
Discrete Mathematics 287 (2004) 145–150

www.elsevier.com/locate/disc

Note

The correct solution to Berlekamp’s switching game�
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Abstract

We look at Berlekamp’s switching game ofn × n grids forn�10. We show that the previous result forR10 was incorrect,
and that in factR10= 35. We also show thatR11= 43 andR12= 54, and give new lower bounds forR13 throughR20.
© 2004 Elsevier B.V. All rights reserved.
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While working at Bell Labs in the 1960s, Elwyn Berlekamp built a 10× 10 grid of light bulbs. The grid had an array of 100
switches in the back to control each light bulb individually. It also had 20 switches in the front, one for every row and column.
Flipping a row or column switch would invert the state of each bulb in the row or column. A simplistic game that can be played
with such a grid is to arrange some initial pattern of lighted bulbs using the rear switches, and then try to turn off as many bulbs
as possible using the row and column switches. The player is allowed to flip any of the switches as many times as they want. If
the player is skilled, the grid will soon reach an irreducible state, that is, no possible sequence of row or column flips will further
reduce the number of lighted bulbs. The problem posed by Berlekamp, roughly, was to find a largest such irreducible state.
More formally, consider a generaln × n grid of light bulbs with the same setup. LetSbe any state of the grid, that is, any

arrangement of lighted bulbs obtained using then2 rear switches.

Definition 1. Let the weight ofSbe the number of lighted bulbs in the grid.

Definition 2. Letf (S) be the minimum weight achieved by applying any sequence of row and column switches toS.

Definition 3. A stateS is reducibleif f (S) is less than the weight ofS. Conversely, a grid isirreducible if f (S) equals the
weight ofS.

Definition 4. LetRn =max f (S) over all possible statesS.

In other words, findingRn is essentially the same as finding an irreducible such that no irreducible exists with a larger weight.
The precise goal of Berlekamp’s game is to findRn. Note thatRn can also be interpreted as the covering radius of the so-called
lightbulb code of lengthn2, as explained in[2]. When Berlekamp introduced his game, it was quickly seen that the problem of
findingR10 cannot be solved by hand. Even a brute force computational approach will not work because there are 2100possible
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Table 1
Previous results

n 1 2 3 4 5 6 7 8 9 10

Rn 0 1 2 4 7 11 16 22 27 34

Fig. 1.n = 10, weight= 35.

Fig. 2.n = 11, weight= 43.

initial states, a number far too big for any computer to handle. However, by eliminatingmany cases and using symmetry, Fishburn
and Sloane foundRn for n�9 by hand and foundR10 with the aid of a computer. Their results are summarized inTable 1.
Our approach to this problem was to guess a value,p, forRn, and then use a computer to generate alln × n states of weightp

that could possibly be irreducible, up to certain symmetries. The program either returns one or moren×n irreducible states with
p lighted bulbs, proving thatRn�p, or the program declares that no irreducible states of weightp exist. If no irreducible states
of weightp exist, thenRn < p (see[1] for a proof). In order to eliminate symmetry, we consider all row and column sequences
subject to the following. These sequences haven entries each of which corresponds to the number of lighted bulbs in that given
row or column. The sum of the entries of the sequence equalsp. Also, every entry is less than or equal ton/2, because if a row
or column had more thann/2 lighted bulbs then the state could be reduced by inverting that row or column.We eliminate states
with symmetry under interchanging rows or columns by requiring all row and column sequences to be non-increasing. We can
also easily eliminate states that are symmetric under transposition.
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Fig. 3.n = 12, weight= 54.

Fig. 4.n = 13, weight= 60.

Fig. 5.n = 14, weight= 71.
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Fig. 6.n = 15, weight= 82.

Fig. 7.n = 16, weight= 94.

Fig. 8.n = 17, weight= 106.
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Fig. 9.n = 18, weight= 120.

Fig. 10.n = 19, weight= 132.

Fig. 11.n = 20, weight= 148.
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Table 2
New results

n 10 11 12 13 14 15 16 17 18 19 20

Rn 35 43 54 �60 �71 �82 �94 �106 �120 �132 �148

The program takes one of these sequences, assigns it to the columns, and constructs states row by row.After constructing each
row, it checks whether the partial state can be reduced simply by knowing what some of the rows look like. We ran the program
for n�9 and confirmed the previous results. Running the program forn = 10,p = 35 yields an irreducible state of weight 35
shown inFig. 1. This shows that the resultR10= 34 found in[1] is incorrect. Running the program forn = 10,p = 36 returns
no irreducible states. Thus we give the following,

Theorem 5. R10= 35.

We used the same method forn = 11,12 to obtain the following results:

Theorem 6. R11= 43.

Theorem 7. R12= 54.

The maximal irreducible states we obtained are shown inFigs. 2and3. We also used this program to prove results about
n = 13,14, but obtaining definite values forR13 andR14 would take months or even years with our current algorithm.
The problem of proving lower bounds onRn is much simpler than finding the actual value. If we find an irreducible state with

p bulbs on, we have proven thatRn�p. Our approach to finding lower bounds was to take an(n − 1) × (n − 1) irreducible
matrix, and use it to construct unique irreduciblen × n states which contain the input state. We have 12× 12 irreducible states
from our first program, and we used those as inputs to find 13×13 irreducible states.We then used these 13×13 states as inputs
to find 14× 14 irreducible states. Because the time it takes to complete the program increases exponentially withn, we tried
fewer cases asn increased, so the likelihood of our lower bounds being equal toRn decreases asn increases.With the use of this
program, we give our final results.

Theorem 8. R13�60,R14�71,R15�82,R16�94,R17�106,R18�120,R19�132,R20�148.

Proof. The states inFigs. 4–11are irreducible. �

Our results are summarized inTable 2.
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