys—i+1 € E(G), or Hy = H and # = 0 when
X1ya—k+1 € E(G).

Then dy (x1) =d(x1) —dw(x1) — t and du,(ya) = d(yu) — dw(ys) + 1 + tx and thus dpy, (x1) + du(ya) =n+2 —
dw(x1) —dw(yn). By definition of d we have dw(x1)+dw(y.) < n—d. This implies dy, (x1)+ du(ya) = d +2 and Hy
is pancyclic from Theorem 16 and so contains a cycle Cy of form (1) or (2) described in Theorem 16.

If Cy contains an edge yqx; with i # d and i # 1 then in G we put

Cokr1) = [Cor — {yaxi 1 U { VaXas1,Xas1 Yns YuXi }

and
Coksn—ay = [Cok — {yaxi 1 U {yuxi} U P[ya, yu)-

If Cy contains X1Yd and XdVd, then, by Theorem 16, Cy =X1YdXdYd—1* " Xd—k Yd—k+1X1. Since Yd—k+1X1 € E(Hy) and by
the definition of Hy, we know that y,x; € E(G). In G we put

Coer1y = [Cok — {yaxa}1U {yaxai1,Xa41Yn, YuXa}
and
Cotgsn—ay = [Cor — {yaxa}1 U {yuxa} U P[ya, yul.

Thus G contains a cycle Cy, for every m, 3<m<d and n —d +2 <m <n — 1, which contains both u and v.
Moreover, n —d +2 <d + 1, since d = (n+ 1)/2.
Hence G is bipancyclic and every Con, 3 < m < n, contains both u and v. [
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