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We prove that the combinatorial distance between any two re-
duced expressions of a given permutation of {1, . . . , n} in terms
of transpositions lies in O(n4). We prove that this bound is sharp,
and, using a connection with the intersection numbers of certain
curves in van Kampen diagrams, we give a practical criterion for
proving that the derivations provided by the reversing algorithm
of Dehornoy [Groups with a complemented presentation, J. Pure
Appl. Algebra, 116 (1997) 115–197] are optimal. We also show the
existence of length ` expressions of different permutations whose
reversing requires C`4 elementary steps.

© 2010 Elsevier Ltd. All rights reserved.

This paper is about the various ways of expressing a permutation as a product of transpositions
and the complexity of transforming one such expression into another. We consider both the absolute
complexity (‘‘combinatorial distance’’), which deals with the minimal possible number of steps,
and the more specific complexity (‘‘reversing complexity’’), which arises when one uses subword
reversing, a certain prescribed strategy for transforming expressions.
Throughout the paper, we denote by [[1, n]] the set {1, 2, . . . , n}, and by si the transposition that

exchanges i and i + 1. A well known result – see for instance [8, Chapter 1] – states that, if π is any
permutation of [[1, n]] and u, v are any two reduced (i.e., minimal length) expressions of π in terms of
s1, . . . , sn−1, then one can transform u into v using only the braid relations

sisjsi = sjsisj with |i− j| = 1, (I)

sisj = sjsi with |i− j| > 2. (II)

In this context, we define the combinatorial distance dist(u, v) of u and v to be the minimal number of
braid relations needed to transform u into v. The standard proof for the finiteness of dist(u, v) relies
on the so-called Exchange Lemma of Coxeter groups, and it leads to an exponential upper bound for
dist(u, v) in terms of n. The first aim of this paper is to establish a polynomial upper bound, namely a
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sharp degree 4 one. Using ‘‘n-expression’’ as a shorthand for ‘‘expression representing a permutation
of [[1, n]]’’, i.e., involving letters about s1, . . . , sn−1 only, we prove

Proposition 1. There exist positive constants C1, C2 such that, for each n,
• all equivalent reduced n-expressions u, v satisfy dist(u, v) 6 C1 n4,
• there exist equivalent n-expressions u, v satisfying dist(u, v) > C2 n4.

(The values C1 = 1/2 and C2 = 1/8 are valid for n large enough.)
The methods we use are geometrical. For the upper bound, we consider some area in the n-

strand braid diagram naturally associatedwith an n-expression. For the lower bound, we consider van
Kampen diagrams [9, Chapter 5] and introduce certain curves called separatrices, which are associated
with the names of the strands involved in the successive crossings.
The latter notion, which seems of independent interest, provides general criteria for proving that a

van Kampen diagram (i.e., in algebraic terms, a derivation by braid relations) is optimal, i.e., it involves
the minimal number of braid relations. In particular, Proposition 1.11 below states that a sufficient
condition for a van Kampen diagram to be optimal is that any two separatrices cross at most once
in it.
In the second part, we address similar complexity issues in the particular case of subword

reversing. This is a specific strategy that, given two equivalent expressions u, v, returns a derivation
of v from u by means of braid relations, i.e., equivalently, constructs a van Kampen diagram for the
pair (u, v). We observe on a simple counter-example that the reversing method need not be optimal,
but we deduce from the above approach based on separatrices simple optimality criteria, namely
Propositions 2.3 and 2.4 stating that a sufficient condition for the reversing method to be optimal for
some pair (u, v) is that the reversing diagram for (u, v) contains no digon, i.e., the reversing sequence
from uv contains no ε-step–all technical terms are defined below.
Finally, we address the general question of the complexity of the reversing method. Frustratingly,

the only upper bound we can establish at the moment is exponential—this does not contradict the
polynomial upper bound of Proposition 1, since reversing need not be optimal. On the other hand, the
optimal lower bound of Proposition 1 induces a similar lower bound in the case of reversing. In the
case of non-necessarily equivalent expressions, the reversing method still applies, and its complexity
remains widely unknown. The relevant question is to determine the number comply(u, v) of
elementary steps when one starts with expressions u, v of length ` (independently from the index n).
When the lower bound of Proposition 1 is translated in this language, it leads to the lower bound
comply(u, v) > C `2, which can be optimal. In the general case, this quadratic value is far from
optimal.

Proposition 2. There exists a positive constant C3 such that, for each `,
• there exist length ` expressions u, v satisfying comply(u, v) > C3 `4.

(For ` large enough, we can take C3 = 4/3.) At the moment, we do not know whether the above
result is optimal.
It is likely that most results of this paper extend to finite Coxeter groups of other type. However,

the arguments developed here heavily rely on specific properties of permutations, so it is not clear
how to extend them to Coxeter types other than A, or possibly B using an embedding into a type A
group.

Remark. Most constructions developed in this paper in the case of permutations and their expres-
sions in terms of transpositions can be extended to the case of positive braid and their decompositions
in terms of Artin’s generators σi. Technically, the case of permutations corresponds to the particular
case of the so-called simple braids, which are the divisors of Garside’s fundamental braid ∆n in the
braid monoid B+n , see [7] or [6, Chap. 9]. Our reason for choosing the language of permutations here is
that it is more widely accessible and it avoids introducing the general framework of braids whereas
most results would involve simple braids exclusively. Indeed, it turns out that the worst cases known
so far, in particular in terms of subword reversing, always involve simple braids. We have no expla-
nation for this phenomenon.
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We finally mention that the results of Section 1 are mainly due to the first author, whereas those
of Section 2 are mainly due to the second author.

1. The combinatorial distance

Hereafter, a word u on the alphabet {s1, . . . , sn−1} is generically called an n-expression. Two n-
expressions are called equivalent if they represent the same permutation of [[1, n]]. Throughout the
paper (in particular in view of the braid diagrams considered below), it is convenient that the product,
both for words and for permutations, refers to reverse composition: uv means ‘‘u first, then v’’. An n-
expression u is called reduced if the permutation represented by u has no expression that is shorter
than u.
If u and v are equivalent reduced n-expressions, then, as recalled above, one can transform u into

v using the braid relations of types I and II, and we denote by dist(u, v) the minimal number of braid
relations needed to do it. In this section, we establish bounds for dist(u, v)when n grows to infinity.

1.1. An upper bound result

We begin with an upper bound result. To this end, we introduce one distinguished reduced ex-
pression, called normal, for each permutation, and we define a strategy that transforms any reduced
expression into the (unique) normal expression that represents the same braid.
For each n-expression u, we define Du to be the n-strand braid diagram obtained by associating

with the letter si the pattern

(1.1)

and by stacking from top to bottom the elementary patterns corresponding to the successive letters
of u. When we speak of the pth strand in Du, we refer to the strand that starts at the pth position from
the left on the top line. It is well known that, as the length of a reduced expression equals the number
of inversions of the associated permutation, u is a reduced expression if and only if any two strands
in Du cross at most once [6, Chap. 9].

Definition. Define sj,i to be sj−1sj−2 . . . si+1si for j > i, and to be the empty word ε for j = i. An
n-expression is called normal if it has the form

s1,f (1) s2,f (2) . . . sn,f (n), (1.2)

for some function f : [[1, n]] → [[1, n]] satisfying f (i) 6 i for each i.

(The first factor s1,f (1) is mentioned for symmetry, but is necessarily empty.)

Lemma 1.1. (i) Every normal expression is reduced.
(ii) Each permutation of [[1, n]] admits a unique normal n-expression.

Proof. 1. Assume that u has the form (1.2). Then, for each i, the ith strand crosses over no jth strand
with j > i in the diagram Du. Therefore, any two strands cross at most once in Du, so u is a reduced
expression.

2. For f satisfying f (i) 6 i for each i, let nf be the largestm satisfying f (m) < m, if any, and 0 otherwise,
and let πf be the permutation represented by the expression (1.2) associated with f . We prove
that πf determines f using induction on nf . For nf = 0, the only possibility is that f (i) = i holds
for each i, so the permutation πf is the identity. Assume now nf > 1. By construction, we have
πf (i) = i for i > nf , and πf (nf ) = f (nf ). Hence πf determines nf and f (nf ). Next, let f ′ be defined
by f ′(i) = f (i) for i < nf , and f ′(i) = i for i > nf . Then we have πf = πf ′snf ,f (nf ), hence πf ′
determines πf . By construction, we have nf ′ 6 nf − 1. By induction hypothesis, πf ′ determines f ′,
hence so does πf . Finally, f is determined by f ′, nf , and f (nf ), hence by πf . �
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For each (reduced) expression u, we denote by nf(u) the unique normal expression that is equiv-
alent to u. We shall now define a strategy for transforming u into nf(u).
First, we concentrate on the last factor of the normal form. We have associated with every n-

expression u a braid diagram Du. We shall assume that the pattern (1.1) is drawn in a rectangle that
has width n − 1 and height 1. So, if u is an n-expression of length `, the diagram Du is drawn in an
(n − 1) × ` grid. It includes (n − 1)` squares of size 1, and it makes sense to count how many such
squares lie on the left or on the right of a given strand.

Lemma 1.2. For each n-expression u, define a(u) to be the number of plain squares lying on the right of
the nth strand in the diagram Du. Then, for each reduced n-expression u, there exists an equivalent reduced
expression vsn,k, with v an (n− 1)-expression, satisfying

dist(u, vsn,k) 6 a(u). (1.3)

For an induction it is enough to establish

Claim. If u is not of the form vsn,k with v an (n− 1)-expression, there exists an n-expression u′ satisfying
dist(u, u′) = 1 and a(u′) < a(u).

Proof. Let p be the final position of the nth strand in Du. The hypothesis implies p < n holds as,
otherwise, u itself would be an (n−1)-expression and it could be expressed as usn,n. Then there exists
a unique decomposition

u = v sn,i sjw

with v an (n−1)-expression, i < n, and j 6= i−1: we consider the first block of crossings sn,i in which
the nth strand is involved, and the hypothesis on umeans that, after that block, there still remains at
least one crossing sj in which the nth strand is not involved, which means j 6= i− 1. We consider the
various possible values of j with respect to i. First, j = i− 1 is excluded by hypothesis, whereas j = i
would contradicts the hypothesis that u is reduced since the nth strand would cross the same strand
twice. There remain two cases only.

Case 1: |j− i| > 2. Put u′ = vsn,i+1sjsiw. Then we have dist(u, u′) = 1, and a(u′) = a(u)− 1, as shown
in the following diagrams, which compare the contributions of the factors sisj and sjsi to the right hand
side area of the nth strand (the nth strand is in bold, and the squares contributing to a are in grey).

Case 2: j = i+ 1. By construction this may happen only for i 6 n− 2. Let u′ = vsn,i+2sisjsiw. Then we
have again dist(u, u′) = 1, and a(u′) = a(u)− 2, as shown in the diagram.

So the proof of the claim is complete, and the lemma follows. �
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Repeated uses of Lemma 1.2 lead to

Lemma 1.3. For every reduced n-expression u of length `, we have

dist(u,nf(u)) 6 n(n− 1)`/2. (1.4)

Proof. We use induction on n. The result is obvious for n 6 3. Assume n > 4. Assume that the last
factor in nf(u) is sn,k. By Lemma 1.2, there exists a reduced (n − 1)-expression v of length at most `
– actually of length exactly ` − (n − k) – satisfying dist(u, vsn,k) 6 a(u). By construction, we have
a(u) 6 (n − 1)`. On the other hand, the uniqueness of the normal form implies nf(u) = nf(v)sn,k.
Hence, using the induction hypothesis, we find

dist(u,nf(u)) 6 (n− 1)`+ (n− 1)(n− 2)`/2 = n(n− 1)`/2. �

We immediately deduce

Proposition 1.4. For all equivalent n-expressions u, v of length `, we have

dist(u, v) 6 (n− 1)(n− 2)`. (1.5)

As every reduced n-expression has length at most n(n − 1)/2, the upper bound O(n4) of Proposi-
tion 1 follows.

Remark 1.5. Considering the rightmost strand in the argument of Lemma 1.2 is essential. Indeed, for
each reduced expression u and each i such that siu is not reduced, i.e., such that the ith and the i+ 1st
strands cross in Du, we can consider the area ai of the domain bounded by the top line and the ith
and i + 1st strands before they cross. It is natural to wonder whether u can be transformed into an
equivalent expression siv in such a way that the parameter ai decreases at each step—thus obtaining a
new proof of the Exchange Lemma. The answer is negative. Indeed, assume u = s1s3s2s1s3s2. Then the
second and third strands cross in Du and s2u is not reduced: u is equivalent to s2s3s2s1s2s3. However,
there is no way to apply a braid relation to u so as to decrease the area a2 of the domain bounded by
the second and third strands. Indeed, the two expressions at distance 1 from u are u′ = s3s1s2s1s3s2
and u′′ = s1s3s2s3s1s2, which satisfy a2(u) = a2(u′) = a2(u′′) = 9, as shown in the diagrams

in each of which nine grey squares occur. In view of a proof of the Exchange Lemma, one might
consider a weaker condition, typically that the area a2 decreases or it stays constant and some plain
square is moved to the right. This also fails. Indeed, an exhaustive search shows that such a strategy
starting from the expression u above and leading to an expression startingwith s2would require going
from s3s2s1s3s2s3 to s3s2s3s1s2s3: in both expressions the parameter a2 is 5, and no square is moved to
the right in the corresponding diagrams.

1.2. A lower bound result

We turn to the other direction, namely proving lower bounds on the combinatorial distance of two
equivalent reduced expressions. To this end,we associate a name to each letter in a reduced expression
and observe that applying one braid relation can only change the associated sequence of names by a
limited amount.
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Notation. Hereafter, we use [[1, n ]](k) for the set of all subsets of [[1, n]] that have cardinality
k (exactly), and [[1, n ]](2,2) for the set of all pairs of disjoint pairs in [[1, n]], i.e., the set of all
{{p, q}, {p′, q′}}with {p, q, p′, q′} in [[1, n ]](4).

By construction, every crossing in a braid diagram Du involves two strands, each of which has an
initial position that corresponds to an integer in [[1, n]]. By considering the initial positions of the
strands that cross there, we associate with each instance of a letter si in an n-expression awell defined
pair {p, q} in [[1, n ]](2), hereafter called its name.

Definition. For each reduced n-expression u, we define S(u) to be the sequence composed of the
names of the successive letters in u.

So, formally, S(u) is the sequence in [[1, n ]](2) recursively defined by S(ε) = ∅ (the empty
sequence) and, using _ for concatenation,

S(u) = S(v) _({p, q}),

assuming that u = vsi and the strands that finish at positions i and i+ 1 in Dv are the pth and the qth
ones, i.e., start at positions p and q, respectively.

Example 1.6. Let un = s1,1s2,1 . . . sn,1. Then un is a reduced expression of the maximal element ofSn,
i.e., of the flip permutation φ that exchanges i and n− i for each i. An easy induction gives

S(un) = ({1, 2}, {1, 3}, {2, 3}, . . . , {n− 2, n− 1}{1, n}, {2, n}, . . . , {n− 1, n}). (1.6)

Symmetrically, let vn be the expression obtained from un by reversing the order of the factors and
flipping their entries, i.e., vn = sn,1sn,2 . . . sn,n−1. Then vn is another reduced expression of φ, and we
find

S(vn) = ({n− 1, n}, . . . , {2, n}, {1, n}, {n− 2, n− 1}, . . . , {2, 3}, {1, 3}, {1, 2}): (1.7)

so S(vn) is the sequence obtained by reversing the entries of S(un).

By construction, if u is a reduced n-expression, the pair {p, q} occurs in S(u) if and only if the strands
starting at positions p and q cross in the diagram Du, hence if and only if {p, q} is an inversion of the
permutation represented by u. Hence, if u, v are equivalent reduced n-expressions, the pairs occurring
in S(u) and in S(v) coincide, and S(v) is a permuted image of S(u).
We shall see now that comparing the sequences S(u) and S(v) leads to a lower bound on the

combinatorial distance between u and v.

Definition. If S, S ′ are two permutations of some subset of [[1, n ]](2), we denote by I3(S, S ′) (resp.
I2,2(S, S ′)) the number of triples {p, q, r} in [[1, n ]](3) (resp. the number of pairs of pairs {{p, q}, {p′, q′}}
in [[1, n ]](2,2)) such that the order of the pairs {p, q}, {p, r}, {q, r} (resp. the order of {p, q} and {p′, q′})
is not the same in S and S ′.

Proposition 1.7. For all equivalent n-expressions u, v, we have

dist(u, v) > I3(S(u), S(v))+ I2,2(S(u), S(v)). (1.8)

More precisely, every derivation from u to v contains at least I3(S(u), S(v)) relations of type I and
I2,2(S(u), S(v)) relations of type II.

Proof. We first consider the case dist(u, v) = 1, i.e., the case when v is obtained from u by applying
one braid relation. Assume first that v is obtained by applying a type I relation sisi+1si = si+1sisi+1.
Then there exists a unique triple {p, q, r}, namely the names of the three strands involved in the
transformation, such that the sequence S(v) is obtained from S(u) by replacing the subsequence
{p, q}, {p, r}, {q, r}with {q, r}, {p, r}, {p, q}—see Fig. 1 below for an illustration of the situation. So the
order of the three pairs arising from {p, q, r} has changed between S(u) and S(v). On the other hand,
any other triple in [[1, n ]](3) has at most two elements in common with {p, q, r}, and the order of the
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Fig. 1. Giving names to the tiles in a van Kampen diagram: the left tile is called {p, q, r}, the right one is called {{p, q}, {p′, q′}}.

three pairs arising from that triple is the same in S(u) and S(v). Hence, we have I3(S(u), S(v)) = 1
in this case. On the other hand, any pair of pairs in [[1, n ]](2,2) contains at most one of the three pairs
{p, q}, {p, r}, {q, r} and, therefore, the order of this pair is not changed from S(u) and S(v). Hence, we
have I2,2(S(u), S(v)) = 0 in this case.
Assume now that v is obtained by applying a type II relation sisj = sjsi with |j− i| > 2. Then there

exists a unique pair of pairs {p, q}, {p′, q′} in [[1, n ]](2,2), namely the names of the four strands involved
in the transformation, such that the sequence S(v) is obtained from S(u) by replacing the subsequence
{p, q}, {p′, q′}with {p′, q′}, {p, q}. So the order of the two considered pairs has changed between S(u)
and S(v). On the other hand, any other pair of pairs in [[1, n ]](2,2) contains at most one of the two
pairs {p, q}, {p′, q′}, and its order is the same in S(u) and S(v). Hence, we have I2,2(S(u), S(v)) = 1.
Moreover, any triple in [[1, n ]](3) gives rise to a triple of pairs that contains atmost one of {p, q}, {p′, q′}.
Hence the order of the three pairs in this triple has not changed from S(u) and S(v), and we have
I3(S(u), S(v)) = 0.
We conclude that, in every case, the quantity I3(S(u), S(v))+ I2,2(S(u), S(v)) changes by not more

than one (and even by exactly one) when one braid relation is applied. This clearly implies (1.8). �

We can now complete the proof of Proposition 1.

Corollary 1.8. For each n, there exist reduced n-expressions u, v satisfying

dist(u, v) >
1
8
n4 + O(n3). (1.9)

Proof. Consider the expressions un, vn of Example 1.6. As observed above, the sequences S(un) and
S(vn) are mirror images of one another. It follows that each triple {p, q, r} in [[1, n ]](3) contributes 1
to the parameter I3, leading to

I3(S(un), S(vn)) = #([[1, n ]](3)) =
(n
3

)
.

Similarly, each pair of pairs {{p, q}, {p′, q′}} in [[1, n ]](2,2) contributes 1 to the parameter I2,2, giving

I2,2(S(un), S(vn)) = #([[1, n ]](2,2)) =
1
2

(n
2

) (
n− 2
2

)
= 3

(n
4

)
. �

Owing to the last sentence in Proposition 1.7, we also deduce from the above computation the
result that the number of type I braid relations occurring in every derivation of v from u is at least
n3/6+ O(n2).
In the context of Proposition 1.7, it is natural to wonder whether (1.8) is always an equality, as it

turns out to be in simple cases.

Question 1.9. Does the equality

dist(u, v) = I3(S(u), S(v))+ I2,2(S(u), S(v)) (1.10)

hold for all equivalent n-expressions u, v?

So far we have not been able to obtain any answer. In particular, computer tries failed to find ex-
pressions disproving the equality (1.10).
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Remark 1.10. A result similar to Proposition 1.7 can be obtained by simply counting the inversion
number I(S(u), S(v)) of the sequences S(u) and S(v), i.e., the total number of pairs of pairs whose
order is changed. One easily checks that I(S(u), S(v)) is changed by three when a type I relation is
applied, and by one in the case of a type II relation, thus leading to

dist(u, v) > I(S(u), S(v))/3.

Also, it can bementioned that using areas in braid diagrams as in Section 1.1 can also lead to lower
bounds on the combinatorial distance. Indeed, it is easy to check that applying one braid relation can
change such areas by a bounded factor K only, leading to inequalities of the generic form

dist(u, v) > |area(Du)− area(Dv)|/K .

1.3. Van Kampen diagrams

Proposition 1.7 and the approach of Section 1.2 leads to a nice geometric criterion for proving that
a derivation between two reduced expressions u, v of a permutation π is optimal, i.e., that it realizes
the combinatorial distance dist(u, v) between u and v.
Assume that u, v are equivalent expressions. A van Kampen diagram for (u, v) is a planar connected

diagramK consisting of finitely many adjacent tiles of the two types

and such that the boundary ofK consists of two paths labeled u and v. Because of the orientation of
the edges of the tiles, such a diagram has exactly one initial vertex (source) and one terminal vertex
(sink), and two boundary paths labeled u and v from the source to the sink.
It is standard – see for instance [9] or [6] – that, if u, v are reduced expressions, then v can be

derived from u using braid relations if and only if there exists a van Kampen diagram for (u, v). See
Fig. 2 for an example. More precisely, if v can be derived from u using N braid relations, then there
exists a van Kampen diagram for (u, v) that contains N tiles, and conversely. So, we have the natural
notion of an optimal (or minimal) van Kampen diagram:

Definition. Assume thatK is a vanKampendiagram for (u, v).We say thatK is optimal if the number
of tiles inK equals the combinatorial distance dist(u, v).

In otherwords, a van Kampen diagram is declared optimal if there exists no smaller (i.e., containing
less tiles) diagram with the same boundary. Our aim in the sequel will be to describe criteria for
recognizing that a van Kampen diagram is optimal. The first idea is to use names. Assume that K
is a van Kampen diagram for a pair (u, v). Then we can unambiguously attribute a name with every
tile of K . First, we attribute a name to each edge of K . Let e be such an edge. It follows from the
definition of a van Kampen diagram that there exists at least one path that connects the source of
K to any vertex V , and at least one path that connects V to the sink of K . Hence there is a path γ
that connects the source ofK to its sink and contains e. Then the successive labels of the edges of γ
make an expressionw, which is certainly equivalent to u (and v) since, by construction, there is a van
Kampen diagram for (u, w), namely the subdiagram ofK bounded by γ and the path labeled u. Then,
as in Section 1.2, we attribute a name to each letter ofw, and copy these names on the corresponding
edges of γ . In this way, we have given a name to e which is a certain pair in [[1, n ]](2). We claim that
this name only depends on e, and not on the choice of the path γ . As any two paths γ , γ ′ correspond
to equivalent expressions w,w′, it is enough to consider the case when w and w′ are deduced from
one another using one braid relation, and the result is then obvious. Then, we observe that the names
occurring on the edges of an elementary tile can be of two types only, namely those displayed in Fig. 1.
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Fig. 2. Two van Kampen diagrams for the pair (s1s2s1s3s2s1, s3s2s3s1s2s3): a tiling by squares and hexagons witnessing the
equivalence of the two expressions. Indexed by pairs, the separatrices are drawn in grey, inducing a name for every tile. In the
top diagram, no two tiles share the same name, hence the diagram is optimal, and the combinatorial distance is 6; by contrast,
two tiles in the bottom diagrams share the name {{1, 4}, {2, 3}}, hence the diagram cannot be optimal.

Definition (See Figs. 1 and 2). Assume thatK is a van Kampen diagram for (u, v). We define the name
of a tile inK as follows:
• for a type I tile, it is the (unique) triple {p, q, r} of [[1, n ]](3) such that the names of the border edges
are {p, q}, {p, r}, and {q, r};
• for a type II tile, it is the (unique) pair {{p, q}, {p′, q′}} of [[1, n ]](2,2) such that the names of the
border edges are {p, q} and {p′, q′}.

Then the optimality criterion is

Proposition 1.11. A van Kampen diagram in which any two tiles have different names is optimal.
Proof. The proof of Proposition 1.7 shows that, if K contains exactly one tile named {p, q, r}, then
the order of {p, q}, {p, r}, {q, r} has changed between S(u) and S(v). Hence, under the hypothesis, if
K contains N hexagons with pairwise distinct names, then we have I3(S(u), S(v)) > N . Similarly, if
K contains exactly one tile named {{p, q}, {p′, q′}}, then the order of {p, q} and {p′, q′} has changed
between S(u) and S(v). So, if K contains N ′ squares with pairwise distinct names, then we have
I2,2(S(u), S(v)) > N ′. Applying Proposition 1.7, we deduce dist(u, v) > N + N ′, hence dist(u, v) =
N + N ′. �

1.4. Separatrices

Having given names to the edges of a van Kampen diagram, we can now draw curves that connect
the edges with the same name.

Definition. Assume that K is a van Kampen diagram for (u, v), and {p, q} is an inversion of the
permutation π represented by u and v, i.e., we have (q− p)(π(q)− π(p)) < 0. The {p, q}-separatrix



1838 P. Dehornoy, M. Autord / European Journal of Combinatorics 31 (2010) 1829–1846

inK is the curveΣp,q obtained by connecting the middle points of the (diametrically opposed) edges
named {p, q} inside each tile, oriented so that the edges of u are crossed first, and those of v last.

If {p, q} is not an inversion of the involved permutation, we may consider thatΣp,q still exists, but
it lies outside the diagram and cuts no edge.
So, by definition, separatrices are obtained by connecting patterns of the form

To make Σp,q unique, we might require in addition that the curve we choose inside each tile is
the image of the median lines under the affine transformation that maps a regular polygon to the
considered tile (provided the latter is convex).
Then we have the following optimality criterion involving separatrices.

Proposition 1.12. A van Kampen diagram in which any two separatrices cross at most once is optimal.

Proof. By construction, for each triple {p, q, r} in [[1, n ]](3), the only place where Σp,q and Σp,r may
intersect is a type I tile named {p, q, r} and, conversely, the three separatrices appearing in a type I tile
pairwise cross one another. Similarly, for each {{p, q}, {p′, q′}} in [[1, n ]](2,2), the only placewhereΣp,q
and Σp′,q′ may intersect is a type II tile named {{p, q}, {p′, q′}}, and, conversely, the two separatrices
do cross in such a type II tile. Summarizing, the number of times two separatricesΣp,q andΣp′,q′ cross
is exactly the number of type I tiles named {p, q, p′, q′} if the set {p, q, p′, q′} has three elements, and
the number of type II tiles named {{p, q}, {p′, q′}} if it has four elements. Hence all tiles in K have
pairwise different names if and only if any two separatrices cross at most once in K , and we apply
Proposition 1.11. �

2. Subword reversing

Up to now, we considered the combinatorial distance between two reduced expressions u, v rep-
resenting some permutation, i.e., the minimal number of braid relations needed to transform u into v.
We now address a related, but different question, namely the number of braid relations needed to
transform u into v when one uses the specific strategy called subword reversing [3,4]. The latter is
known to solve the word problem, i.e., to provide a step-by-step transformation of u into v by means
of braid relations when this is possible, i.e., when u and v are equivalent reduced expressions.
Investigating the optimality of the reversing method, i.e., comparing the number of braid relations

used by subword reversing and the combinatorial distance, is a natural question. Little is known at the
moment. Here, we shall establish several partial results. We observe in particular that the reversing
method need not be optimal but, using the geometric criteria of Sections 1.3 and 1.4, we describe cases
when reversing turns out to be optimal. Also, in a slightly different context of non-equivalent initial
expressions, we shall prove that there exist length ` expressions u, v whose reversing require using
O(`4) braid relations, which is not redundant with Proposition 1.

2.1. Subword reversing and reversing diagrams

We recall that an n-expression is a word on the alphabet {s1, . . . , sn−1}. Hereafter, we introduce a
second alphabet {s1, . . . , sn−1}which is a formal copy of the previous one. A word over the extended
alphabet {s1, . . . , sn−1, s1, . . . , sn−1} will be called an extended n-expression. For each extended
expression u, we denote by u the extended expression obtained from u by reversing the order of the
letters and exchanging si and si everywhere. So, for instance, we have s1s2 = s2 s1.
We now introduce a binary relationy (or rewrite rule) on extended expressions.
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Fig. 3. Reversing diagram associated with the sequence (2.1), i.e., the reversing diagram of the pair (s1s2s1, s2s1s2). Metric
aspects are ignored, so the reversing diagram is always considered up to a piecewise affine deformation.

Definition. If w,w′ are extended expressions, we declare that w y w′ holds if w′ is obtained from
w by replacing some subword sisj either by sjsisjsi (if |i− j| = 1 holds), or by sjsi (if |i− j| > 2 holds),
or by the empty word ε (if j = i holds). A finite sequence (w0, . . . , wN) is called a reversing sequence if
wk y wk+1 holds for each k. Finally, we say that w reverses to w′ if there exists a reversing sequence
(w0, . . . , wN) satisfyingw0 = w andwN = w′.

The principle of reversing is to push the letters si to the right, and the letters sj to the left, until no
subword sisj remains. For instance, s1s2s1s2s1s2 reverses to the empty word, as we have

s1s2s1s2s1s2 y s1s2s2s1s2s1s1s2 y s1s1s2s1s1s2 y s2s1s1s2 y s2s2 y ε, (2.1)
where, at each step, the subword that will be reversed has been written in bold.
As will become clear below, a reversing sequence from uv to the empty word provides a distin-

guished way of transforming u into v by means of braid relations and, therefore, there exists an as-
sociated van Kampen diagram. Now, it follows from the particular definition of subword reversing
that the associated van Kampen diagrams have specific properties, namely they can be drawn on a
rectangular grid, a specific point that will be important in the sequel.
These diagrams that are essentially vanKampendiagramswill be called reversing diagrams. As a van

Kampen diagram, a reversing diagram consists of edges labeled by letters si. The specific point is that,
in a reversing diagram, all edges are either horizontal right-oriented edges and vertical down-oriented
edges, and that, in addition to the latter, there may exist ε-labeled arcs. Assume that (w0, . . . , wN) is
a reversing sequence, hence a sequence of extended expressions containing both types of letters si
and sj. First, we associate withw0 a sort of staircase that goes from the bottom-left corner to the top-
right corner in which the successive segments are indexed by the successive letters of w0. To this
end, we attach a horizontal arrow

si
→ starting from the left with each letter si, and a vertical arrow

↓
si starting from the bottom with each letter si—so the vertical edges are crossed contrary to their
orientation. Then, we inductively complete the diagram as follows. Assume that one goes from wk−1
towk by reversing some subword sisj. By construction, the latter subword sisj corresponds to an open

pattern in the diagram. Then we complete that pattern with new arrows, according to the rule

with the convention that ε-labeled dotted arcs, dotted arcs in the diagrams, are subsequently ignored.
For instance, the reversing diagram associated with the above reversing sequence (2.1) is displayed
in Fig. 3.
In this way, we associate with every reversing sequence a reversing diagram, which is unique in

that it does not depend on the order of the performed reversing operations. Conversely, it is easy to see
that, starting with a diagram as above, we can recover a (not necessarily unique) reversing sequence
by reading the labels of the various paths going from the bottom-left corner to the top-right corner,
and using the convention that a vertical si-labeled edge contributes si.
By construction, subword reversingmay be applied to any initial word consisting of letters si and si,

and not only to words of the form uv where u and v are equivalent reduced expressions. So there is
no ambiguity in the following notion.
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Definition. If u, v are expressions, the reversing diagram for (u, v) is the reversing diagram starting
with the word uv.

By construction, the reversing diagram for the pair (u, v) starts with a vertical down-oriented path
labeled u and a horizontal right-oriented path labeled v starting from a common source. For instance,
the diagram of Fig. 3 is the reversing diagram for the pair (s1s2s1, s2s1s2).
By construction, a reversing diagrambecomes a van Kampen diagramwhen all ε-arcs are collapsed

— but we do not do it, and keep the diagrams as they are now, insisting that they are drawn in a
rectangular grid. A reversing diagram contains three types of tiles:
- type I tiles, which are hexagons, and correspond to type I braid relations,
- type II tiles, which are squares, and correspond to type II braid relations,
- type III tiles, which are digons, and correspond to free group relations sisi = 1. The latter will be
called trivial.

The connection between subword reversing and the problem of recognizing equivalent reduced
expressions of a permutation is given by the following result.

Proposition 2.1 ([3]).
(i) For all reduced expressions u, v, there exists a unique pair of reduced expressions u′, v′ such that uv
reverses to v′u′.

(ii) Two reduced expressions u, v represent the same permutation if and only if uv reverses to the empty
word.

In the case of (ii), one implication is clear: by construction, a reversing sequence from uv to the
emptyword gives a reversing diagram for (u, v) that concludeswith ε-arcs everywhere on the bottom
and the right, hence, after collapsing the ε-edges, it gives a van Kampen diagram for (u, v), thus
proving that u and v are equivalent. The converse implication is not obvious, as not every van Kampen
diagram comes from a reversing diagram. The specific point is that, in a reversing diagram, two edges
at most start from any vertex, a property that fails in the top diagram of Fig. 2: so that diagram is
certainly not associated with a reversing. The proof of Proposition 2.1 – which actually extends to
arbitrary braids – relies on the so-called Garside theory of braids [7,6].
In terms of reversing diagrams, the situation is as follows. In the particular case when u and v

are equivalent reduced expressions, the reversing diagram for (u, v) finishes for ε-labeled arcs
everywhere, and collapsing all these ε-labeled arcs yields a van Kampen diagram for (u, v). In general,
if u, v are arbitrary expressions, then the reserving diagram for (u, v) is still finite, and it finishes with
arrows forming aword of the form v′u′ where u′, v′ are two expressions that need not be empty. Then
collapsing all the ε-labeled arcs yields a van Kampen diagram for the pair (uv′, vu′). It can be shown
that, if u and v are reduced, then uv′ and vu′ are reduced and equivalent – the latter point is obvious as,
by construction, the reversing diagram for (u, v) provides a van Kampen diagram for (uv′, vu′) – and
the permutation represented by uv′ and vu′ is the least upper bound of the permutations represented
by u and v with respect to the weak order ofSn [2].
In every case, the number of nontrivial tiles in the reversing diagram or, equivalently, the number

of nontrivial steps in an associated reversing sequence, is well defined.

Definition. Assume that u, v are reduced expressions. The reversing complexity of (u, v), denoted
comply(u, v), is the number of nontrivial tiles in the reversing diagram for (u, v).

Equivalently, the reversing complexity comply(u, v) is the number of nontrivial steps in a revers-
ing sequence from uv to a word of the form v′u′. By the above remarks, a reversing diagram for (u, v)
with N nontrivial tiles provides a van Kampen diagram for (uv′, vu′) with N tiles, where v′u′ is the
final word of the reversing process. So we always have

dist(uv′, vu′) 6 comply(u, v). (2.2)
In particular, when we start with equivalent reduced expressions u, v, we have

dist(u, v) 6 comply(u, v), (2.3)
since, in this case, the final expressions u′ and v′ are empty by Proposition 2.1(ii).
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Fig. 4. Reversing diagram for s1s2s3s1s2s1s3s2s3s1s2s1 . There are eight nontrivial tiles (four type I hexagons and four type II
squares), giving comply(s1s2s1s3s2s1, s3s2s3s1s2s1) = 8. Collapsing the ε-edges in the above diagram yields the bottom van
Kampen diagram of Fig. 2. The failure of optimality is witnessed by the two intersections of the separatricesΣ1,4 andΣ2,3 .

We shall now discuss the converse inequality, i.e., the question of whether subword reversing,
viewed as a particular strategy for finding derivations between equivalent expressions of a permuta-
tion, is efficient, or even optimal. It is easy to see that this need not be the case in general: There exist
equivalent reduced expressions u, v satisfying dist(u, v) < comply(u, v).

Example 2.2. Consider the 4-expressions u = s1s2s1s3s2s1 and v = s3s2s3s1s2s3, two expressions
of the flip permutation φ4 of S4. Together with Proposition 1.11, the top diagram in Fig. 2 gives
dist(u, v) = 6. On the other hand, the reversing diagram of Fig. 4 gives comply(u, v) = 8.

2.2. An optimality criterion

Despite the negative result of Example 2.2, experiments show that subword reversing is often an
efficient strategy. What we do now is to establish sufficient criteria for recognizing that reversing is
optimal. Of course, we shall say that a reversing diagram D is optimal if the van Kampen diagram
obtained by collapsing the ε-labeled arcs inD is optimal, i.e., if it realizes the combinatorial distance
between the boundary expressions.

Proposition 2.3. A reversing diagram containing no digon, i.e., containing only tiles of type I and II, is
optimal.

Proof. LetD be the reversing diagram for some pair (u, v). By definition, the separatrices ofD start
from the edges corresponding to u, i.e., here, from the left. Then an induction on the number of tiles
shows that only the following orientations may appear in the tiles ofD .

Hence every vertical edge of D is crossed by a separatrix from left to right, and every horizontal
edge is crossed from bottom to top. Moreover, we see that digons are the only tiles that can change
the orientation of a separatrix from horizontal to vertical—whereas only hexagons can change the
orientation from vertical to horizontal.
Assume thatD contains no type III tile and that two separatrices cross at least twice inD . Let T1

and T2 be two tiles in which two separatrices cross for the first two times. Let Σ be the separatrix
that enters T1 horizontally. Then Σ exits T1 horizontally and, as D contains no type III tile, Σ must



1842 P. Dehornoy, M. Autord / European Journal of Combinatorics 31 (2010) 1829–1846

Fig. 5. Two slightly different ways of compacting the reversing diagram of Fig. 4.

be horizontal when it enters T2 and, finally, when it exits T2. Symmetrically, letΣ ′ be the (necessarily
distinct) separatrix that exits T2 vertically. Necessarily Σ ′ enters T2 vertically, hence, as D contains
no type III tile, Σ ′ exits T1 vertically. Then, by construction, Σ ′ lies above Σ when it exits T1, and it
lies below Σ when it enters T2, a contradiction as, by definition, Σ and Σ ′ do not cross between T1
and T2. So, the conclusion is that any two separatrices cross at most once inD and, therefore,D must
be optimal by Proposition 1.12. �

The previous result can be improved by showing that somedigons are harmless and can be ignored.
Indeed, consider a pattern of the form sisjsi with |i − j| = 1. Then we have sisjsi y sjsisjsisi y sjsisj,

corresponding to an hexagon with an appended digon on the right in the diagram.

Symmetrically, we find sjsisj y sisjsi, corresponding to an hexagon with an appended digon on the
bottom. Let us introduce two new types of hexagonal tiles, namely, for |i− j| = 1,

Using such tiles amounts to replacing two adjacent tiles of the type described above with one unique
tile of the new type, but they do not change anything in the rest of the diagram. In this way, we obtain
a new type of reversing diagrams that we call compacted. Note that the compacted diagram associated
with an initial expression uv need not be unique, as there may be several ways of grouping the tiles,
see Fig. 5. However, as the situation after a tile of type I’ or I’’ is exactly the same as the situation after
the corresponding type I tile followed by a type III tile, the number of nontrivial tiles is the same in
any diagram associated with a given initial pair (u, v).
The expected improvement of Proposition 2.3 is

Proposition 2.4. A compacted reversing diagram containing no digon, i.e., containing only tiles of types
I, I’, I’’, and II, is optimal.

Proof. The behaviour of the separatrices in the new tiles of types I’ and I’’ are as follows:
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Then the argument used in the proof of Proposition 2.3 remains valid. Indeed, the point was that a
separatrix entering a tile horizontally exits horizontally, and that a separatrix exiting a tile vertically
enters vertically, two properties that extend to types I’ and I’’. �

An application of the above criterion will be mentioned in Remark 2.10.

2.3. Upper bounds

Very little is known about the reversing complexity in general. All computer experiments and the
partial results of [1] support the following conjecture, which is the natural counterpart of Proposi-
tion 1.4.

Conjecture 2.5. For all equivalent n-expressions u, v of length `, the reversing complexity comply(u, v)
lies in O(n2`).

However, even the weaker result of the reversing complexity being polynomial in ` is not known.
By adapting the method used for [5, Prop. 3], one comes up with the weak result that, if u, v are
length ` expressions, then comply(u, v) 6 C · 81` holds for some constant C . Using a careful analysis
of separatrices, one can obtain the following improvement.

Proposition 2.6. If u, v are expressions of length `, then comply(u, v) 6 C ·9` holds for some constant C.

As the argument is complicated and, at the same time, the result seems far from optimal, we skip
the proof and refer to [1] for details.

Remark. The index n does not appear in Proposition 2.6. This reflects the fact that, although the
maximal reversing complexity between two n-expressions of length ` increases with n and `, it does
not increase indefinitely: if we denote by N(n, `) the maximal reversing complexity between two n-
expressions of length `, then, for each `, the value of N(n, `) is constant for n > 2`. This is due to
the fact that, when n is too large with respect to `, the indices of the transpositions si occurring in
an n-expression cannot cover the whole of [[1, n]] and commutation relations of type (II) occur. Here
again, we refer to [1] for more details.

2.4. A lower bound for the reversing complexity

The n-expressions used in the proof of Proposition 1.7 to establish the inequality (1.9) have length
n(n−1)/2 so that, in thisway,we obtain for infinitelymany values of ` equivalent reduced expressions
of length ` that satisfy dist(u, v) > `(`− 1)/2, hence, a fortiori,

comply(u, v) >
`(`− 1)
2

. (2.4)

Question 2.7. Can one construct a sequence (u`, v`) of pairwise equivalent reduced expressions of length
` such that comply(u`, v`) is more than quadratic in `?

We leave Question 2.7 open, and turn to the similar question when the initial expressions are not
necessarily equivalent. The following result illustrates how complicated the reversing processmay be.

Proposition 2.8. For each ` there exist (non-equivalent) reduced expressions u, v of length ` satisfying

comply(u, v) >
4
3
`4

for ` large enough.

We begin with an auxiliary lemma. Hereafter we write wykw′ if there is a length k reversing
sequence fromw tow′, not counting trivial steps of type III.
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Fig. 6. Proof of Relation (2.6), here with i = 1 and p = 3; the grey rectangles correspond to relation (2.5).

Lemma 2.9. For i, p > 1, put ai,p = si+p−1si+p−2 . . . si, bi,p = sisi+1 . . . si+p−1, ci,p = ai,pai+1,p, and
di,p = bi+1,pbi,p. Then, for all i, p, we have

bi,p ai+1,pyNp ai,p+1 bi,p+1, (2.5)

di,p ci+2,pyN
′
p ci,p+2 di,p+2, (2.6)

with Np = p2 + p− 1 and N ′p = 4p
2
+ 8p− 3.

Proof. For (2.5) we use induction on p. The case p = 1 is

bi,1 bi+1,1y1 ai,2 bi,2,

a restatement of sisi+1y1 si+1sisi+1si. Assume p > 2. Applying the induction hypothesis once, plus one
reversing step of type I and one step of type III – or one type I’ step instead – and 2p−1 steps of type II,
we obtain

bi,p ai+1,p = si+p−1 bi,p−1 si+p ai+1,p−1
yp−1 si+p−1 si+p bi,p−1 ai+1,p−1

yNp−1 si+p−1 si+p ai,p bi,p
y1 si+p si+p+1 si+p si+p+1 ai+1,p bi,p
y0 si+p si+p+1 si+p ai+1,p−1 bi,p
yp si+p si+p+1 ai+1,p−1 si+p bi,p = ai,p+1 bi,p+1,

where, in each case, the factors that are about to be reversed are marked in bold. We deduce Np =
Np−1 + 2p = p2 + p− 1.
The computation for (2.6) is illustrated in Fig. 6. Using (2.5) four times, plus 4p + 1 type II steps,

we obtain:

di,p ci+2,p = bi,p bi+1,p ai+2,p ai+3,p
yNp bi,p ai+1,p+1 bi+1,p+1 ai+3,p
= bi,p si+p+1 ai+1,p bi+1,p+1 ai+3,p
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Fig. 7. Proof of Proposition 2.8, here for ` = 4; each grey rectangle corresponds to applying relation (2.6), hence contains a
number of elementary tiles that lies in O(`2).

yp si+p+1 bi,p ai+1,p bi+1,p+1 ai+3,p
yNp si+p+1 ai,p+1 bi,p+1 bi+1,p+1 ai+3,p
= ai,p+2 bi,p+1 bi+2,p si+1 ai+3,p

yp ai,p+2 bi,p+1 bi+2,p ai+3,p si+1
yNp ai,p+2 bi,p+1 ai+3,p+1 bi+3,p+1 si+1
= ai,p+2 bi+1,p si si+p+2 ai+2,p bi+2,p+2
yp+1 ai,p+2 bi+1,p si+p+2 ai+2,p si bi+1,p+1
yp ai,p+2 si+p+2 bi+1,p ai+2,p si bi+1,p+1
yNp ai,p+2 si+p+2 ai+1,p+1 bi+1,p+1 si bi+1,p+1 = ci,p+2 di,p+2,

leading to N ′p = 4p
2
+ 8p− 3. �

We can now establish Proposition 2.8.

Proof of Proposition 2.8 (See Fig. 7). We put

u` = s2`s2`−2 . . . s2 and v` = s1s3 . . . s2`−1,

and analyze the reversing of u`v`. The latter consists of three sequences of elementary steps. First,
`(`− 2)/2 steps of type II lead to

s2 s1 s4 s3 . . . s2` s2`−1.

Then, ` type I steps lead to s1s2s1s2 s3s4s3s4 . . . s2`−1s2`s2`−1s2`, which is

c1,1 d2,1 c3,1 d4,1 . . . c2`−1,1 d2`,1.

From there, we apply (2.6) repeatedly: after `− 1 applications, we obtain

c1,1 · c1,3 d2,3 c3,3 d4,3 . . . c2`−3,3 d2`−2,3 · d2`,1;

after `− 2 more applications, we obtain

c1,1 c1,3 · c1,5 d2,5 c3,5 d4,3 . . . c2`−5,5 d2`−4,5 · d2`−2,3 d2`,1,

and so on. After using (2.6) `(`− 1)/2 times, we finally obtain

c1,1 c1,3 . . . c1,2`+1 d2,2`−1 d4,2`−3 . . . d2`−2,3 d2`,1.

A careful bookkeeping shows that the total number of reversing steps involved in the process is
(8`4 − 23`2 + 9`+ 12)/6, henceΘ(`4) as announced. �
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Remark 2.10. At the expense of using one type I’ tile for the proof of (2.5), no type III tile is used
throughout the above constructions. Using Proposition 2.4, we conclude that the reversing diagram
we obtained gives an optimal van Kampen diagram, i.e., it realizes the combinatorial distance between
the boundary words, here u` c1,1 c1,3 . . . c1,2`+1 and v` d2`,1 d2`−2,3 . . . , d4,2`−3 d2,2`−1.

With Proposition 2.8, we prove that comply(u, v) can be quartic in the length of u and v. We
conjecture this lower bound is also an upper bound, but have no proof of this result so far. The problem
is that we have no control on the number of hexagons and digons that may occur in a reversing
diagram. There is a quadratic upper bound on the lengths of the final expressions u′, v′ that may
arise from some initial pair (u, v) of length ` expressions, but this does not directly lead to a bound
on the number of type I reversing steps used (the only ones that increase the length) because some
subsequent type III steps might erase the letters so created.

Remark 2.11. As mentioned in the introduction, most results of this paper extend to positive braids.
For instance, the optimality criterion of Proposition 1.12 extends to positive braids at the expense
of adding a notion of rank in the definition of separatrices: in the braid diagram associated with a
permutation, i.e., with a simple braid, any two strands cross at most once, and we introduce one
separatrixΣp,q only. For the case of arbitrary positive braids, we should introduce several separatrices
for pairs of strands that cross more than one time, Σ (k)

p,q being associated with the kth intersection of
the strands p and q. As for subword reversing, it works in the general braid case exactly as in the case
of simple braids, i.e., of permutations. Experiments show that the worst cases in terms of complexity
arise with simple braids. So we have no better result in the general braid case than in the particular
permutation case.

References

[1] M. Autord, Aspects algorithmiques du retournement de mot, Ph.D. Thesis, Université de Caen, 2009.
[2] A. Björner, F. Brenti, Combinatorics of Coxeter Groups, in: Graduate Texts in Math., vol. 231, Springer, 2005.
[3] P. Dehornoy, Groups with a complemented presentation, J. Pure Appl. Algebra 116 (1997) 115–137.
[4] P. Dehornoy, On completeness of word reversing, Discrete Math. 225 (2000) 93–119.
[5] P. Dehornoy, B. Wiest, On word reversing in braid groups, Int. J. Algebra Comput. 16 (5) (2006) 931–947.
[6] D. Epstein, J. Cannon, D. Holt, S. Levy, M. Paterson, W. Thurston, Word Processing in Groups, Jones & Bartlett Publ., 1992.
[7] F.A. Garside, The braid group and other groups, Quart. J. Math. Oxford 20–78 (1969) 235–254.
[8] J.E. Humphreys, Reflection Groups and Coxeter Groups, in: Cambridge Univ. Texts, 1989.
[9] R.C. Lyndon, P.E. Schupp, Combinatorial Group Theory, Springer-Verlag, 1977 (reprinted in 2001).


	On the distance between the expressions of a permutation
	The combinatorial distance
	An upper bound result
	A lower bound result
	Van Kampen diagrams
	Separatrices

	Subword reversing
	Subword reversing and reversing diagrams
	An optimality criterion
	Upper bounds
	A lower bound for the reversing complexity

	References


