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1. Introduction

The two-dimensional Liouville gravity [1] remains one of the
very few consistent quantum field theories involving dynamical
metric field. General formulation of the Liouville gravity, whose ac-
tion is induced by critical matter, allows one to consider a special
type of “solvable” examples, in which the matter sector is repre-
sented by some minimal model [2] of 2D conformal field theory.
We use the term “minimal Liouville gravity” for such models. Since
long ago it is believed that the scaling limit of matrix models (see
e.g. [3] and references therein) gives an alternative description of
the minimal Liouville gravity. Nevertheless, at present, a proof of
this statement is still missing. In this situation it seems to be desir-
able to improve the understanding of the relations between these
two approaches. In [4,5] a way to identify the results of the ma-
trix models with those of the minimal Liouville gravity was found
for the conformal matter represented by the non-unitary series
(2,2p + 1) of the CFT minimal models. In [5] a resonance trans-
formation, which relates the coupling parameters of the Liouville
gravity with the couplings of the matrix models, was constructed.
In terms of the transformed parameters the matrix models corre-
lation numbers should coincide with the naturally defined correla-
tion numbers in the framework of the minimal Liouville gravity.
Recently [6–8], the problem of matrix model analysis in higher
genera was revisited. In particular, in [7] the torus contribution to
the generating function of one-matrix models was found and the
resonance transformation was applied to find one- and two-point
correlation numbers on the torus in the Liouville frame. The aim
of this Letter is to test the matrix models results available from [7]
against direct calculations in the minimal Liouville gravity.
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2. Minimal gravity MG2/2p+1

The main problem of the minimal gravity is to construct and
to evaluate the gravitational correlation functions. In the Polyakov
approach [1] the functional integral over metrics is reduced to the
moduli integral over Riemann surfaces. The integrand involves the
correlation functions of the ghosts b, c and the vertex operators
Uk = Φk Vak constructed by an appropriate Liouville dressing of
the matter fields. Due to the factorized form of the vertex oper-
ator the integrand of the moduli integral splits into the product of
the Matter, the Liouville and the ghosts correlation functions. All
three theories are conformally invariant. The central charge of the
Liouville theory

cL = 1 + 6Q 2 (2.1)

where Q = b +b−1 and b is the Liouville coupling, is related to the
central charge of the conformal matter by means of the so-called
central charge balance condition cM + cL = 26, which is equivalent
to the requirement of the total Weyl (BRST) invariance. In the min-
imal Liouville gravity MG p/q the matter sector is described by the
CFT minimal model M(p/q) with the central charge

cM = 1 − 6(p − q)2

pq
(2.2)

which possesses a set of primary fields Φm,n with m ∈ (1, . . . ,

p − 1) and n ∈ (1, . . . ,q − 1) of conformal dimensions

ΔM
m,n = (np − mq)2 − (p − q)2

4pq
(2.3)

The central charge balance condition determines the value of the
Liouville coupling to be b = √

p/q. The conformal dimension
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ΔL(a) = a(Q − a) (2.4)

of the exponential Liouville field V (a) in the construction of the
vertex operator Um,n = Φm,n V (a) is also fixed by the Weyl invari-
ance, which requires that the total conformal dimension of the
vertex operator ΔM

m,n + ΔL(a) = 1. This yields a = am,−n , where

am,n = (1 − m)b−1 + (1 − n)b

2
(2.5)

In the torus N-point amplitude the conservation of the ghost
current requires one vertex insertion to be fixed [9]. In order to be
BRST invariant, this insertion should be decorated by ghost fields
as follows

〈O k1 O k2 · · · O kN 〉torus =
∫
F

dτ dτ̄

〈
b(0)b̄(0)c(0)c̄(0)Uk1(0)

×
N∏

n=2

∫
dzn dz̄n Ukn(zn, z̄n)

〉
τ

(2.6)

Here F is the fundamental region of the modular group: τ2 > 0,
|τ | > 1, −1/2 � τ1 < 1/2. The expectation value at the right-hand
side involves the matter, the Liouville and the ghost sectors con-
sidered on the torus with the modular parameter τ = τ1 + iτ2.
In what follows we are interested in the minimal Liouville gravity
MG 2/2p+1. Then the Liouville coupling constant is

b =
√

2

2p + 1
(2.7)

and the one-point amplitude reads

〈O k〉torus =
∫
F

dτ dτ̄ 〈bb̄cc̄〉τ 〈Φk〉τ
〈
V (a1,−k−1)

〉
τ

(2.8)

where we used the brief notation Φk = Φ1,k+1 and k = 0, . . . , p−1.
The 4-point correlation function in the ghost sector is given by [9]

〈bb̄cc̄〉τ = ∣∣η(q)
∣∣4

(2.9)

with η(q) = q1/24 ∏∞
k=1(1 − qk) being the Dedekind eta function

and q = e2iπτ . In terms of the CFT on the complex plain the one-
point correlation functions on the torus with the modular param-
eter τ takes the form

〈Φk〉τ = Tr(qq̄)L0−cM/24Φk

=
∑
{�}

CΔ
Δk,Δ

(qq̄)Δ−cM/24
∣∣F M(Δk,Δ,q)

∣∣2
(2.10)

〈Va〉τ = Tr(qq̄)L0−cL/24 Va

=
∫

dP

4π
C Q /2+i P

a,Q /2+i P (qq̄)Δ(P )−cL/24

× ∣∣F L(Δ(a),Δ(Q /2 + i P ),q
)∣∣2

(2.11)

Here CΔ
Δk,Δ

and C Q /2+i P
a,Q /2+i P are the structure constants of the oper-

ator algebras in the Matter and the Liouville sectors correspond-
ingly, while F (Δext,Δint,q) is the one-point conformal block func-
tion defined as the contribution of the highest weight representa-
tion of the Virasoro algebra with the conformal dimension Δint. In
[10,11] recursive relations for the Liouville conformal block func-
tion were found, which make it possible to calculate its expansion
into a power series of q. In [12] the crossing symmetry for this
representation was checked numerically.
Consider first the most simple example 〈O 0〉. The structure
constant CΔ

0,Δ = δ0,Δ so that in the matter sector we just have
the partition function of the corresponding minimal model. It is
expressed in terms of the characters of the irreducible represen-
tations of the Virasoro algebra. It is interesting that in this case
the dressing Liouville correlation function 〈V (a1,−1)〉τ can be eval-
uated explicitly. The external conformal dimension in (2.11) turns
to be Δext = ΔL(a1,−1 = b) = 1. Using the recursive algorithm pro-
posed in [10] we verified up to 20th order in q that the conformal
block F (1,Δint,q) does not depend on the internal conformal di-
mension Δint and is equal to

F (1,Δint,q) = q1/24

η(q)
(2.12)

The general expression for the diagonal Liouville structure constant
is

C Q /2+i P
a,Q /2+i P = (

πγ
(
b2)b2−2b2)−a/b Υ (b)Υ (2a)Υ (2i P )Υ (−2i P )

Υ 2(a)Υ (a + 2i P )Υ (a − 2i P )

(2.13)

Using the definition of the Upsilon function (see e.g. [13]), for a = b
we find

C Q /2+i P
b,Q /2+i P = 4P 2

πb
(2.14)

One can perform the P integration in (2.11) analytically. This yields

〈O 0〉torus = 1

4π2b

∫
F

dτ dτ̄ τ
−3/2
2

∣∣η(q)
∣∣2 ∑

s=1,...,p

∣∣χ1,s(q)
∣∣2

(2.15)

where the characters of the irreducible representations explicitly
read (see e.g. [14])

χ1,s(q) = q
(2s−(2p+1))2

8(2p+1)

η(q)

∑
k∈Z

(
q2(2p+1)k2+(2s−(2p+1))k

− q2(2p+1)k2+(2s−(2p+1))k+s) (2.16)

The result can be written as

〈O 0〉torus = 1

4π2b

∑
i=1,...,p

∑
m,n∈Z

(
I(αn,i,αm,i, δi)

− 2I(αn,i, βm,i, δi) + I(βn,i, βm,i, δi)
)

(2.17)

where

αk,i = 2(2p + 1)k2 + k(2i − 2p − 1) (2.18)

βk,i = 2(2p + 1)k2 + k(2i + 2p + 1) + i (2.19)

δi = (2i − 2p − 1)2

8(2p + 1)
(2.20)

and

I(α,β, δ) =
1/2∫

−1/2

dx e2π i(α−β)x

∞∫
√

1−x2

dy y−3/2e−2π(2δ+α+β)y

(2.21)

It turns out that the correlation number 〈O 0〉 can be evaluated
analytically. The calculation is based on the following ideas [15].
The torus partition function of the minimal model M(2,2p + 1) is
related to the torus partition function of a free scalar field as
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ZM(2/(2p+1)) =
∑

s=1,...,p

∣∣χ1,s(q)
∣∣2

= 1

2

[
Z B

(
g = √

2(2p + 1)
) − Z B

(
g = √

2/(2p + 1)
)]

(2.22)

where

Z B(g) = 1

|η(q)|2
∑
s,t

q(sg−1+tg)/4q̄(sg−1−tg)/4 (2.23)

By using the Poisson resummation formula one can derive that

Z B(g) = g
1√

τ2|η(q)|2
∑
n,m

e
− π g2 |n−mτ |2

τ2 (2.24)

This form of the matter partition function allows one to calculate
(2.15) explicitly

〈O 0〉torus = 1

8π2b

[
J
(√

2(2p + 1)
) − J

(√
2/(2p + 1)

)]
(2.25)

where

J (g) = g

∫
F

d2τ

τ 2
2

∑
n,m

e
− π g2 |n−mτ |2

τ2

= g

{∫
F

d2τ

τ 2
2

+ 2
∞∑

k=1

1/2∫
−1/2

dτ1

∞∫
0

dτ2

τ 2
2

e
− π g2k2

τ2

}
(2.26)

where the m-summation in the second term is replaced by the
sum over inequivalent images of the fundamental region, which
together cover the strip − 1

2 � τ1 � 1
2 . Performing the integrations

in (2.26) we find

J (g) = π

3

(
g + 1

g

)
(2.27)

The result for the one-point amplitude takes the simple form

〈O 0〉torus = p

24π
(2.28)

We checked numerically for different values of p that even if we
only retain the first term under the sum over (m,n) in (2.17), the
results (2.17) and (2.28) coincide with the several digits precision.
To compare it with the results of the matrix models we will need
to consider the ratio of two one-point amplitudes. This allows us
to avoid the problem of a different normalizations of the partition
functions. In this verification it turns out to be sufficient to evalu-
ate the correlation numbers 〈O k〉torus only retaining the zero-order
terms in the conformal block expansions. In the given approxima-
tion the matter correlation function reads

〈Φk〉τ =
∑

m=1,...,p

C
Δ1,m
Δ1,k+1,Δ1,m

|q|2Δ1,m− cM
12 (2.29)

and the dressing Liouville function looks like

〈
V (a1,−k−1)

〉
τ

=
∫

dP

4π
C Q /2+i P

(1+k/2)b,Q /2+i P |q|2ΔP − cL
12 (2.30)

We can present the zero-order result for the one-point correlation
number (2.8) in the following form

〈O k〉torus =
∑

m=1,...,p

C
Δ1,m
Δ1,k+1,Δ1,m

Ik,m (2.31)

where
Ik,m =
∫
F

d2τ

∫
dP

4π
C Q /2+i P

(1+k/2)b,Q /2+i P |q|2(αm+P 2)

= 1

π

1/2∫
0

dx

∞∫
0

dP
C Q /2+i P

(1+k/2)b,Q /2+i P

αm + P 2
e−4π(αm+P 2)

√
1−x2

(2.32)

and

αm = Q 2

4
− cL + cM

24
+ Δ1,m = (1 + 2(p − m))2

8(1 + 2p)
(2.33)

For the comparison with the matrix models results we will need
explicit expressions for the structure constants for k = 1,2. The
minimal model structure constant for k = 1 reads

C
Δ1,m+1
Δ1,2,Δ1,m

=
(

γ (2 − 2ρ)γ (1 − mρ)

γ (1 − ρ)γ (2 − (1 + m)ρ)

) 1
2

(2.34)

where ρ = 2/(2p + 1). Notice that the degenerate field Φ1,2 have
no diagonal channels in the operator product expansion. Thus,
naively the correlation number (2.8) for k = 1 (as well as for any
odd k) should vanish, which, in particular, contradicts the results
of the matrix models. The solution of this contradiction is rather
simple. Taking into account the symmetry of the Kac table for
M(2,2p + 1) one can see that the operators Φ1,p and Φ1,p+1 have
the same conformal dimension and thus represent the same phys-
ical field. Hence, in the case k = 1 the only non-vanishing term
is that with m = p, i.e. the term containing the matter structure
constant (2.31). In the case k = 2 we have

C
Δ1,m
Δ1,3,Δ1,m

= Γ (2 − 2ρ)

Γ (2ρ)

(
γ 3(ρ)

γ (3ρ − 1)

) 1
2 γ (1 + (1 − m)ρ)

γ (2 − (1 + m)ρ)

(2.35)

In the Liouville sector we apply the shift relations for the Upsilon
function to find

C Q /2+i P
3b/2,Q /2+i P = (

πγ
(
b2)b2−2b2)−3/2

× 4
Υ (b)Υ (3b)

Υ 2(3b/2)

P 2Υ (b + 2i P )Υ (b − 2i P )

Υ (3b/2 + 2i P )Υ (3b/2 − 2i P )

(2.36)

and

C Q /2+i P
2b,Q /2+i P = (

πγ
(
b2)b2−2b2)−2

4b−1−2b2
γ

(
3b2)

× Υ (b)Υ (3b)

Υ 2(2b)

P 2

γ (b2 + 2ibP )γ (b2 − 2ibP )
(2.37)

where the explicit integral representations for the combinations of
the Upsilon functions are

Υ (b)Υ (3b)

Υ 2(3b/2)

= exp

{
−

∞∫
0

dt

2t

[
cosh

( t−b2t
2b

) − 2 cosh
( t−2b2t

2b

) + cosh
( t−5b2t

2b

)
sinh

( bt
2

)
sinh

( t
2b

)

+ (
2 − 9b2)e−t

]}

Υ (b + 2i P )Υ (b − 2i P )

Υ (3b/2 + 2i P )Υ (3b/2 − 2i P )

= exp

{
−

∞∫
dt

2t

[
2

cosh(2Pt) sinh
( 2t−3b2t

2b

)
sinh

( t
2b

)
cosh

( bt
4

) − (
2 − 3b2)e−t

]}

0
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Υ (b)Υ (3b)

Υ 2(2b)

= exp

{
−

∞∫
0

dt

t

[
2 cosh

(
t − 3b2t

2b

)
sinh

(
bt

2

)
sinh−1

(
t

2b

)

− 2b2e−t
]}

(2.38)

These representations of the Liouville structure constants are ap-
plicable for the values of the parameter b related as in (2.7) to
arbitrary positive p.

3. Comparing with matrix models

The Liouville gravity and the matrix models approaches are ex-
pected to be physically equivalent since they arise from the same
idea of fluctuating 2D geometries. There exist numerous confirma-
tions of this idea (see e.g. [16–18]). In [4] the equivalence of the
minimal gravity MG 2/2p+1 with the p-critical one-matrix models
was verified up to the level of two-point correlation functions. This
comparison is not straightforward due to the so-called resonance
ambiguity. In [5] the special resonance transformation, which re-
lates the coupling parameters of the Liouville gravity to the pa-
rameters describing the deviation from the p-critical point in the
matrix models, was proposed. This allows one, in principle, to
identify n-correlation functions. This conjecture was checked up to
four-point correlation numbers on the sphere. In [7] the resonance
transformation was applied to find the generating function of the
correlation numbers on the torus and to compute some correlators
in the coordinates corresponding to the minimal Liouville gravity.
Here we brifly summarize these results. The genus one contribu-
tion in the partition function of the one-matrix model is

Ztorus = − ln P ′(u∗)
12

(3.1)

where in the Liouville frame the string polynomial is defined as

P (u) = Lp+1(u) − Lp−1(u)

2p + 1

+
∞∑

n=1

p−1∑
k1,...,kn=0

λk1 · · ·λkn

n!
dn−1

dxn−1
Lp−∑

ki−n(u) (3.2)

Here Lk(u) are the Legendre polynomials and u∗ is the maximal
real root of P (u). The correlation numbers are expressed as

〈O k1 · · · O kn〉torus = ∂n Ztorus

∂λk1 · · · ∂λkn

∣∣∣∣
λ1=···=λp−1=0

(3.3)

In particular, for the one-point amplitude one can derive

〈O k〉torus = d

dλk
Ztorus(u∗) = (2p − k)(k + 1)

24
(3.4)

Now we are going to test our expression (2.31) against the
matrix models correlation numbers (3.4). Since the normalization
of the partition function cannot be fixed in a universal way it is
natural to relate the ratio of two different correlation numbers.
Moreover one should take into account the different normaliza-
tion of the operators in the Liouville gravity and the matrix model
approach. The normalization of the operators does not depend
on the topology and can be adopted from the calculation on the
sphere [21]:

O MM = N(a1,−k−1)O MLG (3.5)
k k
where

N(a) = (
πγ

(
b2))a/b(

γ
(
2ab − b2)γ (

2a/b − 1/b2))−1/2
(3.6)

We conclude that the following relation between torus one-point
correlation numbers in the matrix models and in the minimal Li-
ouville gravity takes place

N(a1,−k−1)

N(b)

〈O k〉MLG
torus

〈O 0〉MLG
torus

= 〈O k〉MM
torus

〈O 0〉MM
torus

(3.7)

We analyzed numerically two examples k = (1,2). For the corre-
lation function 〈O 0〉MLG we used the exact result (2.28), while for
the correlation number in the numerator we used the approxima-
tive expression (2.31). From (3.4) for k = 1 it follows

N(3b/2)

N(b)

〈O 1〉MLG
torus

〈O 0〉MLG
torus

= 2p − 1

p
(3.8)

and for k = 2

N(2b)

N(b)

〈O 2〉MLG
torus

〈O 0〉MLG
torus

= 3(p − 1)

p
(3.9)

We checked relations (3.8) and (3.9) for different models MG 2/2p+1
with p = (1, . . . ,20) and we have found that the results match
with very good accuracy (always about five digits). For example,
for p = 7 we find the left-hand side of (3.8) is equal 1.85715 while
the right-hand side is 1.85714 and the left-hand side of (3.9) is
equal 2.57134 while the right-hand side is 2.57143.

4. Discussion

We have verified that the resonance transformation proposed
in [5] allows one to relate the matrix models correlation func-
tions with those of the minimal Liouville gravity for higher genera
topologies. The conformal block expansion that enters the expres-
sion for the one-point correlation functions converges very fast.
In fact, it is sufficient to retain the zero-order contribution in the
conformal blocks to have a great numerical accuracy. Nevertheless,
a derivation of the analytic answer for the torus amplitudes by
means of minimal Liouville gravity methods is still missing. We
suppose that the higher equations of motion in the Liouville the-
ory [19] are relevant to this task as it was the case for the spherical
topology. It was shown in [20] that the following consequence of
higher equations of motion takes place

Bm,n O m,n = Q Q̄ O
′
m,n (4.1)

where Q is the BRST charge, Bm,n are some numeric factors and
O

′
m,n are the logarithmic counterparts of the so-called ground ring

physical fields Om,n (see [20,21] for more details). Taking into ac-
count the commutation relation [bk, Q ]+ = Lk one can conclude
that the integrand in (2.8) should have the form of a total deriva-
tive with respect to the period τ

〈O m,n〉torus = B−1
m,n

∫
F

dτ dτ̄ ∂τ ∂τ̄

〈
O

′
m,n

〉
torus (4.2)

The one-point amplitude is hence defined by the asymptotic be-
havior of the correlation function 〈O′

m,n〉torus near the boundary of
the moduli space. At present this remains a conjecture.
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