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Abstract The uncoupling protein-3 (UCP3) is a mitochondrial
protein expressed mainly in skeletal muscle. Among several
hypotheses for its physiological function, UCP3 has been pro-
posed to prevent excessive production of reactive oxygen species.
In the present study, we evaluated the effect of an oxidative stress
induced by hyperoxia on UCP3 expression in mouse skeletal
muscle and C2C12 myotubes. We found that the hyperoxia-med-
iated oxidative stress was associated with a 5-fold and 3-fold in-
crease of UCP3 mRNA and protein levels, respectively, in mouse
muscle. Hyperoxia also enhanced reactive oxygen species pro-
duction and UCP3 mRNA expression in C2C12 myotubes.
Our findings support the view that both in vivo and in vitro
UCP3 may modulate reactive oxygen species production in re-
sponse to an oxidative stress.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

The uncoupling protein-3 (UCP3) belongs to the mitochon-

drial carrier family. This protein is mainly expressed in skeletal

muscle and in brown adipose tissue of rodents. It has also been

shown to be present in the skeletal muscle of other species,

including human [1] and chicken [2]. Despite intensive work

since its identification in 1997 by our group and other, its phys-

iological function remains still unknown. UCP3 was originally

proposed to uncouple the oxidative phosphorylation by dissi-

pating the mitochondrial proton gradient, but its uncoupling

activity is still debated. An overall view of studies on UCP3

function to date suggests a role for this protein in the regulation

of energy metabolism, energy partitioning, mitochondrial pro-
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duction of reactive oxygen species (ROS) and in the detoxifica-

tion of oxidant molecules by exporting peroxidized fatty acid

out of the mitochondrial matrix [3–7]. ROS regroup molecules

such as superoxide anion, hydroxyl radical and hydrogen per-

oxide and possess strong oxidative capacity. The potential role

for UCP3 inmodulating ROS formation is supported by in vivo

and in vitro studies. For instance, mice lacking UCP3 exhibited

an increase in ROS level in their muscles [8], and UCP3 overex-

pression in primary culture of neurons resulted in an inhibition

of hyperglycemia-induced oxidative stress [9]. ROS, at their

turn, might regulate UCP3 activity, as suggested by the fact that

in isolated mitochondria the GDP sensitive-uncoupling activity

of UCP3 depends on the presence of ROS [10].

Production of ROS during exposure to hyperoxia is widely

held to be responsible for the lung injury seen in oxygen-

exposed animals [11]. Hyperoxia has also been used as an exper-

imental procedure to induce oxidative stress in other organ such

as heart and skeletal muscle [12,13]. For instance, it has been

shown that, in aged rats, exposure to high concentration of

oxygen for 60 h resulted in an increased antioxidant activity

of catalase and superoxide dismutase in skeletal muscle [14].

As mentioned above, it has been reported that manipulating

UCP3 gene expression influenced ROS production. In the

present study, we used a complementary approach to deter-

mine the relationship between UCP3 and ROS. We investi-

gated the effect of hyperoxia-induced oxidative stress on

muscle UCP3 expression in both in vivo and in vitro models.

To determine the in vivo impact of hyperoxia on UCP3 expres-

sion, we exposed C57BL/6 mice in 100% oxygen for 72 h, as-

sessed markers of oxidative stress and measured UCP3

mRNA and protein levels. In parallel, we examined whether

in vitro hyperoxia induced ROS formation and regulated

UCP3 expression in the murine skeletal muscle C2C12 cell line.

Our results show that a well-defined condition of oxidative

stress, namely hyperoxia, induced an increase in UCP3 expres-

sion both in mouse skeletal muscle and C2C12 myotubes, sug-

gesting that this protein might participate to ROS metabolism.
2. Materials and methods

2.1. Exposure of mice to hyperoxia
Two- to three-month old C57BL/6 male mice (Charles River,

France) were exposed to room air or hyperoxic conditions by delivery
of 100% oxygen to a sealed Plexiglas chamber for 72 h as previously
described [15]. The mice were given free access to food and water
and were exposed to a 12-h light–dark cycle. At the end of oxygen
exposure, mice were killed and skeletal muscles were rapidly dissected,
blished by Elsevier B.V. All rights reserved.
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frozen in liquid nitrogen and stored at �80 �C until further analysis.
All procedures used were approved by the Office Vétérinaire Cantonal
of Geneva, Switzerland.

2.2. Exposure of cells to hyperoxia
C2C12 myoblast cells were grown in Dulbecco�s modified Eagle�s

medium (DMEM) high glucose (4.5 g/L) supplemented with 10% fetal
bovine serum until they reach 90% confluence. In order to differentiate
the cells intomyotubes, the growthmediumwas replaced by low glucose
(1 mg/L) DMEM supplemented with 2% horse serum. After 5 addi-
tional days of culture, a large proportion of long multinucleated myotu-
bes was observed among the myoblasts. These differentiated cells were
placed under 95% oxygen/5% CO2 (hyperoxia) or maintained in normal
air condition (normoxia) for 48 h. After exposure, cells were used either
for measurement of ROS production or RNA extraction (see below).

2.3. Measurement of ROS production
ROS were detected using fluorescence assay on C2C12 cells plated in

96 microwell optical bottom plates (Nunc GmBH&Co. KG, Wiesba-
den Germany). Myotubes under hyperoxia or normoxia were quickly
washed in Hank�s balanced salt solutions (HBSS) and incubated with
10 lM of 5-(and-6)-chloromethyl-20,7 0-dichlorodihydrofluorescein
diacetate, acetyl ester (CM-H2DCFDA) membrane-permeable dye
(Molecular Probes, Europe BV, Leiden, The Netherland) at 37 �C
for 10 min. Then, cells were washed twice with HBSS to remove excess
dye. After addition of HBSS, cellular ROS accumulation was deter-
mined by recording the fluorescence (excitation wavelength: 485 nm
and emission wavelength: 535 nm) for 10 min using a thermostate con-
trolled (37 �C) microplate reader.
2.4. Northern blotting
Total RNA from mouse skeletal muscle was isolated by the method

of Chomczynski and Sacchi [16]. Northern blot analysis was performed
as described previously [17]. Full length cDNAs were used as probes for
the detection of UCP3, CuZn-superoxide dismutase (CuZn-SOD) and
catalase mRNAs. Human CuZn-SOD and human catalase cDNAs
were kindly provided by the Dr. Lan Jornot. Human b-actin probe
was used to ensure that equivalent RNA amounts were blotted on
the membrane. The signals were quantified by scanning photodensi-
tometry and normalized using the corresponding actin mRNA values.

2.5. Real-time PCR
The determination of UCP3 mRNA levels in myotubes was per-

formed by quantitative polymerase chain reaction (PCR). Total RNA
was prepared using the NucleoSpin RNA II kit mRNA (Macherey-Na-
gel, Düren, Germany) according to the manufacturer�s instructions.
Oligo-dT first strand cDNA were synthesized using the Superscripte

II RNase H Reverse Transcription kit (Invitrogene, Life technologies,
Basel, Switzerland) according to the manufacturer�s instructions. Real-
time PCR was performed using ABI rapid thermal cycler system and a
SYBRGreen PCRmaster mix according to the manufacturer�s instruc-
tions. Cyclophilin A was used as a control to account for any variations
due to the efficiencies of the reverse transcription and PCR. UCP3
oligonucleotide primers used were: upstream 5 0-GGAGTCTCAC-
CTGTTTACTGACAACT-3 0 and downstream 5 0-GCACAGAAGC-
CAGCTCCAA-3 0 (GenBank Accession No. NM009464). Cyclophilin
A oligonucleotide primers used were: upstream 5 0-AGCACTGGGGA-
GAAAGGATT-3 0 and downstream 5 0-CATGCCTTCTTTCACCT-
TCC-30 (GenBank Accession No XM355936). The conditions of
PCR were a step at 50 �C for 2 min followed by a denaturing step at
95 �C for 10 min and by 50 cycles at 95 �C for 15 s and 60 �C for
1 min. After each run, a relative quantification of amplified PCR prod-
ucts in the different samples was performed. For this purpose, standard
curves were constructed for the gene of interest as well as for cyclophi-
lin. The results are expressed as the ratio between the concentration of
the target gene and that of cyclophilin A.

2.6. Mitochondria preparation
Mitochondria of skeletal muscle were prepared as previously de-

scribed [18]. Mitochondrial protein concentrations were determined
according to Bradford et al. [19], using the Bio-Rad Protein Assay
(Bio-Rad Laboratories, Hercules, CA, USA), with bovine serum albu-
min as a standard.
2.7. Western blotting
Muscle mitochondria were prepared and Western blot performed as

previously described [18], using a rabbit polyclonal primary antibody
raised against human UCP3 protein (CabrX; Research Diagnostics
Inc., San Antonio, LA, USA). Membranes were subsequently reblot-
ted with a monoclonal antibody specific for prohibitin (Santa Cruz)
to ensure that equivalent amount of mitochondria proteins was loaded
onto the gel. The signals were detected by chemiluminescence using a
standard ECL kit, and developed on a Hyperfilm ECL film. They were
quantified by scanning photodensitometry of the autoradiograms
using ImageQuant Software version 3.3 of Molecular Dynamics (Sun-
nyvale, CA).

2.8. Aconitase activity
To measure aconitase activity, we used the method described by

Hausladen and Fridovich [20] with some modifications. Briefly,
200 lg of mitochondrial proteins from anterior leg muscles were dis-
rupted by 3 times frozen–thaw in aconitase buffer containing Tris–
HCl 50 mM, pH 7.4, sodium citrate 5 mM, cysteine 1 mM and MnCl2
0.6 mM. Mitochondrial extracts were then added to an aconitase buffer
containing 10 units of NADP+-dependent isocitrate dehydrogenase.
The reaction started by adding NADP+ 0.2 mM. Basal NADPH
absorbance was measured every minute in a spectrophotometer and
when stable values were obtained NADP+ was injected. Calculation
of aconitase activity was based on quantity of NADPH produced in
the first 10 min after injection of NADP+. Aconitase activity was ex-
pressed as nmoles NADPH produced per mg of mitochondrial protein
per minute. To convert OD340 in nmoles, we used a standard curve
with 0.5, 5, 25 and 50 nmol of NADPH.

2.9. Statistical analysis
Data are expressed as means ± S.E.M. Significance was evaluated

using the unpaired Student�s t test. A P value less than 0.05 was con-
sidered statistically significant.
3. Results

3.1. Hyperoxia induces an oxidative stress in skeletal muscle of

exposed mice

We first assessed the oxidative stress level in skeletal muscle

of mice exposed to hyperoxia for 72 h (hyperoxia) or main-

tained in normoxic conditions (normoxia). As an in vivo indi-

cator of mitochondrial ROS accumulation we determined the

aconitase activity in muscle mitochondria. Loss in aconitase

activity is interpreted as a measure of oxidative stress. As

shown in Fig. 1A, aconitase activity was significantly decreased

by 38% in hyperoxic mice compared with normoxic controls.

The maximal aconitase activities were similar between norm-

oxic and hyperoxic mitochondria. Then, we determined the

mRNA levels of CuZn-SOD, catalase and b-actin in skeletal

muscle. Fig. 1B show that hyperoxia induced a significant

3.0-fold and 2.6-fold increase in mRNA levels of CuZn-SOD

and catalase, respectively. b-Actin mRNA level was found to

be unchanged by hyperoxia. These data indicate that exposure

to 100% oxygen for 72 h causes an oxidative stress in the

mouse skeletal muscle.

3.2. UCP3 mRNA and protein are increased in skeletal muscle

of hyperoxic mice

To examine the effect of oxidative stress on UCP3 expres-

sion, we compared the UCP3 mRNA level in skeletal muscle

of hyperoxic mice with those of normoxic controls. As shown

in Fig. 2A, oxygen exposure produced a 5-fold increase in

UCP3 mRNA. Then, we determined the UCP3 and prohibitin

protein levels in muscle mitochondria. Fig. 2B shows that

UCP3 protein expression was also upregulated in muscle



Fig. 1. Oxidative stress evaluation in skeletal muscle of hyperoxic mice.
(A) Aconitase activity in mouse muscle of normoxic and hyperoxic
mice. Aconitase activity was measured as described under Section 2.
Results are expressed as the percent of the maximal aconitase activity.
Values are means ± S.E.M.; n = 10. (B) Catalase and CuZn-SOD
mRNA levels in normoxic and hyperoxic mice. The expressions of
catalase and superoxide dismutase are shown relative to that of b-actin.
The ratio of the normoxic values is considered as 1.0. Results are
expressed as means ± S.E.M. of arbitrary units; n = 5. (C) Represen-
tative catalase, CuZn-SOD and actin mRNA signals (Norm. =
normoxia and Hyp. = hyperoxia). \, P < 0.05; \\\, P < 0.0005, unpaired
Student�s t test.
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mitochondria of hyperoxic mice. No difference was observed in

the level of prohibitin between normoxia and hyperoxia condi-

tions. These results show that 72 h hyperoxia induced a

marked increase of UCP3 mRNA and protein expression in

mouse skeletal muscle.

3.3. 48 h hyperoxia induces UCP3 mRNA expression and

oxidative stress in C2C12 myotubes

To examine the direct effect of hyperoxia on UCP3 expres-

sion in muscle cells, we performed in vitro experiment on con-

fluent C2C12 myotubes exposed to either normoxic (control)

or hyperoxic conditions for 48 h. The UCP3 mRNA expres-

sion relative to that cyclophilin, which is considered to be a

reference housekeeping gene, was significantly increased by

1.9-fold in hyperoxic myotubes compared to control cells

(Fig. 3A). We also evaluated the level of oxidative stress in

C2C12 myotubes after 48 h exposure to hyperoxia. Using a

dichlorofluorescein probe (CM-H2DCFDA) to detect ROS,

we found a 40% increase in oxidative stress level of hyperoxic

myotubes compared to controls (Fig. 3B). Thus, in C2C12

myotubes, hyperoxia generates an augmentation of ROS pro-
duction associated to an increase in UCP3 mRNA expression,

suggesting that UCP3 expression could be control by the level

of cellular oxidative stress.
4. Discussion

Here, we report that hyperoxia induced an increase in UCP3

mRNA and protein expression in skeletal muscle and in UCP3

mRNA level in C2C12 myotubes. In parallel to the increase in

UCP3 expression by hyperoxia, we also observed an increase

in the level of oxidative stress. Our data suggests that the oxi-

dative stress produced by hyperoxia could be the stimulator of

UCP3 expression.

Although exposure to 100% oxygen is well known to induce a

marked oxidative stress and oxidative cell damages in lung, the

effect of hyperoxia on oxidative stress levels in skeletal muscle

has been rarely studied [14]. We therefore determined the level

of oxidative stress generated in skeletal muscle of hyperoxic

mice by two indirect but commonly used methods; the measure-

ments of aconitase activity and antioxidant enzymes mRNA

expression. Aconitase is an enzyme in the tricarboxylic acid cy-

cle that is inhibited by superoxide radicals. Loss of aconitase

activity is a widely used index of oxidative stress. We observed

that the relative aconitase activity (% of the maximal activity) in

hyperoxia represents 60% of the activity in normoxic condition.

In line with our observation, similar decrease in aconitase activ-

ity was reported in mitochondria of superoxide dismutase-2

heterozygous knockout mice [21]. We also observed an increase

in the gene expression of CuZn-SOD and catalase mRNA after

72 h hyperoxia suggesting an increase in ROS level. Hyperoxia

seems to induce ROS production in mouse skeletal muscle in a

time-dependent manner as 24 h hyperoxia exposure did not af-

fect catalase and CuZn-SOD mRNA expression (data not

shown). UCP3 mRNA and protein levels were also unchanged

in 24 h hyperoxia compared to normoxia (data not shown).

The observation that 72 h hyperoxia induced gene expres-

sion of CuZn-SOD and catalase, suggest that some ROS-

dependent signaling pathways have been turn on. This is in

contrast with the observation of Amicarelli et al [14], who re-

ported that 60 h hyperoxia did not result in significant changes

of antioxidant enzymes activities in muscle homogenate of

young rats. It is possible that the difference between their re-

sults and ours might be due to the use of two different animal

models, i.e., exposure to oxygen for 60 h in rat vs. 72 h in

mouse. However, the fact that there is not a systematic corre-

lation between activities of antioxidant enzymes and their

mRNA expression make difficult the comparison between the

two studies. To support data obtained in hyperoxic muscle,

we demonstrated by measuring ROS production that hyper-

oxia generated an oxidative stress in cultured myotubes. Taken

together, our data indicate that 72 h hyperoxia is a condition

that creates production of free radicals in skeletal muscle.

Hyperoxia is known to turn on several ROS-dependent sig-

naling pathways such as MAPK, NF-jB or AP-1 pathways in

endothelial and epithelial cells [22]. It is unknown whether

UCP3 expression could be directly induced by one or many

of these pathways. However it can be mentioned that TNF-

a, which induces mitochondrial ROS production and activates

NF-jB signaling in C2C12 myotubes [23], upregulates UCP3

mRNA expression in rat skeletal muscle [24]. Based on these

reports, one may hypothesize that the NF-jB pathway



Fig. 2. UCP3 mRNA and protein expression in skeletal muscle of hyperoxic mice. (A) UCP3 mRNA levels in mouse muscle of normoxic and
hyperoxic mice. The expression of UCP3 is shown relative to that of b-actin. The ratio of the control values is considered as 1.0. Results are expressed
as means ± S.E.M. of arbitrary units; n = 5. (B) UCP3 protein levels in muscle mitochondria of normoxic and hyperoxic mice. Western blot was
hybridized with UCP3 antibody and subsequently with prohibitin antibody as described under Section 2. The expression of UCP3 is shown relative
to that of prohibitin. The ratio of the normoxic values is considered as 1.0. Results are expressed as means ± S.E.M. of arbitrary units; n = 11. (C)
Representative UCP3 and actin mRNA signals, and UCP3 and prohibitin protein signals are shown under the respective graph (Norm. = normoxia
and Hyp. = hyperoxia). \\, P < 0.005; \\\, P < 0.0005, unpaired Student�s t test.
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mediates the effect of ROS on UCP3 gene expression. Future

studies will address this hypothesis.

The relationship between UCP3 and ROS has mostly been

studied by quantifying the degree of ROS production in mod-

els lacking or overexpressing UCP3 [8,25]. Here, we deter-

mined the regulation of UCP3 mRNA and protein

expression in response to an oxidative stress. We showed that

hyperoxia increased UCP3 expression in mouse skeletal muscle

and in C2C12 myotubes. As 72 h of hyperoxia significantly in-
Fig. 3. UCP3 mRNA expression and oxidative stress level in C2C12
myotubes under hyperoxia. (A) UCP3 mRNA levels in C2C12
myotubes under normoxic or hyperoxic conditions for 48 h. The levels
of UCP3 mRNA relative to those of cyclophilin were determined by
real-time PCR as described under Section 2. The ratio of the normoxic
values is considered as 1.0. (B) ROS level in C2C12 myotubes after
48 h of hyperoxia. Cells were loaded with 10 lM of CM-H2DCFDA
probe and ROS accumulation was measured as described under
Section 2. Values are means ± S.E.M. of six different determinations.
\\\, P < 0.0005, unpaired Student�s t test.
duced an oxidative stress in muscle cells both in vivo and in vi-

tro, we might hypothesize that the induction of UCP3

expression would result from an enhanced ROS production.

Recent studies, which have investigated the expression of

uncoupling proteins in relation to oxidative stress, showed that

the oxidative stress is an inducer of uncoupling protein-2 and -

5 [26–28]. For instance, the increased production of mitochon-

drial ROS is associated with an increase in the mitochondrial

content of UCP2 in hepatocytes [27]. Two hours exposure to

hydrogen peroxide increased by 1.5-fold UCP2 mRNA expres-

sion in INS-1 cells [28]. In the present study, we showed that an

oxidative stress can also increase the expression of another

member of the uncoupling protein family that is UCP3, both

in vivo, in mouse skeletal muscle, and in vitro, in C2C12 myo-

tubes. The possibility that UCP3 may act as a regulator of

mitochondrial free radical generation or an exporter of perox-

idized fatty acids in muscle mitochondria remains to be inves-

tigated. It could be interesting in further study to test whether

exposition to hyperoxia may induce an increase in the proton

leak on isolated mitochondria or cells.
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