
JOURNAL OF COMBINATORIAL THEORY 5, 192-197 (1968) 

A Partial Characterization of Clique Graphs 

RONALD C. HAMELINK 

Department of Mathematics, Michigan State University 

East Lansing, Michigan 48823 

Communicated by R. C. Bose 

ABSTRACT 

A partial characterization of clique graphs is given here, including a method for 
constructing a graph having a given graph as its clique graph, provided the given 
graph meets certain conditions. In addition, an example is presented to show the 
existence of graphs which are not clique graphs. 

l .  DEHNITIONS AND NOTATIONS 

Graphs in this paper will be ordered pairs of sets, the first set, the 
vertex set, which is non-empty; and the second, the edge set, consisting 
of two element subsets of the vertex set. For  a graph G, V(G) and E(G) 
will denote its vertex set and its edge set, respectively. A subgraph F of G 
is a graph where V(F) C V(G) and E(F) C E(G). A subgraph F of  graph G 
will be called a section graph (or full subgraph) of G if E(F) = {{x, y}/x, y E V(F 
and {x, y) ~ E(G)}. A clique C of graph G is a section graph of  G which 
is complete and is contained in no larger complete subgraph of  G (i.e., 
C is a maximal complete subgraph of G). A clique graph of G is a graph F 
and a 1-1, onto mapping ~ from V(F) to the set of cliques of G which 
preserves incidence; that is x, y ~ V(F) are adjacent iff V(c~(x)) c~ V(~(y)) ~ r  

The definition of clique graph implies at once that i f F  1 and F2 are clique 
graphs of the same graph G then F1 is isomorphic to F~. In this sense we 
will speak of " the" clique graph of G and denote it by K(G). Also from 
the definition of a clique it is clear that each x ~ V(G) belongs to at least 
one clique. 

Vertices which belong to exactly one clique will be called unicliqual 
vertices, otherwise multicliqual vertices. 

The principal problem under consideration is this; how can we tell if 
a given graph H is the clique graph of some graph G, and if it is, how do 
we find one such graph G ? 
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2. A PARTITION OF V(H)  

Let / - /be  an arbitrary, but fixed graph, a n d / ( 1 ,  K2 ,..., Kn denote the 
cliques of  H. Let X = {1, 2,..., n} and let Ybe the set &non-empty  subsets 
of  i". Define 

W s  = O {V(Ki) [ i ~ S} for S ~ Y, 
and 

V s =  W s - - U { W T I T ~ Y ,  S C T ,  and S=/=T},  

and 
N s  = the number  of elements in V s .  

EXAMPLE: 

H: 

e 
d f 

b h 

X =  {1, 2, 3, 4} 

Vx = {c} Via,, } = { f }  

V{1,2 } = {d} V{I } = {a, b} 

V~2,aI ---- {e} V~,I = (g, h} 

The remaining se t  Vs are empty. In this example the sets Vs which are 
non-empty partition V(H).  We will prove that this is a general result. 

LEMMA 1. I f  x ~ V(H)  and S = {i I x ~ V(K~)} then x ~ V s .  

PROOF: x ~ V(Ki) for i ~ S implies that x ~ Ws  �9 I f  T D  S and T=/= S, 
then for j ~ T - -  S x r V(Kj) which implies x • WT, so x ~ W s  - -  WT 

for each such T. Hence x ~ Ws  - -  U { WT I T ~ Y, S C T, and S =/= T} = Vs .  

LEMMA 2. I f  S ~ T, S and T e Y, then Vs n Vr = O. 

PROOF: Assume x ~ Vs n VT. Then x ~ Ws  n WT, which implies 
x ~ W s v r .  But, since S C S ~9 T, then S :~ S ~) T would imply that  
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x ~ Vs,  so that  S = S w T. Likewise we see that  T = S u T and then 
S ---- T follows. 

Lemmas  1 and 2 constitute the p roof  o f  the following theorem. 

THEOREM 1. Let H be a graph, then the non-empty sets in { Vs I S ~ Y} 
form a partition of  V(H). 

An immediate result is the following. 

COROLLARY. The order of  H is ~ Ns , where the sum is taken over all 
S e Y .  

The parti t ioning of  V(H) we have defined will be referred to as the 
partit ion induced by the cliques, or as the clique partit ion of  V(H), In  the 
next section the clique part i t ion will play a central role in our  construct ion 
of  a graph whose clique graph  is known. 

3. CONSTRUCTION 

For  the graph H we now construct a graph  G which under suitable 
restrictions on H will have H as its clique graph. (see Theorem 4). 

Let 

and 

V(G) = {Vl, v~ .... , v~} u V(H), n = number  of  cliques o f  H 

E(G) -~ {{vi, vj} [ for  some S ~ Y, i and j ~ S, and Vs =/= O} 

u {{x, vi} ] x ~ Vs and i 6 S}. 

THEOREM 2. The section graph F, of  G, on the vertices {v 1 , v~ ..... v,} 
with the mapping ~(vi) = Ki , is the clique graph of  H. 

PROOF: Let x ~ V(K~) n V(Kj), then let S E Y be such that  x ~ Vs.  
By Lemma 1, i and j are in S so {vi, vj} E E(G). I f  V(Ki) n V(K~) -= O, 
then for each x E V(H), if x ~ Vs,  both i and j cannot  be in S, hence for 
no S ~ Y, i a n d j  E S, if Vs =~- f). So {vi, v~} r E(G). o~ as defined is clearly 
1-1 and onto,  and we see that  it preserves incidence. 

LEMMA 3. Each section graph C~ of  G for  x ~ V(H) on the vertices 
{x} u {vi I i ~ S where x ~ Vs} is a clique in G. 

PROOF: I f  i ~ S and x E Vs ,  then {x, v} ~ E(G), and if i and j ~ S for 
x ~ Vs it follows that  {vi, v~} ~ E(G); hence C~ is a complete subgraph 
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of G. I f  k ~ S, then {vk, x} r E(G), so Cx is a maximal complete subgraph 
of  G and is therefore a clique of G, with the unicliqual vertex x. 

LEMMA 4. The mapping fl : V(H) into the set of cliques of G given by 
fl(x) = C~ is a 1-1 mapping which preserves incidence. 

PROOF: I f  (x, y} ~ E(H),  then some clique Ki of H contains both x and y, 
so i ~ S c ~  T where x c  Vs and y c  VT. Then v ~  V(C~)c3 V(C~). 
If {x, y) (~ E(H) then for each i ~ S, for x e Vs , y ~ V(K~). Hence if 
vi ~ V(Cx) it follows that vi (~ V(C~), and V(Cx) c3 V(C~) = O. 

We obtain from Lemma 4 the following theorem. 

THEOREM 3. H is isomorphic to a section graph of K(G). 

THEOREM 4. Let H be a graph with clique graph K(H),  and associated 
mapping 7:  V(K(H)) to cliques of H. I f  for each clique C in K(H) the 
intersection of the cliques in 7(V(C)) is not empty, then H is the clique 
graph of the graph G constructed above. 

PROOF: The mapping fl of Lemma 4 already is 1-1 and incidence 
preserving. All that is needed now is to establish that/3 is onto. Let C be any 
clique in G. I f  C contains an x ~ V(H), then C = C~ because x is a 
unicliqual vertex. Suppose V(C) C_ {vl,  v2 ,..., v~}. Then the graph F of  
Theorem 2 is isomorphic to K(H), hence 7-1(a(V(C)) is a clique in K(H). 
By hypothesis the cliques in 7(7-1(c~(V(C)))) = o~(V(C)) have a non-empty 
intersection. Then let y be a vertex common to all the cliques of H in 
a(V(C)). I f  K~ ~ c~(V(C)), then { y, vi) ~ E(G). Hence y ~ V(H) is adjacent 
to every vertex in C, which contradicts the assumption that C is a clique 
in G. So/3 is onto K(G) = H. 

COROLLARY. Any graph H is a section graph of a clique graph H where 
I v(H)  l - -  1 + [ V(H)I.  

PROOF: Adjoin to the graph H one new vertex a and make a adjacent to 
every vertex in H.  Call this graph H. Every clique in H contains the vertex 
a, hence by Theorem 4 H is a clique graph. 

4. COUNTEREXAMPLE 

In this section we will see that for some graphs the Corollary to Theo- 
rem 4 is the best result possible. The graph G below is now a general 
graph and not necessarily the one constructed in Section 3. 
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THEOREM 5. Let H = K(G) with ~ the associated mapping given by 
~(u) = C~,. Let C be a clique in H with V(C) = {x, y, z}. Then either 
v ( c g  n v(c~) c_ v(c~), or v(c,,) n v(c~) c_ v(c~), or v(cz) n v ( c g  c_ v(q,) .  

PROOF: Assume that the conclusion does not hold. Let u, v, and w be, 
respectively, in (V(C~) n V(C~,))-  V(C~), (V(C~,) n V (C~) ) -  V(C~), 
and (V(C~) ~ V(C~)) -- V(C~). Then the section graph on u, v, and w 
is complete in G, hence is contained in a clique Ct of G. C~ is distinct f rom 
C~, C~, and Ca, so t is adjacent to x, y, and z in H contradicting the 
assumption that the section graph on {x, y, z} is a clique in H. 

THEOREM 6. Any graph H containing a clique T on 3 vertices (x, y, z} 
and 3 other cliques A, B and C so related that 

V(T) n V(A) = {x, y}, 

g(T) n v(B)  = { y , z ) ,  

and 

V(T) n V(C) = {z, x} 

is not the clique graph of  any graph. 

PROOF: Assume that H was a clique graph of G, with associated mapping 
o~, where we use the notation c~(u) = C~. Using Theorem 5, we may 
without loss of  generality assume that V(C~)n  V(Cu)c_ V(Cz). Let 
a ~ V(A) -- (x, y). Then a is adjacent to x and y but not z, so Ca intersects 
C~ and Cu but not C~. Let u ~ V(Ca) n V(C~), v e V(Ca) n V(C~), 
and w e V(C~)n  V(C~). These 3 vertices are distinct and mutually 
adjacent hence are contained in a clique Ct of G. Now Ct is distinct from 
C~, C~, Ca, but has a non-empty intersection with each of them. Hence 
t E V(H) is adjacent to x, y, and z, which contradicts the assumption that 
T is a clique in H. 

EXAMPLE: The following six vertex graph is not the clique graph of  any 
graph. 
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5. CONCLUSION 

The answer to the question of whether a particular graph H is a clique 
graph depends, apparently, on the clique graph of H and the clique parti- 
tion of V(H). The clique partition may also be of use in other parts of 
graph theory. 
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