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1. Introduction

Given a closed smooth manifold M (smooth manifold without boundary) endowed
with a positive measure dx, in this paper we give sufficient conditions on Schwartz integral
kernels in order to ensure that the corresponding integral operators belong to different
Schatten classes. The problem of finding such criteria on different kinds of domains is
classical and has been much studied, e.g. the paper [2] by Birman and Solomyak is a
good introduction to the subject. In particular, it is well known that the smoothness of
the kernel is related to the behaviour of the singular numbers.

In this paper we present criteria for Schatten classes and, in particular, for the trace
class operators on compact smooth manifolds without boundary. Compact Lie groups
will also be considered as a special case since then additional results can be obtained,
also allowing criteria in terms of hypoelliptic operators such as the sub-Laplacian. The
sufficient conditions on integral kernels K(x, y) for Schatten classes will require regularity
of a certain order in either x or y, or both.

We note that already some results of Birman and Solomyak [2] can be extended to
compact manifolds but our approach allows one to be flexible about sets of variables in
which one imposes the regularity of the kernel.

In order to obtain criteria for general Schatten classes we will use the well-known
method of factorisation, particularly in the way applied by O’Brien in [20]. For applica-
tions to trace formulas of Schrödinger operators see also [21].

Schatten classes of pseudo-differential operators in the setting of the Weyl–Hörmander
calculus have been considered in [39,40,6,33]. Schatten classes on compact Lie groups and
s-nuclear operators on Lp spaces from the point of view of symbols have been respectively
studied by the authors in [11] and [10]. In the subsequent part of the present paper we
establish the characterisation of Schatten classes on closed manifolds in terms of symbols
that we will introduce for this purpose.

In his classical book (cf. [37, Prop. 3.5, page 174]) Mitsuo Sugiura gives a trace class
criterion for integral operators on L2(T1) with C2-kernels. More precisely, the theorem
asserts that every kernel in C2(T2) begets a trace class operator on L2(T1): if K(θ, φ) is
a C2-function on T2, then the integral operator L on L2(T1) defined by

(Lf)(θ) =
2πˆ

0

K(θ, φ)f(φ) dφ, (1.1)

is trace class and has the trace

Tr(L) = 1
2π

2πˆ
K(θ, θ) dθ. (1.2)
0
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The proof of this result relies on the connection between the absolute convergence of
Fourier coefficients of the kernel and the trace class property (traceability) of the corre-
sponding operator.

However, in this paper we show that such type of results can be significantly improved
by using a different approach. Associating a discrete Fourier Analysis with an elliptic
operator on a compact manifold, we will establish the aforementioned connection in the
setting of general closed manifolds, also weakening the known assumptions on the kernel
for the operator to be trace class and for the trace formula (1.2) to hold. Thus, in this
respect, a direct extension of the method employed by Sugiura leads to weaker results
than our approach, for closed manifolds of dimension higher than 2, and we discuss this
at the end of Section 4.

To formulate the notions more precisely, let H be a complex Hilbert space endowed
with an inner product denoted by (·,·), and let T : H → H be a linear compact operator.
If we denote by T ∗ : H → H the adjoint of T , then the linear operator (T ∗T ) 1

2 : H → H is
positive and compact. Let (ψk)k be an orthonormal basis for H consisting of eigenvectors
of |T | = (T ∗T ) 1

2 , and let sk(T ) be the eigenvalue corresponding to the eigenvector ψk,
k = 1, 2, . . . . The non-negative numbers sk(T ), k = 1, 2, . . . , are called the singular values
of T : H → H. If

∞∑
k=1

sk(T ) < ∞,

then the linear operator T : H → H is said to be in the trace class S1. It can be shown
that S1(H) is a Banach space in which the norm ‖ · ‖S1 is given by

‖T‖S1 =
∞∑
k=1

sk(T ), T ∈ S1,

multiplicities counted. Let T : H → H be an operator in S1(H) and let (φk)k be any
orthonormal basis for H. Then, the series

∑∞
k=1 (Tφk, φk) is absolutely convergent and

the sum is independent of the choice of the orthonormal basis (φk)k. Thus, we can define
the trace Tr(T ) of any linear operator T : H → H in S1 by

Tr(T ) :=
∞∑
k=1

(Tφk, φk),

where {φk : k = 1, 2, . . .} is any orthonormal basis for H. If the singular values are
square-summable T is called a Hilbert–Schmidt operator. It is clear that every trace
class operator is a Hilbert–Schmidt operator. More generally, if 0 < p < ∞ and the
sequence of singular values is p-summable, then T is said to belong to the Schatten class
Sp(H), and it is well known that each Sp(H) is an ideal in L(H). If 1 � p < ∞, a norm
is associated with Sp(H) by
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‖T‖Sp
=

( ∞∑
k=1

(
sk(T )

)p) 1
p

.

If 1 � p < ∞ the class Sp(H) becomes a Banach space endowed by the norm ‖T‖Sp
. If

p = ∞ we define S∞(H) as the class of bounded linear operators on H, with ‖T‖S∞ :=
‖T‖op, the operator norm. In the case 0 < p < 1 the quantity ‖T‖Sp

only defines a
quasinorm, and Sp(H) is also complete.

The Schatten classes are nested, with

Sp ⊂ Sq, if 0 < p < q � ∞, (1.3)

and satisfy the important multiplication property (cf. [17,32,14])

SpSq ⊂ Sr, (1.4)

where

1
r

= 1
p

+ 1
q
, 0 < p < q � ∞.

We will apply (1.4) for factorising our operators T in the form T = AB with A ∈ Sp and
B ∈ Sq, and from this we deduce that T ∈ Sr.

A nice basic introduction to the study of the trace class is included in the book [19] by
Peter Lax. For the basic theory of Schatten classes we refer the reader to [14,22,32,27].

In this paper we consider integral operators which is not restrictive in view of the
Schwartz integral kernel theorem on closed manifolds. If H = L2(Ω,M,m), it is well
known that T is a Hilbert–Schmidt operator if and only if T can be represented by an
integral kernel K = K(x, y) ∈ L2(Ω ×Ω,m⊗m). In this paper we are interested in the
case when Ω is a closed manifold (which we denote by M). In particular, we note that
in view of (1.3) the condition K ∈ L2(M ×M) implies that T ∈ Sp for all p � 2.

For p < 2, the situation is much more subtle, and the Schatten classes Sp(L2) cannot
be characterised as in the case p = 2 by a property analogous to the square integrability
of integral kernels. This is a crucial fact that we now briefly describe. A classical result of
Carleman [7] from 1916 gives the construction of a periodic continuous function κ(x) =∑∞

k=−∞ cke
2πikx for which the Fourier coefficients ck satisfy

∞∑
k=−∞

|ck|p = ∞ for any p < 2. (1.5)

Now, using this and considering the normal operator

Tf = f ∗ κ (1.6)
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acting on L2(T1) one obtains that the sequence (ck)k forms a complete system of eigen-
values of this operator corresponding to the complete orthonormal system

φk(x) = e2πikx, Tφk = ckφk.

The system φk is also complete for T ∗, T ∗φk = ckφk, so that the singular values of T
are given by sk(T ) = |ck|, and hence by (1.5) we have

∞∑
k=−∞

sk(T )p = ∞ for any p < 2.

In other words, in contrast to the case of the class S2 of Hilbert–Schmidt operators which
is characterised by the square integrability of the kernel, Carleman’s result shows that
below the index p = 2 the class of kernels generating operators in the Schatten class Sp

cannot be characterised by criteria of the type
¨ ∣∣K(x, y)

∣∣α dx dy < ∞,

since the kernel K(x, y) = κ(x−y) of the operator T in (1.6) satisfies any kind of integral
condition of such form due to the boundedness of κ.

This example demonstrates the relevance of obtaining criteria for operators to belong
to Schatten classes for p < 2 and, in particular, motivates the results in this paper.
Among other things, we may also note that the continuity of the kernel (as in the above
example) also does not guarantee that the operator would belong to any of the Schatten
classes Sp with p < 2. Therefore, it is natural to ask what regularity imposed on the
kernel would guarantee such inclusions (for example, the C2 condition in Sugiura’s result
mentioned earlier does imply the traceability on T1). Thus, these questions will be the
main interest of the present paper.

As for criteria for operators to belong to Schatten classes Sp for 0 < p < 2, a simplified
version of our result in given in Theorem 3.6, for kernels in Sobolev spaces can be stated
as follows:

Theorem 1.1. Let M be a closed manifold of dimension n. Let K ∈ Hμ(M × M) for
some μ > 0. Then the integral operator T on L2(M), defined by

(Tf)(x) =
ˆ

M

K(x, y)f(y) dy,

is in the Schatten classes Sp(L2(M)) for

p >
2n

n + 2μ.

In particular, if μ > n , then T is trace class.
2
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This result improves, for example, Sugiura’s result for the operator (1.1). Theorem 1.1
follows from the main result Theorem 3.6 giving criteria in terms of the mixed Sobolev
spaces, Proposition 4.3, and Corollary 4.2. In particular, the use of mixed Sobolev spaces
in Theorem 3.6 allows us to formulate criteria requiring different (smaller) regularities
of K(x, y) in x and y, or only in one of these variables.

We note that the situation for Schatten classes Sp for p > 2 is simpler and, in fact, sim-
ilar to that of p = 2. For example, for left-invariant operators on compact Lie groups G,
i.e. for convolution operators of the form Tf = f ∗ κ, it was shown in [11] that

κ ∈ Lp′
(G), 1 � p′ � 2 =⇒ T ∈ Sp

(
L2(G)

)
,

1
p′

+ 1
p

= 1.

The converse of this is also true but for interchanged indices, i.e.

T ∈ Sp

(
L2(G)

)
, 1 � p � 2 =⇒ κ ∈ Lp′

(G).

We refer to [11] for this as well as for the symbolic characterisation of Schatten classes
in the setting of compact Lie groups.

In this work we allow singularities in the kernel so that the formula (1.2) would need
to be modified in order for the integral over the diagonal to make sense. In such case, in
order to calculate the trace of an integral operator using a non-continuous kernel along
the diagonal, one idea is to average it to obtain an integrable function. Such an averaging
process has been introduced by Weidmann [42] in the Euclidean setting, and applied by
Brislawn in [3,4] for integral operators on L2(Rn) and on L2(Ω,M, μ), respectively,
where Ω is a second countable topological space endowed with a σ-finite Borel measure.
The corresponding extensions to the Lp setting have been established in [8] and [9]. The
L2 regularity of such an averaging process is a consequence of the L2-boundedness of the
martingale maximal function. Denoting by K̃(x, x) the pointwise values of this averaging
process, Brislawn [4] proved the following formula for a trace class operator T on L2(μ),
for the extension to Lp see [8]:

Tr(T ) =
ˆ

Ω

K̃(x, x) dμ(x). (1.7)

In Section 2 we describe the discrete Fourier analysis involved in our problem and es-
tablish several relations between eigenvalues and their multiplicities for elliptic positive
pseudo-differential operators. Then in Section 3 we establish our criteria for Schatten
classes on compact manifolds and, in particular, for the trace class in Section 4. For
this, we briefly recall the definition of the averaging process involved in the formula
(1.7). We also explain another method relating the convergence of the Fourier coeffi-
cients of the kernel with the traceability. In Section 5 the special case of compact Lie
groups is considered where we show that the criteria can be also given using hypoelliptic
operators.
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2. Fourier analysis associated with an elliptic operator

In this section we start by recording some basic elements of Fourier analysis on com-
pact manifolds which will be useful for our analysis.

Let M be a compact smooth manifold of dimension n without boundary, endowed
with a fixed volume dx. We denote by Ψν(M) the Hörmander class of pseudo-differential
operators of order ν ∈ R, i.e. operators which, in every coordinate chart, are operators
in Hörmander classes on Rn with symbols in Sν

1,0, see e.g. [31] or [23]. In this paper
we will be using the class Ψν

cl(M) of classical operators, i.e. operators with symbols
having (in all local coordinates) an asymptotic expansion of the symbol in positively
homogeneous components (see e.g. [13]). Furthermore, we denote by Ψν

+(M) the class
of positive definite operators in Ψν

cl(M), and by Ψν
e (M) the class of elliptic operators in

Ψν
cl(M). Finally,

Ψν
+e(M) := Ψν

+(M) ∩ Ψν
e (M)

will denote the class of classical positive elliptic pseudo-differential operators of order ν.
We note that complex powers of such operators are well-defined, see e.g. Seeley [29]. In
fact, all pseudo-differential operators considered in this paper will be classical, so we may
omit explicitly mentioning it every time, but we note that we could equally work with
general operators in Ψν(M) since their powers have similar properties, see e.g. [35].

We now associate a discrete Fourier analysis with the operator E ∈ Ψν
+e(M) inspired

by those considered by Seeley [28,30], see also [15]. However, we adapt it to our pur-
poses and prove several auxiliary statements concerning the eigenvalues of E and their
multiplicities, useful to us in the sequel.

The eigenvalues of E form a sequence {λj}, with multiplicities taken into account.
For each eigenvalue λj , there is the corresponding finite dimensional eigenspace Fj of
functions on M , which are smooth due to the ellipticity of E. We set

dj := dimFj , and F0 := kerE, λ0 := 0.

We also set d0 := dimF0. Since the operator E is elliptic, it is Fredholm, hence also
d0 < ∞ (we can refer to [1] for various properties of F0 and d0).

We fix an orthonormal basis of L2(M,dx) consisting of eigenfunctions of E:{
ekj
}1�k�dj

j�0 , (2.1)

where {ekj }1�k�dj is an orthonormal basis of Fj . We denote by (·,·) the standard inner
product on L2(M) associated with its volume element. Let Pj : L2(M) → Fj be the
corresponding orthogonal projections on Fj . We observe that

Pjf =
dj∑(

f, ekj
)
ekj ,
k=1
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for f ∈ L2(M). The Fourier inversion formula takes the form

f =
∞∑
j=0

Pjf =
∞∑
j=0

dj∑
k=1

(
f, ekj

)
ekj , (2.2)

for each f ∈ L2(M), and where the convergence is understood with respect to the
L2(M)-norm.

Definition 2.1. Let u ∈ D′(M) and let j ∈ N0 = N ∪ {0} be a nonnegative integer. We
define û(j) ∈ F ∗

j by û(j)(ϕ) := u(ϕ), for ϕ ∈ Fj .

For the distributional valuations we use the notation u(ϕ) or 〈u, ϕ〉. If ϕ ∈ D(M) and
u ∈ D′(M) we have

ϕ =
∞∑
j=0

dj∑
k=1

(
ϕ, ekj

)
ekj ,

and

u(ϕ) =
∞∑
j=0

dj∑
k=1

(
ϕ, ekj

)
u
(
ekj
)
. (2.3)

We note that the same type of formula holds for operators from C∞(M) to D′(M),
namely, if T : C∞(M) → D′(M) is a linear continuous operator, we have

T (ϕ) =
∞∑
j=0

dj∑
k=1

(
ϕ, ekj

)
T
(
ekj
)
, (2.4)

with an appropriate distributional understanding of convergence. The Fourier coefficients
of u ∈ D′(M) associated with the basis (2.1) can be obtained from (2.3):

û(j)(ϕ) =
dj∑
k=1

(
ϕ, ekj

)
u
(
ekj
)
.

In particular, if u ∈ L2(M) we obtain

û(j)(ϕ) =
dj∑
k=1

(
ϕ, ekj

)(
u, ekj

)
.

From the paragraph above we can deduce:
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Proposition 2.2. If u ∈ D′(M) then û(j) ◦ Pj is in D′(M), and

u =
∞∑
j=0

û(j) ◦ Pj in D′(M). (2.5)

Proof. If ϕ ∈ D(M) is a test function we have

∞∑
j=0

(
û(j) ◦ Pj

)
(ϕ) =

∑
j�0

û(j)(Pjϕ) =
∞∑
j=0

û(j)
dj∑
k=1

(
ϕ, ekj

)
ekj

=
∞∑
j=0

dj∑
k=1

(
ϕ, ekj

)
û(j)

(
ekj
)

=
∞∑
j=0

dj∑
k=1

(
ϕ, ekj

)
u
(
ekj
)

= u(ϕ),

in view of (2.3), completing the proof. �
Comparing the Fourier inversion formula (2.2) in L2(M) with the formula (2.5) in

D′(M), for a function f ∈ L2(M), we can identify its distributional Fourier coefficients
f̂(j) with their action on the basis of Fj given by

f̂(j, k) :=
(
f, ekj

)
.

We will also denote sometimes by F the Fourier transform associating with f ∈ L2(M)
its Fourier coefficients. Since {ekj }

1�k�dj

j�0 forms a complete orthonormal system in L2(M),
for all f ∈ L2(M) we have the Plancherel formula

‖f‖2
L2(M) =

∞∑
j=0

dj∑
k=1

∣∣(f, ekj )L2

∣∣2 =
∞∑
j=0

dj∑
k=1

∣∣f̂(j, k)
∣∣2. (2.6)

Since the criteria that we will obtain depend (a priori) on the choice of the orthonormal
basis {ekj }, the asymptotics of the corresponding eigenvalues play an essential role. We
now establish several simple but useful relations between the eigenvalues λj and their
multiplicities dj .

Proposition 2.3. Let M be a closed manifold of dimension n, and let E ∈ Ψν
+e(M), with

ν > 0. Then there exists a constant C > 0 such that

dj � C(1 + λj)
n
ν (2.7)

for all j � 1. Moreover, we have

∞∑
j=1

dj(1 + λj)−q < ∞ if and only if q >
n

ν
. (2.8)
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Proof. We observe that (1 + λj)1/ν is an eigenvalue of the first-order elliptic positive
operator (I + E)1/ν of multiplicity dj . The Weyl formula for the eigenvalue counting
function for the operator (I + E)1/ν yields∑

j: (1+λj)1/ν�λ

dj = C0λ
n + O

(
λn−1)

as λ → ∞. This implies dj � C(1 + λj)n/ν for sufficiently large λj , implying (2.7).
We now prove (2.8). Let us denote T := (I + E)−q/2. The eigenvalues of T are

(1 + λj)−q/2 with multiplicities dj , therefore, we obtain

∞∑
j=0

dj(1 + λj)−q = ‖T‖2
S2

� ‖K‖2
L2(M×M). (2.9)

At the same time, by the functional calculus of pseudo-differential operators, we know
that T ∈ Ψ−νq/2(M), so that its kernel K(x, y) is smooth for x �= y, and near the
diagonal x = y, identifying points with their local coordinates, it satisfies the estimate∣∣K(x, y)

∣∣ � Cα|x− y|−α,

for any α > n − νq/2, see e.g. [13] or [23, Theorem 2.3.1], and the order is sharp with
respect to the order of the operator. Thus, we get that K ∈ L2(M ×M) if and only if we
can choose α such that n > 2α > 2n− νq, which together with (2.9) implies (2.8). �
3. Schatten classes on compact manifolds

Before stating our first result, we point out that a look at the proof of (1.2) (cf. [37,
Prop. 3.5]) shows that statement can be already improved in the following way:

Proposition 3.1. Let Δ = ∂2

∂θ2 + ∂2

∂φ2 be the Laplacian on T2. Let K(θ, φ) be a measur-
able function on T2 and suppose that there exists an integer q > 1 such that Δ

q
2K ∈

L2(T1 × T1). Then the integral operator L on L2(T1), defined by

(Lf)(θ) =
2πˆ

0

K(θ, φ)f(φ) dφ,

is trace class and has the trace

Tr(L) = 1
2π

2πˆ

0

K̃(θ, θ) dθ,

where K̃ stands for the averaging process described in Section 4.
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Our criteria for Schatten classes will also depend on a test of square integrability
operating on the kernels through an elliptic operator, and the result of Proposition 3.1
will be improved in Theorem 3.6 (see specifically Corollary 4.2) by using a different
approach to the problem. In the auxiliary next lemma we show that such condition is
independent of the choice of an elliptic operator.

Lemma 3.2. Let M be a closed manifold. Let E1, E2 ∈ Ψν
e (M) with ν ∈ R and let

h ∈ D′(M). Then E1h ∈ L2(M) if and only if E2h ∈ L2(M).

Proof. Let us suppose that E1h ∈ L2(M) and consider a parametrix L1 ∈ Ψ−ν(M)
of E1. In particular, there exists R ∈ Ψ−∞(M) such that

L1E1 −R = I.

Then

E2h = E2(L1E1 −R)h

= (E2L1)(E1h) − (E2R)h,

with E2L1 ∈ Ψ0(M), E2R ∈ Ψ−∞(M). Since E1h ∈ L2(M) we obtain (E2L1)(E1h) ∈
L2(M); the fact that E2R is smoothing gives us (E2R)h ∈ L2(M), implying that E2h ∈
L2(M). �

We first establish a simple observation for powers of positive elliptic operators to
belong to Schatten classes Sp on L2(M).

Proposition 3.3. Let M be a closed manifold of dimension n, and let E ∈ Ψν
+e(M) be a

positive elliptic pseudo-differential operator of order ν > 0. Let 0 < p < ∞. Then

(I + E)−α ∈ Sp

(
L2(M)

)
if and only if α >

n

pν
. (3.1)

Proof. Let λj denote the eigenvalues of E, each λj having the multiplicity dj . Then the
operator (I +E)−α is positive definite, its singular values are (1 +λj)−α with multiplic-
ities dj . Therefore,

∥∥(I + E)−α
∥∥p
Sp

=
∞∑
j=0

dj(1 + λj)−αp,

which is finite if and only if αp > n
ν by (2.8), implying the statement. �

If P is a pseudo-differential operator on M , for a function (or distribution) on M×M ,
we will use the notation PyK(x, y) to indicate that the operator P is acting on the
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y-variable, the second factor of the product M × M . For a positive elliptic operator
P ∈ Ψν

+e(M), by the elliptic regularity, the Sobolev space Hμ(M) can be characterised
as the space of all distributions f ∈ D′(M) such that (I + P )μ

ν f ∈ L2(M), and this
characterisation is independent of the choice of operator P (see also Lemma 3.2).

We now define Sobolev spaces Hμ1,μ2
x,y (M × M) of mixed regularity μ1, μ2 � 0. We

observe that for K ∈ L2(M ×M), we have

‖K‖2
L2(M×M) =

ˆ

M×M

∣∣K(x, y)
∣∣2 dx dy =

ˆ

M

(ˆ

M

∣∣K(x, y)
∣∣2 dy) dx,

or we can also write this as

K ∈ L2(M ×M) ⇐⇒ K ∈ L2
x

(
M,L2

y(M)
)
. (3.2)

In particular, this means that Kx defined by Kx(y) = K(x, y) is well-defined for almost
every x ∈ M as a function in L2

y(M).

Definition 3.4. Let K ∈ L2(M×M) and let μ1, μ2 � 0. We say that K ∈ Hμ1,μ2
x,y (M×M)

if Kx ∈ Hμ2(M) for almost all x ∈ M , and if (I +Px)
μ1
ν Kx ∈ L2

x(M,Hμ2
y (M)) for some

P ∈ Ψν
+e(M), ν > 0. We set

‖K‖Hμ1,μ2
x,y (M×M) :=

(ˆ

M

∥∥(I + Px)
μ1
ν Kx

∥∥2
Hμ2 (M) dx

)1/2

.

By the elliptic regularity it follows that different choices of operators P ∈ Ψν
+e(M),

ν > 0, give equivalent norms on the space Hμ1,μ2
x,y (M × M). Thus, for operators Ej ∈

Ψ
νj

+e(M) (j = 1, 2) with νj > 0, we can formulate Definition 3.4 in an alternative (and
perhaps more practical) way:

Definition 3.5. For operators Ej ∈ Ψ
νj

+e(M) (j = 1, 2) with νj > 0, we define

K ∈ Hμ1,μ2
x,y (M ×M) ⇐⇒ (I + E1)

μ1
ν1
x (I + E2)

μ2
ν2
y K ∈ L2(M ×M), (3.3)

where the expression on the right hand side means that we are applying pseudo-
differential operators on M separately in x and y. We note that these operators commute
since they are acting on different sets of variables of K.

As we have noted above, the definition does not depend on a particular choice of
operators Ej ∈ Ψ

νj

+e(M), with the norms of K induced by (3.3) being all equivalent to
each other and to that in Definition 3.4. In Proposition 4.3 we establish some properties
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of the spaces Hμ1,μ2
x,y , namely, we will show the inclusions between the mixed and the

standard Sobolev spaces on the compact (closed) manifold M ×M as

Hμ1+μ2(M ×M) ⊂ Hμ1,μ2
x,y (M ×M) ⊂ Hmin(μ1,μ2)(M ×M),

for any μ1, μ2 � 0.
We will now give our main criteria for Schatten classes.

Theorem 3.6. Let M be a closed manifold of dimension n and let μ1, μ2 � 0. Let K ∈
L2(M ×M) be such that K ∈ Hμ1,μ2

x,y (M ×M). Then the integral operator T on L2(M),
defined by

(Tf)(x) =
ˆ

M

K(x, y)f(y) dy,

is in the Schatten classes Sr(L2(M)) for

r >
2n

n + 2(μ1 + μ2)
.

Remark 3.7. The value for r comes from the relation

1
r

= 1
2 + 1

p1
+ 1

p2
,

for some 0 < p1, p2 < ∞, where the condition r > 2n
n+2(μ1+μ2) comes from μj > n

pjνj
by

a suitable application of (3.1). Also, since then r = 2p1p2
p1p2+2(p1+p2) , the range for r is the

interval (0, 2) since, in general, 0 < pj < ∞. Therefore, Theorem 3.6 provides a sufficient
condition for Schatten classes Sr for 0 < r < 2. For μ1, μ2 = 0 the conclusion is trivial
and can be sharpened to include r = 2.

Remark 3.8. We note that for μ1 = 0, Theorem 3.6 says that for K ∈ L2(M,Hμ(M)),
we have that the corresponding operator T satisfies T ∈ Sr for

r >
2n

n + 2μ.

In this case no regularity in the x-variable is imposed on the kernel.
We also note that the ‘dual’ result with μ2 = 0 imposing no regularity of K with

respect to y also follows directly from it by considering the adjoint operator T ∗ and
using the equality ‖T ∗‖Sr

= ‖T‖Sr
.

Proof of Theorem 3.6. Let, for example, E = (I+ΔM ) 1
2 , where ΔM is a positive definite

elliptic differential operator of order 2, and E = E. The existence of such ΔM follows,
for example, from the Whitney embedding theorem.
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(i) We first suppose that μ1, μ2 > 0. By Proposition 3.3 with α = μ2 and ν = 1 we
get, in particular, that E−μ2

y ∈ Sp2(L2(M)) for

μ2 >
n

p2
,

the first ingredient in the proof.
Now let us consider the kernel B(x, y) of the operator E−μ2

y ∈ Sp2(L2(M)) for μ2 > n
p2

.
If f ∈ L2(M), let

g(y) :=
ˆ

M

B(y, z)f(z) dz,

so that

Eμ2
y g(y) = f(y).

First we note that by (3.3) the condition K ∈ Hμ1,μ2
x,y (M × M) can be written as

Eμ1
x Eμ2

y K ∈ L2(M × M), with ν1 = ν2 = 1. Since Eμ1
x Eμ2

y K ∈ L2(M × M), we have
Eμ1

x Eμ2
y K(x, ·) ∈ L2

y(M) for almost every x, and this fact will justify the use of scalar
products in the next argument.

We observe that

Eμ1
x Tf(x) =

ˆ

M

Eμ1
x K(x, y)f(y) dy

=
ˆ

M

Eμ1
x K(x, y)Eμ2

y g(y) dy

=
(
Eμ1

x K(x, ·), Eμ2
y g

)
L2(M)

=
(
Eμ2

y Eμ1
x K(x, ·), g

)
L2(M)

=
(
Eμ1

x Eμ2
y K(x, ·), g

)
L2(M)

=
ˆ

M

Eμ1
x Eμ2

y K(x, y)g(y) dy

=
ˆ

M

Eμ1
x Eμ2

y K(x, y)
(ˆ

M

B(y, z)f(z) dz
)
dy.

Now, setting

A(x, y) := Eμ1
x Eμ2

y K(x, y),
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we have shown that

Eμ1
x Tf(x) =

ˆ

M

Eμ1
x K(x, y)f(y) dy =

ˆ

M

A(x, y)
(ˆ

M

B(y, z)f(z) dz
)
dy,

thus we have factorised the operator Eμ1
x T with A ∈ S2 and B ∈ Sp2 . By (1.4) we get

that Eμ1
x T ∈ St with 1

t = 1
2 + 1

p2
.

On the other hand, since E−μ1
x ∈ Sp1 for μ1 > n

p1
, we obtain

T = E−μ1
x Eμ1

x T ∈ Sr,

with

1
r

= 1
p1

+ 1
t

= 1
2 + 1

p1
+ 1

p2
.

Using inequalities

p1 >
n

μ1
and p2 >

n

μ2
,

this is equivalent to

r >
2n

n + 2(μ1 + μ2)
.

(ii) If μ1 = 0 and μ2 > 0, just by removing the operator Eμ1
x in the argument above

we get the desired result.
(iii) If μ1 > 0 and μ2 = 0. This is a consequence of case (ii) proceeding by duality,

considering the adjoint of the operator T and applying the fact that ‖T‖Sr
= ‖T ∗‖Sr

. �
4. Trace class operators and their traces

We shall now briefly recall the averaging process which is required for the study of
trace formulae for kernels with discontinuities along the diagonal. We start by defining
the martingale maximal function. Let (Ω,M, μ) be a σ-finite measure space and let
{Mj}j be a sequence of sub-σ-algebras such that

Mj ⊂ Mj+1 and M =
⋃
j

Mj .

In order to define conditional expectations we assume that μ is σ-finite on each Mj . In
that case, if f ∈ Lp(μ), then E(f |Mn) exists. We say that a sequence {fj}j of functions
on Ω is a martingale if each fj is Mj-measurable and

E(fj |Mk) = fk for k < j. (4.1)
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In order to obtain a generalisation of the Hardy–Littlewood maximal function we consider
the particular case of martingales generated by a single M-measurable function f . The
martingale maximal function is defined by

Mf(x) := sup
j

E
(
|f |

∣∣Mj

)
(x). (4.2)

This martingale can be defined, in particular, on a second countable topological space
endowed with a σ-finite Borel measure. For our purposes in the study of the kernel
the sequence of σ-algebras is constructed from a corresponding increasing sequence of
partitions Pj × Pj of Ω ×Ω with Ω = M , the closed manifold.

Now, for each (x, y) ∈ M ×M there is a unique Cj(x) × Cj(y) ∈ Pj × Pj containing
(x, y). Those sets Cj(x) replace the cubes in Rn in the definition of the classical Hardy–
Littlewood maximal function. We refer to Doob [12] for more details on the martingale
maximal function and its properties.

We denote by A
(2)
j the averaging operators on Ω ×Ω: Let K ∈ L1

loc(μ⊗ μ), then the
averaging A

(2)
j is defined μ⊗ μ-almost everywhere (cf. [4]) by

A
(2)
j K(x, y) := 1

μ(Cj(x))μ(Cj(y))

ˆ

Cj(x)

ˆ

Cj(y)

K(s, t) dμ(t) dμ(s). (4.3)

The averaging process will be applied to the kernels K(x, y) of our operators. As a
consequence of the fundamental properties of the martingale maximal function it can be
deduced that

K̃(x, y) := lim
j→∞

A
(2)
j K(x, y),

is defined almost everywhere and that it agrees with K(x, y) in the points of continuity.
We observe that if K(x, y) is the integral kernel of a trace class operators, then K(x, y)
is, in particular, square integrable, and hence by the Hölder inequality it is integrable on
the compact manifold M ×M .

In the sequel in this section, we can always assume that K ∈ L2(M ×M) since it is
not restrictive because the trace class is included in the Hilbert–Schmidt class, and the
square integrability of the kernel is then a necessary condition.

As a corollary of Theorem 3.6, for the trace class operators we have:

Corollary 4.1. Let M be a closed manifold of dimension n and let K ∈ L2(M × M),
μ1, μ2 � 0, be such that

μ1 + μ2 >
n

2
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and K ∈ Hμ1,μ2
x,y (M ×M). Then the integral operator T on L2(M), defined by

(Tf)(x) =
ˆ

M

K(x, y)f(y) dy

is trace class and its trace is given by

Tr(T ) =
ˆ

M

K̃(x, x) dx. (4.4)

Proof. We observe that to get r = 1 from Theorem 3.6, we require the following inequal-
ity to hold:

1 >
2n

n + 2(μ1 + μ2)
.

But this is equivalent to μ1 + μ2 > n
2 . The trace formula is a consequence of (1.7). �

Corollary 4.1 improves, in particular, Proposition 3.1:

Corollary 4.2. Let M be a smooth closed manifold of dimension n. Let K ∈ L2(M ×M)
be such that K ∈ Hμ(M × M) for μ > n

2 . Then the integral operator T on L2(M),
defined by

(Tf)(x) =
ˆ

M

K(x, y)f(y) dy,

is trace class on L2(M) and its trace is given by (4.4).

Indeed, Corollary 4.2 follows from Corollary 4.1 and the inclusion

Hμ(M ×M) ⊂ H0,μ
x,y (M ×M),

the latter being a special case of the following inclusions between usual and mixed Sobolev
spaces:

Proposition 4.3. Let M be a smooth closed manifold. Then we have the inclusions

Hμ1+μ2(M ×M) ⊂ Hμ1,μ2
x,y (M ×M) ⊂ Hmin(μ1,μ2)(M ×M), (4.5)

for any μ1, μ2 � 0.

Proof. Let Δ be a second order positive elliptic differential operator on M (such an oper-
ator exists e.g. by the Whitney embedding theorem), and let ekj denote the orthonormal
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basis and λj the corresponding eigenvalues, leading to the discrete Fourier analysis as-
sociated with Δ as described in Section 2. Then the products ekj (x)eml (y) give rise to an
orthonormal basis in L2(M ×M). Consequently, using (3.3) with E1 = E2 = Δ, we see
that K ∈ Hμ1,μ2

x,y (M ×M) is equivalent to the condition

∞∑
j=0

dj∑
k=1

∞∑
l=0

dl∑
m=1

(1 + λj)μ1(1 + λl)μ2
∣∣K̂(j, k, l,m)

∣∣2 < ∞, (4.6)

where the Fourier coefficients K̂(j, k, l,m) are determined by the Fourier series

K(x, y) =
∞∑
j=0

dj∑
k=1

∞∑
l=0

dl∑
m=1

K̂(j, k, l,m)ekj (x)eml (y).

On the other hand, we note that

(1 + Δx + Δy)ekj (x)eml (y) = (1 + λj + λl)ekj (x)eml (y),

which implies that K ∈ Hμ(M ×M) is equivalent to

∞∑
j=0

dj∑
k=1

∞∑
l=0

dl∑
m=1

(1 + λj + λl)μ
∣∣K̂(j, k, l,m)

∣∣2 < ∞. (4.7)

Comparing the expressions in (4.6) and (4.6), and using the inequalities

(1 + λj + λl)min(μ1,μ2) � C(1 + λj)μ1(1 + λl)μ2 � C(1 + λj + λl)μ1+μ2 ,

we obtain the inclusions (4.5). �
We also obtain some corollaries in terms of the derivatives of the kernel. We denote

by Cα
xC

β
y (M × M) the space of functions of class Cβ with respect to y and Cα with

respect to x.

Corollary 4.4. Let M be a closed manifold of dimension n. Let K ∈ C�1
x C�2

y (M × M)
some even integers 
1, 
2 ∈ 2N0 such that 
1 + 
2 > n

2 . Then the integral operator T on
L2(M), defined by

(Tf)(x) =
ˆ

M

K(x, y)f(y) dy,

is in S1(L2(M)), and its trace is given by

Tr(T ) =
ˆ

M

K(x, x) dx. (4.8)
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Proof. Let ΔM be an elliptic positive definite second order differential operator on M ,
then (I + ΔM )

�1
2
x (I + ΔM )

�2
2
y K ∈ C(M × M) ⊂ L2(M × M). Now, by observing that


1 + 
2 > n
2 the result follows from Corollary 4.1. �

Remark 4.5. The index n
2 in Corollary 4.4 is sharp. Indeed, for the torus Tn with n even,

there exist a function χ of class C
n
2 such that the series of Fourier coefficients diverges

(cf. [34, Ch. VII], [41]). By considering the convolution kernel K(x, y) = χ(x − y), the
singular values of the operator T given by Tf = f ∗ χ agree with the absolute values
of the Fourier coefficients. Hence, T /∈ S1(L2(Tn)) but K ∈ C

n
2 (M ×M) (we can think

of e.g. 
1 = 0 and 
2 = n
2 in Corollary 4.4). On the other hand, concerning necessary

conditions on the kernel, writing the convolution operator T in the pseudo-differential
form

Tf(x) =
∑
ξ∈Zn

eix·ξσ(ξ)f̂(ξ)

with σ(ξ) = χ̂(ξ), it can be shown that
∑

ξ∈Zn |σ(ξ)| < ∞ if and only if the corresponding
pseudo-differential operator Tσ is trace class on L2(Tn) (cf. [11]). Hence, when dealing
with a multiplier we can deduce that if Tσ is trace class then its kernel is continuous.
This can be obtained from the formula for the convolution kernel

K(x, y) =
∑
ξ∈Zn

ei(x−y)ξσ(ξ)

and the summability of σ. Therefore, the continuity of kernels is a necessary condition
for traceability of convolution operators on Tn. However, as we note from the example
(1.6) on M = T1 the convolution kernel K(x, y) = κ(x − y) is continuous but the
corresponding operator is not trace class.

We now make some remarks about the relation between the trace class property and
the Fourier coefficients of the kernel, in the sense of Section 2.

The main idea in the proof by Sugiura of (1.2) (and then also of Proposition 3.1)
consists in exploiting the underlying relation between the convergence of the series of
Fourier coefficients of the kernel K ∈ C2(T1 × T1) and the traceability. This link is
basically reduced to the application of the following classical result, see e.g. [37]:

Lemma 4.6. Let H be a separable Hilbert space. If a bounded linear operator T on H

satisfies ∑
m,j∈N

∣∣(Tφj , φm)
∣∣ < ∞

for a fixed orthonormal basis (φj)j, then T is trace class.
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By choosing an orthonormal basis {φj} consisting of eigenfunctions of the Laplacian on
T1×T1 one can prove that the Fourier coefficients of K agree with the values (Tφj , φm).
On the other hand, it can be shown that the series of Fourier coefficients converges
absolutely and hence the traceability follows. The proof can be extended to smooth closed
manifolds by using elliptic positive pseudo-differential operators instead of Laplacians
on M ×M , and associating a discrete Fourier analysis with the cross product M ×M .
However, this method leads to a weaker result, by furnishing the condition K = K(x, y) ∈
Cν(M × M) with ν > n. We have improved that kind of result by obtaining a sharp
condition on the regularity of K with respect to y as given in Corollary 4.4 (with 
1 = 0
and 
2 > n/2).

However, for the sake of completeness we establish below a result concerning the con-
vergence of series of Fourier coefficients. The related problem concerning the convergence
of Fourier series on compact manifolds has been studied by Taylor [38]. Taylor’s paper
also included a special version for compact Lie groups. Similar results for compact con-
nected Lie groups from a different approach were obtained by Sugiura in [36]. In order
to study such kind of convergence for a kernel K on M × M we will first apply the
convergence criterion (2.8) to the manifold M ×M . In the following lemma we will as-
sociate with an elliptic positive pseudo-differential operator E of order ν on M ×M an
orthonormal basis of L2(M ×M) which we denote by {em� }1�m�d�

��0 .

Lemma 4.7. Let M be a compact smooth manifold of dimension n, and let E ∈
Ψν

+e(M × M) with ν > n. Let K ∈ L2(M × M) be such that EK ∈ L2(M × M).
Let λ� be the eigenvalues of E and let d� be the corresponding multiplicities. With respect
to the orthonormal basis {em� }1�m�d�

��0 of L2(M ×M), K(x, y) can be written as

K(x, y) =
∞∑
�=0

d�∑
m=1

K̂(
,m)em� (x, y), (4.9)

with
∑∞

�=0
∑d�

m=1 |K̂(
,m)| < ∞, and the condition EK ∈ L2(M ×M) is independent of
the choice of the operator E in Ψν

+e(M ×M), and can be expressed as the Sobolev space
condition K ∈ Hν(M ×M).

Proof. We define

h(x, y) := EK(x, y),

which is in L2(M×M). With respect to the orthonormal basis {em� }1�m�d�

��0 of L2(M×M)
the kernel K(x, y) can be written as (4.9). At the same time, the Fourier coefficients of
h satisfy, by the Plancherel formula (2.6),

∞∑ d�∑∣∣ĥ(
,m)
∣∣2 = ‖h‖2

L2(M×M), (4.10)

�=0 m=1
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and

ĥ(
,m) = ÊK(
,m) = λ�K̂(
,m),

for 0 � 
 < ∞ and 1 � m � d�.
For the Fourier coefficients of K, by the Cauchy–Schwartz inequality, (4.10) and the

inequality (2.8) applied to E on M ×M we obtain

∞∑
�=0

d�∑
m=1

∣∣K̂(
,m)
∣∣ � C

∞∑
�=0

d�∑
m=1

λ�
|K̂(
,m)|
1 + λ�

= C
∞∑
�=0

d�∑
m=1

|ĥ(
,m)|
1 + λ�

� C

( ∞∑
�=0

d�∑
m=1

∣∣ĥ(
,m)
∣∣2) 1

2(∑
�

d�(1 + λ�)−2
) 1

2

� C‖h‖L2 ,

where for the application of (2.8), we note that the convergence of the series
∑

� d�(1 +
λ�)−2 on M ×M with q = 2 is equivalent to the condition ν > n. The independence of
the choice of an elliptic positive pseudo-differential operator of order ν is an immediate
consequence of Lemma 3.2 for the manifold M ×M . �
5. Schatten classes on compact Lie groups

In this section we consider the conditions for Schatten classes for operators on compact
Lie groups. We show that the conditions on the kernel can be also formulated in terms of
hypoelliptic operators. This is done by combining the factorisation method used in the
previous sections with recent results [11] by the authors on characterisation of invariant
operators in Schatten classes on compact Lie groups. We start by describing the basic
concepts we will require for this setting.

Let G be a compact Lie group of dimension n with the normalised Haar measure dx.
Let Ĝ denote the set of equivalence classes of continuous irreducible unitary representa-
tions of G. Since G is compact, the set Ĝ is discrete. For [ξ] ∈ Ĝ, by choosing a basis in
the representation space of ξ, we can view ξ as a matrix-valued function ξ : G → Cdξ×dξ ,
where dξ is the dimension of the representation space of ξ. By the Peter–Weyl theorem
the collection

{√
dξ ξij : 1 � i, j � dξ, [ξ] ∈ Ĝ

}
is the orthonormal basis of L2(G). If f ∈ L1(G) we define its global Fourier transform
at ξ by

f̂(ξ) :=
ˆ

f(x)ξ(x)∗dx.

G
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If ξ is a matrix representation, we have f̂(ξ) ∈ Cdξ×dξ . The Fourier inversion formula is
a consequence of the Peter–Weyl theorem, and we have

f(x) =
∑

[ξ]∈Ĝ

dξ Tr
(
ξ(x)f̂(ξ)

)
. (5.1)

For each [ξ] ∈ Ĝ, the matrix elements of ξ are the eigenfunctions for the Laplacian LG

(or the Casimir element of the universal enveloping algebra), with the same eigenvalues
which we denote by −λ2

[ξ], so that we have

−LGξij(x) = λ2
[ξ]ξij(x) for all 1 � i, j � dξ. (5.2)

The weight for measuring the decay or growth of Fourier coefficients in this setting is

〈ξ〉 :=
(
1 + λ2

[ξ]
) 1

2 ,

the eigenvalues of the (positive) elliptic first-order pseudo-differential operator (I−LG) 1
2 .

The Parseval identity takes the form

‖f‖L2(G) =
( ∑

[ξ]∈Ĝ

dξ
∥∥f̂(ξ)

∥∥2
HS

) 1
2

, where
∥∥f̂(ξ)

∥∥2
HS = Tr

(
f̂(ξ)f̂(ξ)∗

)
,

which gives the norm on 
2(Ĝ).
For a linear continuous operator A from C∞(G) to D′(G) we define its matrix-valued

symbol σA(x, ξ) ∈ Cdξ×dξ by

σA(x, ξ) := ξ(x)∗(Aξ)(x) ∈ Cdξ×dξ . (5.3)

Then one has [23,24] the global quantization

Af(x) =
∑

[ξ]∈Ĝ

dξ Tr
(
ξ(x)σA(x, ξ)f̂(ξ)

)
(5.4)

in the sense of distributions, and the sum is independent of the choice of a representation
ξ from each equivalence class [ξ] ∈ Ĝ. If A is a linear continuous operator from C∞(G) to
C∞(G), the series (5.4) is absolutely convergent and can be interpreted in the pointwise
sense. We will also write A = Op(σA) for the operator A given by the formula (5.4). We
refer to [23,24] for the consistent development of this quantization and the corresponding
symbolic calculus.

In the subsequent Part II of this paper, we will relate the Fourier and symbolic anal-
ysis on general closed manifolds to those on compact Lie groups. So, now we will only
concentrate on showing that the conditions for Schatten classes can be also formulated
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by examining the regularity of the kernel under the action of non-elliptic but hypoelliptic
operators.

Instead of Proposition 3.3 for elliptic operators as the starting point, here we will use
its analogue for hypoelliptic operators established in [11], for example its analogue for
sub-Laplacians on compact Lie groups G. Let us write

LG = X2
1 + · · · + X2

n−1 + X2
n,

Lsub = X2
1 + · · · + X2

n−1, (5.5)

for a basis X1, . . . , Xn of left-invariant vector fields on the Lie algebra g of G, assuming
that the span of the first commutators of X1, . . . , Xn−1 contains Xn. Then it was shown
in [11] that

0 < r < ∞ and αr > 2n =⇒ (I − Lsub)−α/2 ∈ Sr

(
L2(G)

)
. (5.6)

Here we can note that the powers of the hypoelliptic positive pseudo-differential operator
I−Lsub are well-defined. There is a general theory, see e.g. [18], [16], or more recent results
and references in [5]. However, if we observe that the matrix symbol of the sub-Laplacian
(as well as the symbol of the operator Hγ is the sequel) are diagonal, a complex power
of such operator may be defined by the quantization formula (5.4) using the matrix
symbol being the corresponding complex power of the diagonal symbol of the operator.
For left-invariant operators with diagonal matrix symbols (such as Lsub or Hγ) all such
approaches yield the same operators (see e.g. [26] for more details).

Consequently, arguing in the same way as in the proof of Theorem 3.6 we obtain:

Corollary 5.1. Let G be a compact Lie group of dimension n, and let Lsub be a sub-
Laplacian as in (5.5). Let K ∈ L2(M ×M) be such that

(I − Lsub)μ1/2
x (I − Lsub)μ2/2

y K ∈ L2(G×G)

for some μ1, μ2 � 0. Then the integral operator T on L2(G), defined by

(Tf)(x) =
ˆ

G

K(x, y)f(y) dy,

is in the Schatten classes Sr(L2(G)) for

r >
2n

n + (μ1 + μ2)
.

Proof. We argue similar to the proof of Theorem 3.6. In particular, we know from (5.6)
that (I − Lsub)−μj/2 ∈ Spj

for μjpj > 2n (j = 1, 2). From the relation

1 = 1 + 1 + 1

r 2 p1 p2
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and pj > 2n
μj

, we get that under the condition r > 2n
n+(μ1+μ2) the operator T belongs to

the Schatten class Sr on L2(G). �
As it was noted in [11], the implication (5.6) can be improved for particular groups

using their particular structure. For example, for the compact Lie group SU(2) we have,
for three left-invariant vector fields X,Y, Z that [X,Y ] = Z, and so with

Lsub = X2 + Y 2

we have

0 < r < ∞ and αr > 4 =⇒ (I − Lsub)−α/2 ∈ Sr

(
L2(SU(2)

))
. (5.7)

The same is true for S3 � SU(2) considered as the compact Lie group with the quater-
nionic product. Using this instead of (5.6), we get a refinement of Corollary 5.1 in the
setting of S3 � SU(2):

Corollary 5.2. Let K ∈ L2(S3 × S3) be such that we have

(1 − Lsub)μ1/2
x (1 − Lsub)μ2/2

y K ∈ L2(S3 × S3)
for some μ1, μ2 � 0. Then the integral operator T on L2(S3), defined by

(Tf)(x) =
ˆ

S3

K(x, y)f(y) dy,

is in the Schatten classes Sr(L2(S3)) for

r >
4

2 + μ1 + μ2
.

The same result holds on compact Lie groups SU(2) and SO(3).

Proof. Using (5.7) with α = μj , the assumption μjpj > 4 implies that (I−Lsub)−μj/2 ∈
Spj

for pj > 4
μj

(j = 1, 2). From 1
r = 1

2 + 1
p1

+ 1
p2

and pj > 4
μj

we obtain the condition
r > 4

2+μ1+μ2
. �

We now show that instead of the sub-Laplacian other globally hypoelliptic operators
can be used, also those that are not necessarily covered by Hörmander’s sum of the
squares theorem. Instead of SU(2), for a change, we will formulate this for the group
SO(3) noting that, however, the same conclusion holds also on SU(2) � S3. To formulate
and motivate the result, we first briefly introduce some more notation concerning the
group G = SO(3) of the 3 × 3 real orthogonal matrices of determinant one. For the
details of the representation theory and the global quantization of operators on SO(3)
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we refer the reader to [23, Chapter 12]. The unitary dual in this case of G = SO(3) can
be identified as Ĝ � N0 = N ∪ {0}, so that

ŜO(3) =
{[
t�
]

: t� ∈ C(2�+1)×(2�+1), 
 ∈ N0
}
.

The dimension of each t� is dt� = 2
 + 1.
As in the case of SU(2), let us fix three left-invariant vector fields X,Y, Z on SO(3)

associated with the derivatives with respect to the Euler angles, so that we also have
[X,Y ] = Z, see [23] or [24] for the detailed expressions.

We will consider an example of an operator (on SO(3)) which is not covered by
Hörmander’s sum of squares theorem. Namely, we consider the following family of
‘Schrödinger’ differential operators

Hγ = iZ − γ
(
X2 + Y 2),

for a parameter 0 < γ < ∞. For γ = 1 it was shown in [25] that H1 + cI is globally
hypoelliptic if and only if

0 /∈
{
c + 
(
 + 1) −m(m + 1) : 
 ∈ N, m ∈ Z, |m| � 


}
.

It has been also shown in [11, Section 4] that, if γ > 1, then I+Hγ is globally hypoelliptic,
and

(I + Hγ)−α/2 ∈ Sp if and only if αp > 4.

As a consequence of this and following the argument in the proof of Theorem 3.6 with
I + Hγ instead of E = ΔM for the manifold M = SO(3), as well as Corollary 5.2, we
obtain:

Corollary 5.3. Let γ > 1. Let K ∈ L2(SO(3) × SO(3)) be such that

(I + Hγ)μ1/2
x (I + Hγ)μ2/2

y K ∈ L2(SO(3) × SO(3)
)

for some μ1, μ2 � 0. Then the integral operator T on L2(SO(3)) defined by

(Tf)(x) =
ˆ

SO(3)

K(x, y)f(y) dy,

is in Sr on L2(SO(3)) for

r >
4

2 + μ1 + μ2
.

The same conclusion holds on SU(2) � S3. Again, if μ1 = μ2 = 0, the results have a
trivial strengthening to include the case r = 2.
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