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We prove that a planar graph can be partitioned into edge-disjoint circuits of 
even length, if and only if every vertex has even valency and every block has an 
even number of edges. 

1. INTRODUCTION 

It is elementary that if G = (V, E) is a graph, a necessary and sufficient 
condition for E to be expressible as an edge-disjoint union of circuits is that 
every vertex has even valency. (For convenience, we call such a graph 
Eulerian, even if it is not connected.) We study a variation of this problem, 
viz., when can E be partitioned into even circuits? It is-certainly necessary 
that G should be Eulerian, and that every block of G should have an even 
number of edges, but this is not in general sufficient. However, it is sufficient 
for planar graphs. This is our main result and we prove it in Section 3. 

One reason for interest in even circuits is a connection with the four- 
colour theorem. That implies that in every cubic 2-connected planar graph 
there is a set of even circuits in which each edge occurs twice. We might 
therefore hope that even circuits in planar graphs have other nice properties. 
(Extra motivation came from ‘a claim of Szekeres [4], that any cubic graph 
with such a “2-covering” by even circuits is 3-edge-colourable. However, 
Szekeres’ result turns out to be incorrect-see Section 4.) There is another 
“even circuit” consequence of the four-colour theorem as well, which we 
discuss in Section 2, and which we use for our main proof. 

For non-planar graphs the problem about partitions into even circuits is 
still open. The condition of our theorem is no longer sufficient; for example, 
K, is not expressible in the required way, although it is Eulerian, 2- 
connected, and has an even number of edges. Another counterexample may 
be obtained as follows: take the Petersen graph; let F be a l-factor; for some 
edge e @ F, replace e by two edges in series; and for each f E F, add a new 
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vertex of valency 2, adjacent to the ends off. We shall therefore confine 
ourselves to planar graphs. 

Let us clarify some terminology. Graphs are finite, undirected, and may 
have loops or multiple edges. It will be convenient sometimes to identify 
subgraphs such as paths and circuits with their edge-sets, when there is no 
risk of confusion. We denote the vertex- and edge-sets of G by V(G), E(G), 
respectively. Paths and circuits have no “repeated” vertices, and their length 
is the number of edges in them. (The path with one vertex and no edges is 
recognised, but circuits must have non-zero length.) Paths and circuits are, 
loosely, even (or odd) if they have even (or odd) length. A block of a graph is 
a maximal subgraph with the properties that it is connected and any two 
distinct edges are in a circuit. G is k-connected if the result of deleting any 
set of k’ < k vertices is connected. A cut is the set of edges with one end in 
X, and the other in X,, where (X, , X,) is a partition of V. An isthmus is an 
edge e such that (e} is a cut. G is k-edge-connected if it is connected and has 
no non-empty cut of cardinality <k. The valency of a vertex is the number of 
edges incident with it; loops are counted twice. If v has valency 2, and is 
incident with distinct edges e,, e,, we say that e, , e2 are in series. A l-factor 
F of G is a subset of E such that each vertex of G is incident with exactly 
one edge in F. A circuit partition (C,,..., C,.) is a partition of E(G) into sets 
E(C,) ,..., E(C,), which are the edge-sets of circuits C ,,..., C,. An even circuit 
partition is one in which every Ci is even. 

2. SOME LEMMAS 

We shall need the following result. 

(2.1) Let G = (V, E) be a planar 2-edge-connected cubic graph, and let F 
be a l-factor. Then there is a set of circuits of G so that each f E F is in 
exactly two of them and each e E E -F is in exactly one. 

(Incidently, this may be regarded as a theorem about even circuits; for 
every circuit in such a set consists of edges alternately in F and in E -F, 
and so is necessarily even.) 

Proof: From the four-colour theorem, G is 3-edge-colourable, and so has 
three edge-disjoint l-factors F, , F,, F,. Then for i = 1,2,3, (F, - F) U 
(F - F,), is expressible as a disjoint union of circuits, and by taking all these 
circuits for i = 1,2,3 we obtain a set satisfying (2.1). 

It is also possible to prove (2.1) without assuming the four-colour 
theorem, for it is a corollary of the following (difficult) theorem of 
Fleischner [ 11, as he observed in that paper. 
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(2.2) Let G = (V, E) be a planar Eulerian graph, and let & be a set of 
unordered pairs of adjacent edges of G, so that for any v E V and e E E 
incident with v, there is at most one f incident with v so that {e, f } E a. 
Suppose that no cut (e, f } E g. Then there is a circuit partition (C, ,..., C,) 
ofGsothatD&C,for I<i<randDEg. 

To derive (2.1) from this, let C9 contain all pairs of adjacent edges of G 
not in F, contract all edges in F, and apply (2.2) to the result. 

Fleischner observed that this proof shows also that (2.1) is true if we 
replace the “planar” hypothesis by the weaker condition that the result of 
contracting F is planar. However, it does not hold for all 2-edge-connected 
cubic graphs; for example, if G is the Petersen graph and F is any l-factor, it 
is false. 

Incidentally, (2.1) was given the following extension in [3]. (The proof 
there does assume the four-colour theorem, however.) 

(2.3) Let G = (V, E) be a planar graph, and for each e E E let p(e) > 0 
be an integer. Then there is a list of circuits of G using each edge e p(e) 
times, tyand only iffor each cut D, C,,, p(e) is even and is not less than 
2pdf) for any f E D. 

A fortiori, (2.3) does not extend to non-planar graphs in general. 
We have discussed the background to (2.1) at some length, because it 

seems to be of interest in itself, being fairly deep and capable of several 
different generalizations. (Theorems (2.2) and (2.3) above are two such 
generalizations, and our main theorem is a third. To see this, take G, F as in 
(2.1), for each f E F add a new vertex of valency 2 adjacent to the ends off, 
and if ] El is odd replace some e E E -F by two edges in series. Then 
application of our main theorem to the graph produced yields the assertion 
of (2.1) for G, F.) 

In fact, for our application, we need a slight extension of (2.1), as follows. 

(2.4) Let G = (V, E) be a planar 2-edge-connected graph with maximum 
valency 3, and for each edge e let p(e) be 1 or 2. Suppose that for each 
v E v, 

c (p(e): e incident with v) 

is equal to 2 or 4. Then there is a set V of circuits using each edge e p(e) 
times. 

Proof: G has no isthmus. If e,, e2 E E are in series then p(eJ = p(eJ, 
since p(e,) +p(e,) is even by hypothesis, and so the result holds for G if and 
only if it holds for the graph obtained by contracting e2. But G has 
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maximum valency 3, and we may therefore assume that G is cubic. Then 
(e: p(e) = 2) is a l-factor of G, and the result follows from (2.1). 

In order to apply (2.4) we also need the following technical lemma. 

(2.5) Let G, p be as in (2.4), let g be such a list of circuits, and let F = 
(e: p(e) = 2). Suppose that [El is even. Then there is a function t: F-+ @ 
such that 

(i) f E t(f) for each f E F, 

(ii) I{fEF:t(f)=C}l+jC\isevenforeachCE~. 

Proof. Let H be a graph with vertex set Q and with edge set F, where 
f E F is incident with C E 0 just when f E C. We claim that H is connected. 
For if not, there is a partition (gi, U;;) of Q such that ‘Zi , gz # 0 and such 
that no f E F is contained both in a member of @7, and in a member of gz. 
Let 

Ei = u E(C) (i= 1, 2). 
CEWi 

Then E,nE,nF=0 by choice of g,;, SE*;; and (E,nE,)-F=0 by 
choice of 4. Thus E, n E, = 0. But E, U E, = E, and yet each Ei is a non- 
trivial union of circuits of G, and G is connected and has maximum 
valency 3. This is impossible. 

Thus H is connected. Let %7* s %? be the set of circuits C E Q with 1 Cl 
odd. Then IQ* 1 s (E - FJ mod 2, and so by hypothesis lg* I = 1 F( mod 2. 
We claim that the edges of H can be directed so that C E @ has odd out- 
valency if and only if C E V*. To see this, direct the edges of H so that as 
many vertices of H as possible have out-valency with correct parity. Since 
IE(H)I = I FI s IQ* I mod 2, there are an even number of vertices of H with 
out-valency of incorrect parity. Assume for a contradiction that there are at 
least two. H is connected, and so there is a path in H joining two such 
vertices. By reversing the direction of all edges in this path, we increase the 
number of vertices with out-valency of correct parity, a contradiction. Thus 
the edges of H can be directed in the required manner. 

For f E F, define t(j) to be the tail off in H, in this directing. Then t 
satisfies (2.5). 

There is another lemma worth extracting from the main proof. If X, Y are 
disjoint subsets of the vertex set of a circuit C, we say that X, Y interlace on 
C if the vertices of C in XV Y are alternately in X and in Y. (Thus if X, Y 
interlace on C then /Xl= 1 Yl.) 

(2.6) If C, C’, C” are three circuits of a planar graph, and C’, C” have 
precisely one vertex v in common, and C does not pass through v, and 
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1 v(c) n v(c)1 2 2, 1 v(c) n v(c’>I 2 2, then v(c) n v(c), v(c) n v(P) 
do not interlace on C. 

The proof is clear but awkward to write out, and we omit it. 

3. PROOF OF THE THEOREM 

The theorem is the following. 

(3.1) Let G = (V, E) be a planar graph. Then G has an even circuit 
partition if and only if G is Eulerian and every block of G has an even 
number of edges. 

Proof The “only if’ part is clear. We prove the “if’ part by 
contradiction. Suppose that it is false. Then we can choose a graph 
G = (V, E) with properties (l),..., (5) below: 

(1) G is planar, Eulerian, and every block of G has an even number of 
edges. 

(2) G has no even circuit partition. 

(3) Subject to (l), (2), G has JE] minimum. 

(4) G has no isolated vertices. 

(5) Subject to (l),..., (4), G has 1 VI maximum. 

(6) G has no loops. 

For if e is a loop, incident with v E V, then the subgraph ({v}, {e}) is a 
block of G with an odd number of edges, contrary to (1). 

(7) G is 2-connected. 

Some block B of G has no even circuit partition, because G does not. 
However, G has a circuit partition, and hence so does B; thus B is Eulerian. 
By (3) and (4), B = G. Thus G is 2-connected. 

A 2-separation of G is a partition (E, , E2) of E so that I E, I, I E, ( > 2 and 
so that there are at most two vertices incident both with an edge in E, and 
with an edge in E,. Since G is 2-connected and loopless, it follows that when 
(E,, EJ is a 2-separation there are exactly two such vertices u,, u2 say. We 
classify 2-separations into four types, as follows. Since (El is even, there 
exists c, E (0, 1) so that 

) E,I = c, mod 2 (i= 1,2) 

and since G is Eulerian, there exists c, E {0, 1) so that 

I (e E Ei: e incident with uj}l = c, mod 2 (i= 1,2,j= 1,2). 
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We say that (E,, E,) is a 2-separation of type (c,, cz) at (ui, u2}. (In fact we 
are only concerned with those of type (1, O).) 

(8) If(E,,Ed is a 2-separation of type (1,0) at (u,, uz}, then there is a 
vertex v # u, , u2 of valency 2 in G and three edges e, , e,, e3 joining the pairs 
(v, u,), (v, uz), (u,, uz), respectively, so that Ei = {e,, e,, e3} for some i. 

For lE,l is odd and JE,I > 2 by hypothesis. If [El/ = 3, the result follows 
easily. We may therefore suppose that IE, I> 4, and similarly that lEzl > 4, 
for a contradiction. Delete all edges in E,, take a new vertex v’, and add new 
edges e;, e;, e; joining the pairs (v’, ui), (v’, uz), (u,, UJ respectively, 
forming a graph G,. Clearly G, is a planar Eulerian block with an even 
number of edges. Moreover, it has fewer edges than G, and so by (3) G, has 
an even circuit partition (CL,..., C,) say. One of these circuits (C, say) uses 
e;, and a different one (C, say) uses e; , el,. Thus in G there are two paths 
P,, P, and circuits C, ,..., C,, with the following properties: 

(i) P, is odd, and P,, C, ,..., C, are even, 

(ii) P,, P, both join ui, ulr 

(iii) P,, P,, C, ,..., C, partition E,. 

Similarly we may obtain such a partition P’, , Pi, Cl, ,..., C;, for E,. But 
then if C, C’ denote the circuits of G made by P, + P’, and P, + Pi, then C, 
C’, c, )...) c,, c; )...) CL, are all even circuits, and give an even circuit 
partition of G, a contradiction. This proves (8). 

If e,, e, E E join the pairs (x, y), (x, z) where x, y, z E V are distinct, and 
y, z are adjacent in G and one of y, z has valency 2, we say that e,, e2 are 
near-parallel. 

(9) For any v E G and edge e incident with v, there is at most one edgef 
incident with v so that e, f are near-parallel. 

For suppose that e is near-parallel with f, , fi. Let the other ends of e, fi , 
f2 be u, ul, ul, respectively. There are two cases: 

(i) u, # ~1~. Then u has valency 23 in G, and so U, , u, both have 
valency 2. The graph obtained from G by deleting u,, u2 is 2-connected, 
Eulerian, planar, and has an even number of edges, and so by (3) it has an 
even circuit partition. By adding to this the circuit vuIuu2(v) we obtain an 
even circuit partition of G, which is impossible. 

(ii) u, = u2 = w  say. Then fl, fi are parallel, and w  has valency 23 in 
G, and so u has valency 2. The graph obtained by deleting f,, f2 is 2- 
connected, etc., and we obtain a contradiction as before. 

To apply the results of Section 2, we need to show that every vertex of G 
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has valency 2 or 4, and that each vertex of valency 4 is incident with a pair 
of near-parallel edges. Therefore, let u be any vertex of valency k > 4, and let 
elT e29-.9 ek9 ek+, = e, be the edges incident with it, in clockwise order in 
some drawing of G in the plane. Choose this numbering so that if any 
consecutive pair of e, ,..,, ek+ I are near-parallel, then e,, e, are. 

Let the ends of e r ,..., ek different from u be u1 ,..., uk respectively. Let G’ be 
a graph obtained from G as follows. Delete e,, e,; take a new vertex V’ and 
two new edges e; , e; ; and let e; be incident with v’, vi (i = 1,2). Then G’ is 
planar, Eulerian, has the same number of edges as G but more vertices, and 
has no isolated vertices. 

(10) Every block of G’ has an even number of edges. 

For it is easy to see that el, , e; are in the same block B,, that u3,..., vk are 
in the same block B, for some s > 1, and that the remaining blocks can be 
labelled B, ,..., B,- , so that for 1 < i, j < S, Bi and Bj are vertex-disjoint 
unless Ij- iI < 1, and if Ij - iI = 1 then Bi, Bj have exactly one vertex in 
common. If some block has an odd number of edges, then at least two do 
(since G has an even number of edges) and so we may choose i < s 
minimum so that B, has an odd number of edges. Then 

((B,-(&,e;})U(e,,e,}UB,U’.. UB,,Bi+,U~~~ UB,) 

is a 2-separation of G of type (1,0) ( since each B, is Eulerian). By (8), either 
e,, e2 are near-parallel, or k = 4 and e3, e4 are near-parallel. Thus e2, e3 are 
near-parallel, by our numbering of e, ,..., ek, contrary to (9). 

(11) G has a circuit partition (C, ,..., C,), where r > 3, C,, C, are odd, 
C 2 ,..., C,-, are even, C,, C, have precisely the vertex v in common, and 
e, E C,, e, E C,. 

For by (5), G’ has an even circuit partition (C’,,..., CL-,) say, where e{, 
ei E C;. But G has no even circuit partition, and so (C’, - {e’,, e’,})U 
{e, , e2} is not the edge-set of an even circuit of G, nor can it be expressed as 
the union of the edge-sets of two edge-disjoint even circuits. Thus Pi passes 
through u, and there are two odd circuits C,, C, of G with precisely the 
vertex o in common, and with e, E C,, e2 E C,, so that 

(C’,-{e;,e;))U{e,,e,)=C,UC,. 

The result follows, taking Ci = Ci (2 < i < r - 1). 

(12) We can reorder C2,..., C,- , so that for 1 < i, j Q r, C, and Cj have 
a vertex dlflerent from v in common l$ and only if I j - i I < 1. 
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For G - v is connected, and so for some r’ > 3 there is a sequence 

C, = D,, D, ,..., D,! = C,, 

where each Di is one of C,,..., C,andfor l<i<r’--l,DiandDi+,havea 
vertex different from v in common. Choose a minimal such sequence. Then 
for j > i + 1, D, and Dj have no vertices in common, and for i z j, Di + Dj. 
Let E’ be the union of the edge-sets of the Di)s. Then the graph G’ = (V, E’) 
(with the same incidences as G) is 2-connected except for isolated vertices, 
and is Eulerian and planar and has an even number of edges. If E’ # E then 
by (3) G’ has an even circuit partition, and by adding to this all those C;s 
not in the sequence D,,..., D,, we obtain an even circuit partition for G, a 
contradiction. Thus E’ = E, and so each Ci is one of D, ,..., D,.,, and r’ = r, 
and (12) is proved. 

Henceforth, we shall assume C, ,..., C, ordered in this way. 

(13) Every vertex distinct from v has valency 2 or 4. 

For from (12), any vertex distinct from v is in at most two Ci)s, and so 
has valency at most 4. 

(14) All vertices of G have valency 2 or 4. 

For u is an arbitrary vertex of G with valency >4, and certainly G has at 
least two such vertices, by (1) and (2). Thus (14) follows from (13). 

(15) None of C, ,..., C,- , pass through v. 

For C, ,..., C, are edge-disjoint, and C,, C, pass through u, and yet by 
(14), v has valency 4. 

We now begin the second part of the proof, that e2, e3 are near-parallel. 
For 1 < i < r, let Vi be the vertex set of Ci. 

(16) If e,, e3 are not near-parallel, then for 1 < i < r - 1, 
Ivinvi+il>2- 

For if IVif7Vi+i(=1, then (C,U-.. UCi,Ci+,U.., UC,) is a 2- 
separation of G of type (1,O). Thus by (8) two edges incident with u are 
near-parallel, and by our numbering of e, ,..., ek, we have that e2, e3 are near- 
parallel. 

(17) If e,, e3 are not near-parallel, then for 2 < i < r - 1, Vi n Vi-, and 
Vi n Vi+, do not interlace on Ci. 

For let P be a path of G with no edges -in Ci- i , C, or Ci+ , , but with one 
end in C;-, and one in Ci+ir and no other vertices in Ci _, , Ci or C, + , . (P 
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necessarily passes through v; it has zero length if r = 3, but non-zero length 
otherwise.) Delete all edges of G not in P, C,- r , Ci, Ci + r , and contract all 
edges in P; then (17) follows from (2.6) applied to the graph produced. 

(18) e2, e3 are near-parallel. 

For suppose not. Choose i with 2 < i < r - 1. By (17) we may assume 
that there are two vertices of Vi-, on Cj with no vertex of Vi+ r between 
them, by reversing the order C, ,..., C, if necessary. But Ci has at least two 
vertices Of Vi+ ,, and so there exist x, y E Vi n Vi+ r, distinct, which divide 
Ci into two paths P,, P,, so that P, passes through at least two vertices of 
Vi _, but no vertices of Vi+ r except x, y. Let R be a path in Ci+ , joining x, y, 
not passing through U. Then P, + R is a circuit of G. 

Let G, be.the subgraph of G consisting of the vertices and edges in the 
circuits C, ,..., Ci- r, P, + R. Then G, is planar and Eulerian, and has at 
most /E) - 2 edges; and it is 2-connected, since any consecutive pair of 
c , ,..., Ci-, , P, + R have at least two vertices in common. Replace some 
edge of R by two edges in series if G, has an odd number of edges, and 
otherwise do not; let the result be G,. Then G, is planar, Eulerian, 2- 
connected, has an even number of edges and has fewer edges than G, and so 
by (3) it has an even circuit partition (Dr,..., D,), say, where D, passes 
through x, y. Let x, y divide D, into paths Q,, Q2. Then clearly just one of 
Q,, Q, meets V,U ... U Vi-,; Q,, say. Q, is thus either R or R with one 
edge subdivided. 

Let G, be the subgraph of G consisting of the vertices and edges in P,, 
Q,, Ci+L,***, C,. Then G, is planar and Eulerian, and (E(G,)I < IE(G)I (since 
Ci- r & Q,). Moreover, G, is 2-connected; for consecutive pairs of Ci+ r ,..., C, 
have at least two vertices in common, and P,, Q, are both paths joining x, y. 
And G, has an even number of edges; for 

/Q,i-IQ,I-lR(+IE(G,)I~lP,/+IrIP,/+lmod2 

and 

IE(G,)I~IP,I+lQ,l+lmod2. 

By (3), G, has an even circuit partition (D’, ,..., D:,). But then 

(D z ,..., D,, 0; ,.,., D:,) 

is an even circuit partition of G, a contradiction. 
We have therefore proved 

(19) If v has valency 4 in G then two edges incident with v are near- 
parallel. 
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We can now apply the results of Section 2. Let F be the set of all edges f 
of G such that there is a vertex, ZJ~ say, of valency 2, adjacent to both ends 
off. By (9), ur is unique. Delete all vertices uf (f E F), forming a graph H, 
say. Then H is 2-connected and 2-edge-connected and has an even number of 
edges, Every vertex of H has valency 2 or 3, by (14). If H is a circuit then it 
is an even circuit (since IE(H)I is even) and F = E(H) since G is Eulerian; 
but then (E(H), E - E(H)) is an even circuit partition of G, which is 
impossible. Thus H is not a circuit, and so has maximum valency 3. Define 
p(e) = 2 (e E F), and p(e) = 1 (e E E(H) -F). By (2.4), there is a set @? of 
circuits using each edge e p(e) times, and by (2.5) there is a function 
t: F + Q such that f E t(J) for f E F, and 

I{fEF:t(f)=CJI+ICl 

is even for C E Q. For each C E g, construct a circuit g(C) of G containing 
the following edges: 

ifeEC-F,oreECnFandt(e)#CtheneEg(C) 

if e E C n F and t(e) = C then g(C) contains the two edges of G 
incident with u,. 

Then g(C) is a circuit of G, and is even, and (g(C): C E g) is an even 
circuit partition of G, a contradiction. This completes the proof. 

4. REMARKS 

Even circuits in planar graphs seem to be quite well behaved; for as well 
as (2.1) and our Theorem (3.1), there is the following. 

FIGURE 1 
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FIGURE 2 

(4.1) If G is a planar 2-connected cubic graph, there is a set 0 of even 
circuits using each edge twice. 

Proof. By the four-colour theorem, G has a 3-edge-colouring. Take such 
a colouring, and let V contain all two-coloured circuits. 

These three results suggest that there may be a common generalization, 
something like (2.3) for even circuits. Indeed, it was the search for a 
common generalization of (2.1) and (4.1) that led me to (3.1) in the first 
place. However, it seems difftcult even to find a reasonable conjecture. 

Incidentally, Szekeres [4] claimed that 

(4.2) A cubic graph is 3-edge-colourable if and only if there is a set of 
euen circuits using each edge twice. 

But there is a mistake in Szekeres’ proof, and regrettably, the result is 
false; the graph of Fig. 1, due to Sousselier (see [Z]) is a counterexample, It 
is not 3-edge-colourable, but the six circuits consisting of the edges with 
labels 1 ,..., 6, respectively, are even and use each edge twice. 

Finally, we have seen that the “planar” hypothesis in (3.1) cannot be 
omitted. However, one might hope that if (3.1) was expressed in terms of the 
geometric dual of G the “planar” hypothesis would then be redundant. But 
that is not so. The graph of Fig. 2 is a counterexample, since it is bipartite, 
2-connected, and has an even number of edges, and yet has no ‘even 
cocircuit partition.” (A. cocircuit is a minimal non-empty cut, and for a 
planar graph corresponds to a circuit of the geometric dual.) 
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