DISCRETE MATHEMATICS 9 (1974) 91-96. © North-Holland Publishing Company

HYPOHAMILTONIAN AND HYPOTRACEABLE GRAPHS

Carsten THOMASSEN

Matematisk Institut, Aarhus Universitet, Universitetsparken, Ny Munkegade, 8000 Aarhus C, Denmark

Received 1 November 1973 *

Abstract. In this note hypohamiltonian and hypotraceable graphs are constructed.

1. Introduction

We adopt the notation and terminology of Harary [4]. However, the terms vertices and edges are used here instead of the terms points and lines, respectively, in [4], and the edge joining the vertices x and y is denoted by (x, y). A graph is Hamiltonian, resp. traceable, if it has a Hamiltonian cycle, resp. path. A graph G is hypohamiltonian, resp. hypotraceable, if it is not Hamiltonian, resp. traceable, but every vertex-deleted subgraph G-v is Hamiltonian, resp. traceable.

By results of Gaudin, Herz and Rossi [2], Herz, Duby and Vigué [5], Lindgren [7] and Chvátal [1], the Petersen graph is the only hypohamiltonian graph with ≤ 10 vertices, there is no hypohamiltonian graph with 11 or 12 vertices, and for all $p \geq 13$ except possibly for p = 14, 17, 19, 20, 25, there is a hypohamiltonian graph with p vertices. Using the existence of hypohamiltonian graphs with 10, 13, 16 and 22 vertices, we shall obtain in this note, by simple constructions, hypohamiltonian graphs with p vertices for all $p \geq 13$ except for p = 14, 17, 19. This improves on the above-mentioned results for p = 20 and p = 25.

Kapoor, Kronk and Lick [6] mentioned as unsolved the problem whether hypotraceable graphs exist or not. However, Grünbaum [3] re-

* Original version received 30 August 1973.

ports that a hypotraceable graph with 40 vertices has been found by J. Horton. We shall show that for p = 34, 37, 39, 40 and for all $p \ge 42$, there exists a hypotraceable graph with p vertices. Walter [8] gave an example of a connected graph in which the longest paths do not have a vertex in common. Clearly, every hypotraceable graph also has this property.

2. Hypohamiltonian graphs

Let G_1 , G_2 be disjoint hypohamiltonian graphs. Assume that G_1 , resp. G_2 , contains a vertex x_0 , resp. y_0 , of degree 3 and let x_1, x_2, x_3 , resp. y_1, y_2, y_3 , be the vertices adjacent to x_0 , resp. y_0 . As pointed out by Bondy [1, p. 39], G_1 , resp. G_2 , contains none of the edges (x_1, x_2) , $(x_2, x_3), (x_1, x_3)$, resp. $(y_1, y_2), (y_2, y_3), (y_1, y_3)$. Put $H_1 = G_1 - x_0$ and $H_2 = G_2 - y_0$. Let G be the graph obtained by identifying the vertices x_1, y_1 into a vertex z_1 , the vertices x_2, y_2 into z_2 and the vertices x_3, y_3 into z_3 (see Fig. 1). We consider H_1 and H_2 as subgraphs of G.

Lemma 2.1. G is hypohamiltonian.

Proof. Suppose (reductio ad absurdum) that G has a Hamiltonian cycle. This cycle includes z_1 , z_2 and z_3 and is therefore the union of a $z_1 - z_2$ path P^1 , a $z_2 - z_3$ path P^2 and a $z_3 - z_1$ path P^3 . Two of the paths P^1 , P^2 , P^3 (P^1 and P^2 , say) are contained in one of the graphs H_1 , H_2 (H_1 , say). Then $P^1 \cup P^2$ is a Hamiltonian path of H_1 joining $z_1 = x_1$ and $z_3 = x_3$. Adding to this path the vertex x_0 and the edges (x_0, x_1), (x_0, x_3), we obtain a Hamiltonian cycle of G_1 which is a contradiction. So G is not Hamiltonian.

Fig. 1. Construction of hypohamiltonian graphs.

C. Thomassen, Hypohamiltonian and hypotraceable graphs

Let v be any vertex of G. Assume w.l.g. that v is a vertex of H_1 . $G_1 - v$ is Hamiltonian so $G_1 - v - x_0 = H_1 - v$ has a Hamiltonian path P^1 joining two of the vertices x_1, x_2, x_3 (x_1 and x_2 , say). $G_2 - y_3$ is Hamiltonian so $G_2 - y_3 - y_0 = H_2 - y_3$ has a Hamiltonian path P^2 joining y_1 and y_2 . $P^1 \cup P^2$ is a Hamiltonian cycle of G - v, and the lemma is proved.

If we assume that each of G_1 and G_2 has a vertex distinct from x_0 , resp. y_0 , which has degree 3 and which is not adjacent to x_0 , resp. y_0 , then clearly also G has two non-adjacent vertices of degree 3.,So if there exist hypohamiltonian graphs with p_1 and p_2 vertices, respectively, so that each of these has two non-adjacent vertices of degree 3, then there exists a hypohamiltonian graph which has two non-adjacent vertices of degree 3 and which has $p_1 + p_2 - 5$ vertices. The Petersen graph and each of the hypohamiltonian graphs with 6k + 10 ($k \ge 1$) vertices constructed by Lindgren [7] and Sousselier [5] have two non-adjacent vertices of degree 3. Also the hypohamiltonian graph with 13 vertices constructed by Herz, Duby and Vigué [5, Fig. 8] has two non-adjacent vertices of degree 3. A set of integers M which contains 10, 13, 16, 22 and which has the property $p_1, p_2 \in M \Rightarrow p_1 + p_2 - 5 \in M$ contains all integers ≥ 13 except possibly 14, 17, 19. So we have the following:

Theorem 2.2. For p = 10 and for $p \ge 13$, $p \ne 14$, 17, 19, there exists a hypohamiltonian graph which has p vertices and which has two non-adjacent vertices of degree 3.

3. Hypotraceable graphs

Let G_1 , G_2 , G_3 , G_4 be disjoint hypohamiltonian graphs. Assume that for $i = 1, 2, 3, 4, G_i$ has a vertex x_i of degree 3. Let y_i^1, y_i^2, y_i^3 be the vertices adjacent to x_i . Put $H_i = G_i - x_i$. We identify the vertices y_1^3, y_2^3 into a vertex z_1 and the vertices y_3^3, y_4^3 into a vertex z_2 . Then we add the edges $(y_1^1, y_3^1), (y_1^2, y_3^2), (y_2^1, y_4^1), (y_2^2, y_4^2)$. The resulting graph is denoted G (see Fig. 2). The graphs H_i are considered as subgraphs of G. F_1 denotes the union of H_1 , H_3 together with the edges $(y_1^1, y_3^1), (y_1^2, y_4^2)$, $y_4^2)$, (y_2^2, y_4^2) .

93

1.50

C. Thomassen, Hypohamiltonian and hypotraceable graphs

Fig. 2. Construction of hypotraceable graphs.

Lemma 3.1. The graph G constructed above is hypotraceable.

Proof. We shall first prove that G is not traceable. Suppose therefore (reductio ad absurdum) that G has a Hamiltonian path joining w_1, w_2 , say. This path includes z_1 and z_2 and is therefore the union of a $w_1 - z_1$ path P^1 , a $z_1 - z_2$ path P^2 and a $z_2 - w_2$ path P^3 . One or both of the paths P^1 , P^3 may have length zero. We may assume that P^2 is entirely contained in either F_1 or F_2 (F_1 , say). Then P^2 includes precisely one of the edges (y_1^1, y_3^1), (y_1^2, y_3^2) ((y_1^2, y_3^2), say). At least one of the paths P^1 , P^3 (P^3 , say) is entirely contained in F_2 . P^1 is entirely contained in either F_1 or F_2 .

Case 1. P^1 is entirely contained in F_2 . In this case P^2 is a Hamiltonian path of F_1 . It is easy to see that P^2 contains a Hamiltonian path of H_1 joining $z_1 = y_1^3$ and y_1^2 . But then G_1 is Hamiltonian which is a contradiction.

Case 2. P^1 is entirely contained in F_1 . In this case $P^1 \cup P^2$ is a Hamiltonian path of F_1 . If P^1 includes the edge (y_1^1, y_3^1) , then $P^1 \cup P^2$ contains a Hamiltonian path of H_1 joining y_1^1 and y_1^2 . But then G_1 is Hamiltonian which is a contradiction. If P^1 on the other hand does not include (y_1^1, y_3^1) , then P^2 contains a Hamiltonian path of H_3 joining $z_2 = y_3^3$ and y_3^2 . But then G_3 is Hamiltonian which is a contradiction.

So we have proved that G is not traceable. Let v be any vertex of G. We shall show that G - v is traceable. By symmetry, we may assume that v is a vertex of H_1 . $G_1 - v$ is Hamiltonian so $H_1 - v$ has a Hamiltonian path P^1 joining two of the vertices y_1^1, y_1^2, y_1^3 .

Case (a). P^1 joins y_1^1 and y_1^2 . $H_2 - y_2^3$ has a Hamiltonian path P^2 joining y_2^1 , y_2^2 and for $i = 3, 4, H_i - y_i^1$ has a Hamiltonian path P^i joining y_i^2 , y_i^3 . Then

$$\{y_3^1\} \cup \{(y_3^1, y_1^1)\} \cup P^1 \cup \{(y_1^2, y_3^2)\} \cup P^3 \cup P^4 \\ \cup \{(y_4^2, y_2^2)\} \cup P^2 \cup \{(y_2^1, y_4^1)\} \cup \{y_4^1\}$$

is a Hamiltonian path of G - v.

Case (b). P^1 joins y_1^3 and one of the vertices y_1^1 , y_1^2 (y_1^2 , say). Let P^2 be a Hamiltonian path of $H_2 - y_2^1$ joining $y_2^3 = y_1^3$ and y_2^2 and let P^4 be a Hamiltonian path of $H_4 - y_4^3$ joining y_4^1 and y_4^2 . H_3 is Hamiltonian and has therefore a Hamiltonian path P^3 starting at y_3^2 . Then

$$P^{3} \cup \{(y_{3}^{2}, y_{1}^{2})\} \cup P^{1} \cup P^{2} \cup \{(y_{2}^{2}, y_{4}^{2})\} \cup P^{4} \cup \{(y_{2}^{1}, y_{4}^{1})\} \cup \{y_{2}^{1}\}$$

is a Hamiltonian path of G - v.

So G - v is traceable and the lemma is proved.

If there exist hypohamiltonian graphs with p_1, p_2, p_3, p_4 vertices respectively, so that each of these has a vertex of degree 3, then by Lemma 3.1 there exists a hypotraceable graph with $p_1 + p_2 + p_3 + p_4 - 6$ vertices. Combining this with Theorem 2.2, we easily obtain the following:

Theorem 3.2. For p = 34, 37, 39, 40 and for all $p \ge 42$, there exists a hypotraceable graph with p vertices.

The smallest hypotraceable graph obtained in this way is shown in Fig. 3.

Fig. 3. A hypotraceable graph with 34 vertices.

References

- [1] V. Chvátal, Flip-flops in hypohamiltonian graphs, Can. Math. Bull. 16 (1) (1973) 33-41.
- [2] T. Gaudin, J.-C. Herz and P. Rossi, Solution du problème no. 29, Rev. Française Informat. Recherche Opérationnelle 8 (1964) 214-218.
- [3] B. Grünbaum, Vertices missed by longest paths or circuits, preprint, University of Washington, Seattle, May 1973.
- [4] F. Harary, Graph Theory (Addison-Wesley, Reading, Mass., 1969).
- [5] J.-C. Herz, J.-J. Duby and F. Vigué, Recherche systematique des graphes hypohamiltoniens, in: P. Rosenstiehl, ed., Theory of Graphs, Internl. Symp., Rome (1966) 153-159.
- [6] S.F. Kapoor, H.V. Kronk and D.R. Lick, On detours in graphs, Can. Math. Bull. 11 (2) (1968) 195-201.
- [7] W.F. Lindgren, An infinite class of hypohamiltonian graphs, Am. Math. Monthly 74 (1967) 1087-1089.
- [8] H. Walter, Über die Nichtexistenz eines Knotenpunktes, durch den alle längsten Wege eines Graphen gehen, J. Combin. Theory 6 (1969) 1-6.