HYPOHAMILTONIAN AND HYPOTRACEABLE GRAPHS

Carsten THOMASSEN
Matematisk Institut, Aarhus Universitet, Universitetsparken, Ny Munkegade, 8000 Aarhus C, Denmark

Received 1 November 1973*

Abstract

In this note hypohamiltonian and hypotraceable graphs are constructed.

1. Introduction

We adopt the notation and terminology of Harary [4]. However, the terms vertices and edges are used here instead of the terms points and lines, respectively, in [4], and the edge joining the vertices x and y is denoted by (x, y). A graph is Hamiltonian, resp. traceable, if it has a Hamiltonian cycle, resp. path. A graph G is hypohamiltonian, resp. hypotraceable, if it is not Hamiltonian, resp. traceable, but every vertexdeleted subgraph $G-v$ is Hamiltonian, resp. traceable.

By results of Gaudin, Herz and Rossi [2], Herz, Duby and Vigué [5], Lindgren [7] and Chvátal [1], the Petersen graph is the only hypohamiltonian graph with ≤ 10 vertices, there is no hypohamiltonian graph with 11 or 12 vertices, and for all $p \geq 13$ except possibly for $p=14,17,19$, 20,25 , there is a hypohamiltonian graph with p vertices. Using the existence of hypohamiltonian graphs with $10,13,16$ and 22 vertices, we shall obtain in this note, by simple constructions, hypohamiltonian graphs with p vertices for all $p \geq 13$ except for $p=14,17,19$. This improves on the above-mentioned results for $p=20$ and $p=25$.

Kapoor, Kronk and Lick [6] mentioned as unsolved the problem whether hypotraceable graphs exist or not. However, Grünbaum [3] re-

[^0]ports that a hypotraceable graph with 40 vertices has been found by J . Horton. We shall show that for $p=34,37,39,40$ and for all $p \geq 42$, there exists a hypotraceable graph with p vertices. Walter [8] gave an example of a connected graph in which the longest paths do not have a vertex in common. Clearly, every hypotraceable graph also has this property.

2. Hypohamiltonian graphs

Let G_{1}, G_{2} be disjoint hypohamiltonian graphs. Assume that G_{1}, resp. G_{2}, contains a vertex x_{0}, resp. y_{0}, of degree 3 and let x_{1}, x_{2}, x_{3}, resp. y_{1}, y_{2}, y_{3}, be the vertices adjacent to x_{0}, resp. y_{0}. As pointed out by Bondy [1, p. 39], G_{1}, resp. G_{2}, contains none of the edges (x_{1}, x_{2}), $\left(x_{2}, x_{3}\right),\left(x_{1}, x_{3}\right)$, resp. $\left(y_{1}, y_{2}\right),\left(y_{2}, y_{3}\right),\left(y_{1}, y_{3}\right)$. Put $H_{1}=G_{1}-x_{0}$ and $H_{2}=G_{2}-y_{0}$. Let G be the graph obtained by identifying the vertices x_{1}, y_{1} into a vertex z_{1}, the vertices x_{2}, y_{2} into z_{2} and the vertices x_{3}, y_{3} into z_{3} (see Fig. 1). We consider H_{1} and H_{2} as subgraphs of G.

Lemma 2.1. G is hypohamiltonian.
Proof. Suppose (reductio ad absurdum) that G has a Hamiltonian cycle. This cycle includes z_{1}, z_{2} and z_{3} and is therefore the union of a $z_{1}-z_{2}$ path $P^{1}, \mathrm{a} z_{2}-z_{3}$ path P^{2} and a $z_{3}-z_{1}$ path P^{3}. Two of the paths P^{1}, P^{2}, P^{3} (P^{1} and P^{2}, say) are contained in one of the graphs $H_{1}, H_{2}\left(H_{1}\right.$, say). Then $P^{1} \cup P^{2}$ is a Hamiltonian path of H_{1} joining $z_{1}=x_{1}$ and $z_{3}=x_{3}$. Adding to this path the vertex x_{0} and the edges $\left(x_{0}, x_{1}\right),\left(x_{0}\right.$, x_{3}), we obtain a Hamiltonian cycle of G_{1} which is a contradiction. So G is not Hamiltonian.

Fig. 1. Construction of hypohamiltonian graphs.

Let v be any vertex of G. Assume w.l.g. that v is a vertex of H_{1}. $G_{1}-v$ is Hamiltonian so $G_{1}-v-x_{0}=H_{1}-v$ has a Hamiltonian path P^{1} joining two of the vertices x_{1}, x_{2}, x_{3} (x_{1} and x_{2}, say). $G_{2}-y_{3}$ is Hamiltonian so $G_{2}-y_{3}-y_{0}=H_{2}-y_{3}$ has a Hamiltonian path P^{2} joining y_{1} and $y_{2} . P^{1} \cup P^{2}$ is a Hamiltonian cycle of $G-v$, and the lemma is proved.

If we assume that each of G_{1} and G_{2} has a vertex distinct from x_{0}, resp. y_{0}, which has degree 3 and which is not adjacent to x_{0}, resp. y_{0}, then clearly also G has two non-adjacent vertices of degree 3 ., So if there exist hypohamiltonian graphs with p_{1} and p_{2} vertices, respectively, so that each of these has two non-adjacent vertices of degree 3 , then there exists a hypohamiltonian graph which has two non-adjacent vertices of degree 3 and which has $p_{1}+p_{2}-5$ vertices. The Petersen graph and each of the hypohamiltonian graphs with $6 k+10(k \geq 1)$ vertices constructed by Lindgren [7] and Sousselier [5] have two non-adjacent vertices of degree 3. Also the hypohamiltonian graph with 13 vertices constructed by Herz, Duby and Vigué [5, Fig. 8] has two non-adjacent vertices of degree 3. A set of integers M which contains $10,13,16,22$ and which has the property $p_{1}, p_{2} \in M \Rightarrow p_{1}+p_{2}-5 \in M$ contains all integers ≥ 13 except possibly $14,17,19$. So we have the following:

Theorem 2.2. For $p=10$ and for $p \geq 13, p \neq 14,17,19$, there exists a hypohamiltonian graph which has p vertices and which has two non-adjacent vertices of degree 3.

3. Hypotraceable graphs

Let $G_{1}, G_{2}, G_{3}, G_{4}$ be disjoint hypohamiltonian graphs. Assume that for $i=1,2,3,4, G_{i}$ has a vertex x_{i} of degree 3. Let $y_{i}^{1}, y_{i}^{2}, y_{i}^{3}$ be the vertices adjacent to x_{i}. Put $H_{i}=G_{i}-x_{i}$. We identify the vertices y_{1}^{3}, y_{2}^{3} into a vertex z_{1} and the vertices y_{3}^{3}, y_{4}^{3} into a vertex z_{2}. Then we add the edges $\left(y_{1}^{1}, y_{3}^{1}\right),\left(y_{1}^{2}, y_{3}^{2}\right),\left(y_{2}^{1}, y_{4}^{1}\right),\left(y_{2}^{2}, y_{4}^{2}\right)$. The resulting graph is denoted G (see Fig. 2). The graphs H_{i} are considered as subgraphs of G. F_{1} denotes the union of H_{1}, H_{3} together with the edges $\left(y_{1}^{1}, y_{3}^{1}\right),\left(y_{1}^{2}\right.$, y_{3}^{2}), and F_{2} denotes the union of H_{2}, H_{4} together with the edges $\left(y_{2}^{1}\right.$, $\left.y_{4}^{1}\right),\left(y_{2}^{2}, y_{4}^{2}\right)$.

Fig. 2. Construction of hypotraceable graphs.
Lemma 3.1. The graph G constructed above is hypotraceable.
Proof. We shall first prove that G is not traceable. Suppose therefore (reductio ad absurdum) that G has a Hamiltonian path joining w_{1}, w_{2}, say. This path includes z_{1} and z_{2} and is therefore the union of a w_{1} z_{1} path P^{1}, a $z_{1}-z_{2}$ path P^{2} and a $z_{2}-w_{2}$ path P^{3}. One or both of the paths P^{1}, P^{3} may have length zero. We may assume that P^{2} is entirely contained in either F_{1} or $F_{2}\left(F_{1}\right.$, say). Then P^{2} includes precisely one of the edges $\left(y_{1}^{1}, y_{3}^{1}\right),\left(y_{1}^{2}, y_{3}^{2}\right)\left(\left(y_{1}^{2}, y_{3}^{2}\right)\right.$, say $)$. At least one of the paths $P^{1}, P^{3}\left(P^{3}\right.$, say) is entirely contained in $F_{2} . P^{1}$ is entirely contained in either F_{1} or F_{2}.

Case 1. P^{1} is entirely contained in F_{2}. In this case P^{2} is a Hamiltonian path of F_{1}. It is easy to see that P^{2} contains a Hamiltonian path of H_{1} joining $z_{1}=y_{1}^{3}$ and y_{1}^{2}. But then G_{1} is Hamiltonian which is a contradiction.

Case 2. P^{1} is entirely contained in F_{1}. In this case $P^{1} \cup P^{2}$ is a Hamiltonian path of F_{1}. If P^{1} includes the edge ($y_{1}^{1}, y_{3}^{\frac{1}{3}}$), then $P^{1} \cup P^{2}$ contains a Hamiltonian path of H_{1} joining y_{1}^{1} and y_{1}^{2}. But then G_{1} is Hamiltonian which is a contradiction. If P^{1} on the other hand does not include ($y_{1}^{1}, y_{3}^{\frac{1}{3}}$), then P^{2} contains a Hamiltonian path of H_{3} joining $z_{2}=y_{3}^{3}$ and y_{3}^{2}. But then G_{3} is Hamiltonian which is a contradiction.

So we have proved that G is not traceable. Let v be any vertex of G. We shall show that $G-v$ is traceable. By symmetry, we may assume that v is a vertex of $H_{1} . G_{1}-v$ is Hamiltonian so $H_{1}-v$ has a Hamiltonian path P^{1} joining two of the vertices $y_{1}^{1}, y_{1}^{2}, y_{1}^{3}$.

Case (a). P^{1} joins y_{1}^{1} and $y_{1}^{2} . H_{2}-y_{2}^{3}$ has a Hamiltonian path P^{2} joining y_{2}^{1}, y_{2}^{2} and for $i=3,4, H_{i}-y_{i}^{1}$ has a Hamiltonian path P^{i} joining y_{i}^{2}, y_{i}^{3}. Then

$$
\begin{gathered}
\left\{y_{3}^{1}\right\} \cup\left\{\left(y_{3}^{1}, y_{1}^{1}\right)\right\} \cup P^{1} \cup\left\{\left(y_{1}^{2}, y_{3}^{2}\right)\right\} \cup P^{3} \cup P^{4} \\
\cup\left\{\left(y_{4}^{2}, y_{2}^{2}\right)\right\} \cup P^{2} \cup\left\{\left(y_{2}^{1}, y_{4}^{1}\right)\right\} \cup\left\{y_{4}^{1}\right\}
\end{gathered}
$$

is a Hamiltonian path of $G-v$.
Case (b). P^{1} joins y_{1}^{3} and one of the vertices $y_{1}^{1}, y_{1}^{2}\left(y_{1}^{2}\right.$, say). Let P^{2} be a Hamiltonian path of $H_{2}-y_{2}^{1}$ joining. $y_{2}^{3}=y_{1}^{3}$ and y_{2}^{2} and let P^{4} be a Hamiltonian path of $H_{4}-y_{4}^{3}$ joining y_{4}^{1} and $y_{4}^{2} . H_{3}$ is Hamiltonian and has therefore a Hamiltonian path P^{3} starting at y_{3}^{2}. Then

$$
\begin{aligned}
& P^{3} \cup\left\{\left(y_{3}^{2}, y_{1}^{2}\right)\right\} \cup P^{1} \cup P^{2} \cup\left\{\left(y_{2}^{2}, y_{4}^{2}\right)\right\} \cup P^{4} \\
& \cup\left\{\left(y_{2}^{1}, y_{4}^{1}\right)\right\} \cup\left\{y_{2}^{1}\right\}
\end{aligned}
$$

is a Hamiltonian path of $G-v$.
So $G-v$ is traceable and the lemma is proved.
If there exist hypohamiltonian graphs with $p_{1}, p_{2}, p_{3}, p_{4}$ vertices respectively, so that each of these has a vertex of degree 3 ; then by Lemma 3.1 there exists a hypotraceable graph with $p_{1}+p_{2}+p_{3}+p_{4}-6$ vertices. Combining this with Theorem 2.2, we easily obtain the following:

Theorem 3.2. For $p=34,37,39,40$ and for all $p \geq 42$, there exists a hypotraceable graph with p vertices.

The smallest hypotraceable graph obtained in this way is shown in Fig. 3.

Fig. 3. A hypotraceable graph with 34 vertices.

References

[1] V. Chvátal, Flip-flops in hypohamiltonian graphs, Can. Math. Bull. 16 (1) (1973) 33-41.
[2] T. Gaudin, J.C. Herz and P. Rossi, Solution du problème no. 29, Rev. Française Informat. Recherche Opérationnelle 8(1964) 214-218.
[3] B. Grünbaum, Vertices missed by longest paths or circuits, preprint, University of Washington, Seattle, May 1973.
[4] F. Harary, Graph Theory (Addison-Wesley, Reading, Mass., 1969).
[5] J.-C. Herz, J.-J. Duby and F. Vigué, Recherche systematique des graphes hypohamiltoniens, in: P. Rosenstiehl, ed., Theory of Graphs, Internl. Symp., Rome (1966) 153-159.
[6] S.F. Kapoor, H.V. Kronk and D.R. Lick, On detours in graphs, Can. Math. Bull. 11 (2) (1968) 195-201.
[7] W.F. Lindgren, An infinite class of hypohamiltonian graphs, Am. Math. Monthly 74 (1967) 1087-1089.
[8] H. Walter, Über die Nichtexistenz eines Knotenpunktes, durch den alle längsten Wege eines Graphen gehen, J. Combin. Theory 6 (1969) 1-6.

[^0]: * Original version received 30 August 1973.

