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A b s t r a c t - - T h i s  is the first in series of papers creating a discrete analog of vector analysis on 
logically rectangular, nonorthogonal, nonsmooth grids. We introduce notations for 2-D logically rect- 
angular grids, describe both  cell-valued and nodal discretizations for scalar functions, and construct  
the  natural  discretizations of vector fields, using the  vector components normal and tangential  to the  
cell boundaries. We then define natural  discrete analogs of the  divergence, gradient, and curl oper- 
ators based on coordinate invariant definitions and interpret these formulas in terms of curvilinear 
coordinates, such as length of elements of coordinate lines, areas of elements of coordinate surfaces, 
and elementary volumes. 

We introduce the  discrete volume integral of scalar functions, the discrete surface integral, and a 
discrete analog of the line integral and prove discrete versions of the  main theorems relating these 
objects. These theorems include the following: the  discrete analog of relationship d lv  ft. -- 0 if and 
only if .4 = cu r l  B; cu r l  .4 -- 0 if and only if .4 -- grad~o; if .4 = g r a d  ~, then the  line integral does 
not depend on path;  and if the line integral of a vector function is equal to zero for any closed path,  
then this  vector is the  gradient of a scalar function. 

Last, we define the  discrete operators DIV ,  G R A D ,  and C U R L  in terms of primitive differencing 
operators (based on forward and backward differences) and primitive metric operators (related to 
multiplications of discrete functions by length of edges, areas of surfaces, and volumes of 3-D cells). 
These formulations elucidate the s t ructure  of the discrete operators and are useful when investigating 
the  relationships between operators and their  adjoints. 

K e y w o r d s - - F i n i t e - d i f f e r e n c e ,  Logicaily-rectangular grids, Discrete vector analysis. 
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1. I N T R O D U C T I O N  

S o l v i n g  n e w  a n d  c h a l l e n g i n g  p r o b l e m s  w i t h  s t r o n g  non l inea r i t i e s ,  d i s con t inu i t i e s ,  a n d  c o m p l e x  

p h y s i c a l  p roces se s  wil l  r equ i r e  a d v a n c e s  in t h e  q u a l i t y  a n d  r o b u s t n e s s  o f  n u m e r i c a l  a l g o r i t h m s .  

E x p e r i e n c e  has  c o n f i r m e d  t h a t  t h e  bes t  r e su l t s  a re  u s u a l l y  o b t a i n e d  w h e n  t h e  d i s c r e t e  m o d e l  
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preserves the fundamental properties of the original continuum model for the underlying physical 
problem. Robust, realistic algorithms for large-scale simulations are more capable when they are 
based on solid mathematical  theory and when the discrete model maintains many of the important  
properties of the continuum model. These properties include conservation laws, symmetries in 
the solution, and the nondivergence of particular vector fields (they are divergence free). 

Developing discrete algorithms that  capture all the important  characteristics of the physical 
problem is more difficult as mathematical models become more complex to account for additional 
physical processes and more complex domains or boundary conditions. The difficulties will be 
easier to overcome if we are able to derive new discrete algorithms based on a general approach 
that  can be applied to a wide range of physical systems. With this goal in mind, we have developed 
a discrete analog of vector and tensor calculus that  can be used for an accurate approximation 
of continuum models for a wide range of physical processes. 

Most partial differential equations (PDEs) can be formulated in terms of invariant, first-order 
differential operators, such as the divergence of vectors and tensors, the gradient of scalars and 
vectors, and curl of vectors. These first-order differential operators are the main objects of vector 
and tensor analysis and satisfy integral identities that  are closely related to the conservation laws 
of continuum models. We use these coordinate-invariant first-order operators to create high- 
quality finite-difference methods (FDMs) based on discrete analogs of vector and tensor analysis. 

The  discrete analogs of integral identities can be used to construct discrete operators satisfying 
these identities using the support-operator method (SOM) [1-3]. In the SOM, first a discrete 
approximation is defined for a first-order differential operator, such as the divergence or gradient, 
tha t  satisfies the appropriate integral identity, such as Stokes' Theorem. This initial discrete 
operator,  called the prime operator, then supports the construction of other discrete operators, 
using discrete formulations of the identities for differential operators. For example, if the initial 
discretization is defined for the divergence (prime operator), it should satisfy a discrete form 
of Gauss' Theorem. This prime discrete divergence, D I V  is then used to support the derived 
discrete operator  G R A D ;  G R A D  is defined to be the negative adjoint of DIV.  

The SOM FDMs are based on fundamental mathematical principles that  correspond to basic 
physical principles, and these FDMs provide accurate, robust, and stable approximations to 
differential operators on nonuniform structured and unstructured grids. Because the new FDMs 
mimic the invariant properties of continuum differential operators, they require fewer points to 
obtain the same accuracy when compared with many traditional methods. They also lead to a 
deeper understanding FDMs and of which physical laws are of captured by FDMs. 

The properties of the discrete operators, which follow from the construction of FDMs by the 
SOM, can be used to prove convergence theorems for linear and nonlinear problems [4-8], an(] to 
understand the stability of FDMs [9-13], and grids with local refinement [14]. 

Using the local basis system of components for discrete vector fields is considered in [15-18]. 
When solving the heat equation, the vector component of heat flux normal to sides of the (:ells 
is continuous across discontinuities and is the natural vector component to use when discretizing 
the vector field. This approach improves accuracy and is especially useful for problems with 
discontinuous coefficients. For the same reason, in magnetic field diffusion, it is natural to use 
use the normal components of magnetic field and the tangential components of the electric field. 

The SOM has been applied to the equations of magnetic field diffusion [16] and, in particular, 
for anisotropic conductivity [19], Maxwell equations [20], the biharmonic equation [21], and the 
static problems of elasticity [22]. The approximation of the general equations of motion, which 
involve operations on tensor objects, such as the divergence of a tensor and the gradient of vectors, 
is considered in [2,23]; and applications to the equations of gas dynamics in Eulerian form are 
considered in [24]. The SOM is used to construct FDMs in a curvilinear orthogonal coordinate 
system in [25,26]. High-order SOM FDMs are constructed in [27], and the SOM has been used 
to construct finite-difference schemes on triangular grids [9,28], Voronoi grids [12,13,29,30], and 
grids with local refinement [14]. 
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Practical applications of the SOM include simulations of controlled laser fusion [31]; the col- 
lapse of a quasispherical target in a hard cone [32]; the Rayleigh-Taylor instability for incompress- 
ible flows [33]; the compression of a toroidal plasma by a quasispherical liner [34,35]; an over- 
compressed detonation wave in a conic channel [36]; a magnetic field in a spiral band reel [37]; 
the magnetic field of a toroidal spiral with a screen [38]; the flows of a viscous incompressible 
liquid with a free surface [39]; and a microwave plasma generator [40]. 

The main goal of this series of papers is to create a discrete analog of vector analysis for grid 
functions associated with logically rectangular, nonorthogonal, nonsmooth grids. The elements of 
the theory to achieve this goal have a long history on rectangular and orthogonal grids [41-52]. 

Mimetic difference operators, which preserve (mimic) the properties of the differential opera- 
tors, can be investigated using functional analysis. This approach has been successfully applied 
to the study of problems in mathematical physics. For example, the method of orthogonal projec- 
tions forms a considerable part of the theory of generalized solutions [53], and Weil's Theorem on 
orthogonal decomposition plays a fundamental role in solving the Navier-Stokes equations [54]. 
The difference version of Weil's Theorem, formulated in [52] for square grids in 2-D, can be used 
to construct high-quality FDMs for these equations [55]. 

A discrete vector field theory on Delaunay-Voronoi meshes is created in [56] with applications 
in [57,58]. This theory uses the special geometrical property of the Delaunay-Voronoi meshes that 
the sides of Delaunay triangulations are orthogonal to the corresponding sides of the Voronoi 
polygons. The local orthogonality property makes these grids similar to the usual orthogonal 
grids. Another important property of these grids is that vertices of triangles can be also considered 
as "centers" of the Voronoi cells. Unfortunately, the theory created in [56] does not cover some 
very important discretizations of scalar and vectors (see, for example, [59]). 

A theoretical foundation does exist for some mimetic FDMs based on the tools and concepts 
of algebraic topology [41-46,60]. The results from these studies, and history of this approach, are 
summarized in a recently published book [61]. These methods use exterior differential forms to 
represent of the equations in invariant form. In this approach, a logically rectangular grid in the 
plane, used in standard FDMs, is considered as a simplicial complex (in the sense of algebraic 
topology [62], see, for example, [41,46,63,64]). The operators d and $, acting on "functions on the 
complex" and defined by the combinatorial structure, generate difference analogs of the classical 
operators of mathematical physics (such as gradient, divergence, curl, and the Laplacian). 

Applying the algebraic topology to construct the discrete analog of the metric conjuagacy 
operator "*" on nonorthogonal, nonsmooth, logically rectangular grids requires establishing a 
complex set of definitions and mathematical tools. Moreover, this approach is natural for a specific 
discretization of the vector field and cannot be easily used for many widely used discretizations, 
including the usual nodal discretization of the Cartesian components of a vector. 

The language and tools of advanced calculus are more widely known and used for formulat- 
ing the theorems and concepts of vector and tensor analysis than is the language of algebraic 
topology [65]. This is especially true among the applied numerical researchers in the field of 
scientific computing, solving systems of PDEs. Because this community is our primary audience, 
we formulate our discrete vector and tensor analysis without using the language of algebraic 
topology. 

We consider different discrete representations of scalar, vector, and tensor functions on logically 
rectangular grids and define projection operators between different spaces that preserve some 
important properties of the functions. We introduce the discrete analog of the line integral, the 
potential vector, the flux of the vector through a surface, and the circulation of a vector along 
a contour. We construct discrete analogs for the gradient of scalar functions and investigate 
discrete analogs for the directional derivative. We define a discrete analog of the divergence 
operator based on Gauss' Theorem and use Stokes' Theorem to define a discrete curl. We then 
prove discrete versions of the standard theorems of vector analysis (e.g., [65]). 
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After introducing notations related to 2-D logically rectangular grids, we describe cell-valued 
discretization HC, and nodal discretization H N ,  for scalar functions, and give two "natural" 
descriptions of discrete vector fields: by the components normal to faces of the cell :HS, and 
by the components aligned with the edges of the cell :HE. Here, and later names of spaces of 
scalar functions begin with H,  and names of spaces of vector functions begin with :H. These 
components are natural because they correspond to the natural domain and range of values for 
discrete operators. (These choices are also clearly based on algebraic topology and geometry of 
the spaces [61,63,64].) 

Next, we use coordinate invariant definitions to define "natural" discrete analogs of the diver- 
gence, gradient, and curl. The divergence is defined by 

/ 

for 
\ 

div -- lim [ 
dS 

v-~0 V ' (1.1) 

where V is a (:ell volume bounded by surface S and ~ is the outward normal to S. The directional 
derivative in the direction of the unit vector/~ and related component of vector g r a d  u is defined 
by 

( g r a d  u, k ) O u  (1.2) 
- Ok" 

The curl satisfies 

( ~ , c u r l A )  = lim ~ (/~'~) dl 
s--.0 S ' (1.3) 

where ~ is normal to the surface S, spanning the contour l, and l i s  the unit tangential vector to 
this contour. 

The definitions of discrete operators based on these formulas hold in any coordinate system 
because they involve only geometrical quantities such as length, area, and volumes, and use 
only coordinate invariant components of vectors. We will interpret these formulas in terms of 
curvilinear coordinates, such as lengths of the elements of coordinate curves, areas of the elements 
of coordinate surfaces, and elementary volumes. 

These natural discrete operators derived from coordinate invariant definitions (1.1)-(1.3) have 
the following domains and ranges of values 

D I V  : :H,.q --* HC, G R A D  : H N  ---* :HI:, and C U R L  : T//: --~ :HS. (1.4) 

Note that ,  because of the inconsistency in the domains and ranges of these natural operators, 
the compound operators, such as D I V G R A D ,  G R A D  D I V  or C U R L  C U R L ,  cannot be 
constructed. In the next paper, in this series, the discrete analogs of divergence, gradient, and 
curl with following domains and ranges will be constructed 

D I V  : :HE ~ HN,  G R A D  : H C  ~ :H,5, and C U R L  : :HS ~ :HE. (1.5) 

The system of operators (1.4) and (1.5) will allow us to construct all the compound discrete 
operators. 

We introduce the discrete volume integral of scalar functions from HC, the discrete surface 
integral for vector functions from 7-/S, and the discrete analog of the line integral for vector 
functions from 7-//:. 

Next, we prove a discrete Gauss' Theorem; the discrete analog of the theorem that  d iv  A~ -- 0, 
if and only if .4 -- curl /~;  cur l  2~ = 0, if and only if A~ -- g rad~;  the discrete analog of theorem 
that  if A~ -- g r a d  ~, then line integral does not depend on path; and if line integral of some vector 
function is equal to zero for any closed path, then this vector is gradient of some scalar function. 

In last section, we introduce the primitive forward and backward difference operators and 
the primitive metric operator related to multiplications of discrete functions by length of edges, 
areas of faces, and volumes of 3-D cells. The discrete operators DIV,  G R A D ,  and C U R L  are 
expressed in terms of these primitive operators. This formulation helps elucidate the structure of 
the operators and will be useful in future studies, in particular, for investigating adjoint operators. 
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2. D E F I N I T I O N S ,  GRIDS,  A N D  D I S C R E T I Z A T I O N S  

2.1. G r i d  

We index the nodes of a logically rectangular grid using ( i , j ) ,  where 1 < i < M and 1 < j < N 
(see Figure 1). The quadrilateral defined by the nodes ( i , j ) ,  (i + 1,j) ,  (i + 1 , j  + 1), and ( i , j  + 1) 
is called the ( i , j )  cell (see Figure 2). 

(I,N) 
i,N _ Ui.N (M,N) 

J !U.j 
" (M,1) (ld) Ui,1 

(a) 

(1,N) (M,N) 
i ,N Ui, N 

J 

' Ui, l ~ (11410 (1,1) 

(b) 

Figure 1. On a logically rectangular grid, the scalar function values can be either 
ceil-centered (HC), as in (a), or defined at the nodes (HN), as in (b). 

The area of the ( i , j )  cell is denoted by V C i j ,  the length of the side that  connects the vertices 
( i , j )  and ( i , j  + 1) is denoted S~ i j ,  and the length of the side that  connects the vertices ( i , j )  
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( i + l , j + l  ) 

( i,j+ 

S~ i, 1 / VC i, j .. 

/ 

sq.. ( i+l,j ) 
( i,j ) ',: 

Figure 2. The (i, j )  cell in a logically rectangular grid has area VCi,j and sides S~i,j, 
S~i,j, S~i+l,j,  and Srli,j+l. The interior angle between S~?i,j and S~i+l,j is ~o~:~l,j. 

and (i + 1 , j )  is denoted S ~ , j .  The angle between any two adjacent sides of cell ( i , j )  tha t  meet 
at node (k, l) is denoted ~ok, t. 

The parameter  h characterizes the density of the grid 

h = m a x  1' N - 1  " 

We assume the mild smoothness condition that  the cells are convex, and there exists con- 
stants Clmax and Cl in  independent of h such that  

Clmin h 2 <_ VC(i,j) <_ Clmax h 2 , (2.2) 

that  there exists constants C2ma× a n d  C2min, which do not depend on h such that  

2 2 C~nin h < S~(i,j), Srl(~,j) ~ Cma x h, (2.3) 

and that  there exits a constant e > 0 such that  

{. (i,j)'~ (2.4) sin ~W(k,O) > e, 

where e is constant independent of h. 
When we determine discrete differential operators, such as C U R L ,  it is useful to consider a 

grid in 2-D as a projection of a 3-D grid. This approach makes it is easier to later generalize 
FDMs to 3-D and simplifies the notation. In this paper, we consider functions of the coordinates x 
and y, and extend the grid into a third dimension z, when convenient. The extended 3-D mesh 
is constructed by extending a grid line of unit length into the z direction to form a prism with 
unit height and with a 2-D quadrilateral cell as its base (see Figure 3). 

Sometimes it is useful to interpret the grid as being formed by intersections of broken lines 
tha t  approximate the coordinate curves of some underlying eurvilinear coordinate system ((, 77, ~). 
The ~ coordinate corresponds to the grid line where the index i is changing, the rl coordinate 
corresponds to the grid line where the index j is changing, the ~ coordinate corresponds to the 
grid line where the index k is changing (i.e., height of the prism, see Figure 4). 

We denote the length of the edge (i, j ,  k) - (i + 1, j ,  k) by l(i,~,k, the length of the edge (i, j ,  k) - 
( i , j  + 1, k) by b?id,k, and the length of the edge ( i , j ,  k) - ( i , j ,  k + 1) by l¢id,k (which we have 
chosen to be equal to 1). The area of the surface ( i , j ,  k ) - ( i , j + l ,  k ) - ( i , j ,  k + l ) - ( i , j + l ,  k + l )  is 
denoted by S(i , j ,k ,  because it is the analog of the element of the coordinate surface dS~.  Similarly, 
the area of surface ( i, j ,  k) - ( i + 1, j ,  k) - ( i, j ,  k + 1) - (i + 1, j ,  k + 1) is denoted by Srh,j,k. We use 
the notation S~, j , k  for the area of 2-D cell (i, j ) ,  tha t  is, S~i,j,k = VC~,j.  Because the artificially 
constructed 3-D cell is a right prism with unit height, we have 

S~, j , k  = l~, j ,k  • l¢~,j,k = Irl~,3,k (2.5) 
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Z ! ij+l,k+l 

i,j,k+l ~ + 1 j + l , k + l  

~i,j+I,ki.~ 

X 
Figure 3. T h e  2-D (i,j) cell (z = 0) is in terpreted as the  base of a 3-D logically 
cuboid (i,j, k) cell (a prism) wi th  uni t  height. 

i,j,k + ] 

i,j+ I,k 

i,j,~ 
i + l ,j,k 

Figure 4. The (~,~7,~) curvilinear coordinate system is approximated by the i , j ,  
and k piecewise linear grid lines. 

and 

(2.6) 

With this 3-D interpretation, the 2-D notations S~i,j and S~i,j are not ambiguous, because 
the 3-D surface ( i , j ,  k) ,  ( i , j  + 1, k) ,  ( i , j ,  k -4- 1), ( i , j  + 1, k + 1) corresponds to an element of the 
coordinate surface S~, and since the prism has unit height, the length of the side ( i , j )  - ( i , j  + 1) 
is equal to the area of the element of this coordinate surface. 

2 . 2 .  D i s c r e t e  S c a l a r  F u n c t i o n s  

In a cell-centered discretization, the discrete scalar function Uij  is defined in the space H C  and 
is given by its values in the cells (see Figure la),  except at the boundary cells. The t reatment  of the 
boundary conditions requires introducing scalar function values at the centers of the boundary 
segments: U(0j), U(Mj) ,  where j = 1 , . . . , N  - 1 and U(~,0), U(~,N), where i = 1 , . . . , M  - 1. 
In 3-D, the cell-centered scalar functions are defined in the centers of the 3-D prisms, except in 
the boundary cells where they are defined on the boundary faces. The 2-D case can be considered 
a projection of these values onto the 2-D cells and midpoints of the boundary segments. 

In a nodal discretization, the discrete scalar function U~j is defined in the space H N  and 
is given by its values in the nodes (see Figure lb).  The indices vary in the same range as for 
coordinates x~j, Yij. 
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2.3. D i s c r e t e  V e c t o r  F u n c t i o n s  

We will assume that  vectors may have three components, but  in our 2-D analysis, the com- 
ponents depend on only two spatial coordinates, x and y. We consider two different spaces of 
discrete vector functions for our 3-D coordinate system. The 7-/S space (see Figure 5a) where 
the vector components are defined perpendicular to the cell faces, is the natural space when the 
approximations are based on Gauss' divergence theorem. The 7-//: space (see Figure 6a) where 
the vectors are defined tangential to the cell edges, is natural for approximations based on Stoke's 
circulation theorem. 

Z ]~ i,j+l,k+l 

i,j,k+l ~ + l , j + l , k + l  

ws o i 

Y , . ~ ~  

~ + l d + l  k 

i+l,j,k X 
(a) 

\ w s q  ( i+l,j+l ) 

( i , j + y  

WS~.. / , ( • i+l,j 

wsq .. ( i+l,j ) 
( i,j ) l,J 

(b) 

Figure  5. (a) 7-/8 discret izat ion of a vector  in 3-D; (b) 2-D in te rpre ta t ion  of t he  "HS 
discre t iza t ion  of a vector.  

The projection of the 3-D 7"/8 vector discretization space into 2-D, results in the vectors being 
defined perpendicular to the quadrilateral cell sides and in a vertical vector in the cell center (see 
Figure 5b). We use the notation 

WS~(i,j) : i = 1 . . . .  ,M; j = 1 , . . . , N -  1, 

for the vector component at the center of face S~(~,j) (side/~(~,j)); the notation 

W S r l ( ~ , j } : i = l , . . . , M - 1 ;  j = I , . . . , N ,  
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Z t ioj+l,k+l 

i,j,k+l ~ i + l , ] + l , k + l  

Y.-.. i 7 I IJIC ~ ,...~/i,j+I,k~.. I I 

. i+lj, k 
X 

(a) 

A ~ i  i+l,J +l  ) (i,~/.-o'~ 
A L.q i j~ A Eq i + l 'J 

AL[ i,j /~_._ ~ ~- 
( i,j ) ~  A I~ i,j i + l,j  ) 

(b) 

Figure 6. (a) 7-/£: discret izat ion of  vector  in 3-D; (b) 2-D in terpre ta t ion of  t he  7-//'- 
discret izat ion of  a vector.  

for the vector component at the center of face S~?(i,j) (side/~(i,j)); and the notation 

W S Q i d )  : i = 1 , . . . , M -  1; j = 1 , . . . , N -  1, 

for the component at the center of face SQi,j) (2-D cell V~,j). 
The projection of the 3-D T/K: vector discretization space into 2-D results in the vectors be- 

ing defined tangential to the quadrilateral cell sides and in a vertical vector at the nodes (see 
Figure 6b). We use the notation 

WL~(~j)  : i = 1 , . . . , M -  1; j -- 1 , . . . , N ,  

for the component at the center of edge l~(i,j) (in 2-D the same position as for WS~(i, j));  the 
notation 

WL~?(~,j) : i = 1 , . . . , M ;  j = 1 , . . . , N -  1, 

for the component at the center of edge l~(i,j) (in 2-D the same position as for WS~(i,j)); and 
the notation 

WLQ~,j) : i = 1 , . . . , M ;  j = 1 , . . . , N ,  

for the component at the center of edge/((i,j) (in 2-D the position that  corresponds to node (i, j)) .  
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3. D I S C R E T E  A N A L O G S  OF O P E R A T O R S  div, grad, A N D  curl 

3.1. O p e r a t o r  D I V  

As discussed in the Introduction, the coordinate invariant definition of the d iv  operator is 
based on Gauss' divergence theorem 

div  W = lim J~oy (W,  fi) 

% 

dS 
v-~0 V ' (3.1) 

where fi is a unit outward normal to OV. The corresponding natural definition of the discrete 
divergence operator is 

D I V  :7-/8 --~ HC, (3.2) 

and 
( D I V  W)  - 1 (~,~) vc(~,j) { (ws~(~+~'~) s~(~+~,j) - ws~(~,s) s~(~,~)) 

"~- (WSf(i , j+l)  Sf(i,j+l) - WSf( i , j )  Sf(i,j)) } .  

If the grid is smooth, in the sense that  there exists a smooth transformation 

(3.3) 

xi,j = x (~i, f j ) ,  Yij = Y (~i, f j ) ,  (3.4) 

that  maps the uniform grid 
i - 1  j - 1  

~i = M---~- 1' f i -  g - ~ '  

to our original grid, then equation (3.3) can be interpreted in terms of general curvilinear coor- 
dinates (~, 7, ¢ = z). The expression for d iv  in general curvilinear coordinates (using the same 
description of the vector field, as we are using in the discrete case) is 

div~ = ~ b-~ N (IG""11/2 (3.5) 

Here g is the metric tensor, (g,, o) 
g= gcn gn,7 0 . (3.6) 

0 0 1 

G ~  and Gnn are cofactors of g¢~ and gnn, and ~ is the determinant of the matrix. 
The formula for D I V  can be rewritten in a form similar to equation (3.5): 

( D I V  W ) , j  

1 = (VC,,~)IA~AfA¢ *I,[WS¢'+"~(S~'+I'~IAfAO-WS~"J(S~"JlAfAOJa~ (3.7) ( r  -I 

+ [WSrh,j+I (Sf,,j+I/A' A') - WSrh,j (SrI,,,/A' A') ] } 
Af 

where A~, Aft, and A¢ are the arbitrary uniform grid spacings, and are included to clarify the 
formula. 

Comparing equations (3.5) and (3.7) leads to a correspondence between the analytical and 
discrete quantities: 

VC~ z S~,~ 1/2 Sf~,j 
~ A C A n A ( '  1C~1~/2 " A n A ¢ '  IG,7.1 ~ A~A'~' 

o_ (IG~11/2 ws~) ~ [W,..c&+~,.~ (S~+I,j/A n A¢) -- WS&,j (S&,j/An A¢) I 
O~ A~ ' 
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Also, the elementary volume and surface elements of the coordinate surfaces are 

dV = V f ~  d~ d~ d¢, 

dS~ = [G¢~I 1/2 d~d¢, 

and 

dS~? = IGvnl 1/2 d~ d~. 

3.2. O p e r a t o r  G R A D  

For any direction l, given by the unit vector ~, the directional derivative can be defined as 

0-~= g r a d  u, . (3.8) 

For function Uid E H N ,  this relationship leads to coordinate invariant definition of the natural 
discrete gradient operator: 

G R A D  : H N  ---* TlZ.. (3.9) 

The vector G -- G R A D  U is defined as 

G L ~ j  = V i + l ' J  - v i ' j  Vi,j+l - Ui,j GL¢i,j = 0. (3.10) 
l~ij ' GL~, j  - bh,j ' 

These formulas correspond to components of vector g r a d  u, that  are orthogonal projections to 
tangential directions to coordinate curves of the curvilinear coordinate system: 

/ :0u. (3.11) g r a d  u -- g~l 

The correspondence between formulas (3.10) and (3.11) is clear when we recall the identities 

dl~ 1 /2  _112 (3.12) = y ~  , db? = 9,m , 

where dl~ and db? are the elements of arcs of coordinate curves. 

3.3.  O p e r a t o r  C U R L  

The coordinate invariant definition of the cu r l  operator is based on the limit of Stoke's circu- 
lation theorem, 

s--.0 S ' (3.13) 

where S is the surface spanning (based on) the closed curve l, ~ is unit outward normal to S, 
and l'is the unit tangential vector to the curve I. 

To construct a discrete analog of equation (3.13), we first consider S corresponding to  2-D grid 
cell S ~ j , k  = V C i j ;  then the contour l consists of the four edges l~i,j,k, l~i+l,j,k, l~i,j+l,k, and 
l~i j ,  and (/3, l') coincides with BL~ or BL~  on the corresponding edge. For this choice of S, 
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we obtain an approximation for the component of the vector curl /~,  which is the orthogonal 
projection onto the direction perpendicular to surface S(i,j,k. The R S (  component of vector 

- C U R L / ~  has following form: 

RS( i , j  = (BL~i+15 b?i+l,j - B L~?i,j l~i,j ) - ( B L~i,j + I l~i,j + l - B L~i,j l~i,j ) 
S(i, j  

(3.14) 

If we will choose (i, j ,  k) - (i, j + 1, k) - (i, j + 1, k + 1) - (i, j ,  k + 1) as S, and take into account 
that  the integrals over the top and bottom edges cancel because/~ depends only on x and y, we 
get 

RS~i,j  = B L ~ i , j + I  l~i,i+l,k - BL~i,j  l(~,j,k = BL~i,j+I - -  BL~i,j  (3.15) 
S~i,j,k l~i,j 

Similarly for S = [(i,j, k) - (i + 1,j ,  k) - (i + 1,j ,  k + 1) - ( i , j ,  k + 1)], 

RS~i, j  = - BL(i+l, j ,k  l(i+l,j - BL( i , j  l(i,j,k : BL(i+I , j  - BL( i , i  (3.16) 

Combining these three formulas defines all three components of the natural discrete analog of 
the cur l  operator: 

= (RS~,  RS~?, R S ( )  = C U R L / ~ ,  

where 

C U R L  : ~ £  ~ 7-/S. 

In the continuous case, the formulas for these components of the curl ,  in a general curvilinear 
coordinate system are 

1 0 
RS~  = q ~ 077 (BL(v / -~ '~) ,  (3.17) 

1 0 ( B L (  gymS) (3.18) R s ~ -  ~ a~ 

and 

1 1 6 9  O ( B L ~ v / ' ~ ) ]  (3.19) 

The discrete and continuous formulas correspond to each other when we take into account that  
in 2-D, we have 

and 

IG¢¢I = a ¢  g , ,  - g~,, 
Ia, , I  = a~ ,  IG¢¢I = g , , ,  

(3.20) 

(3.21) 

g¢¢ = 1. (3.22) 

l .  P R O P E R T I E S  O F  D I V ,  G R A D ,  A N D  C U R L  

From here on, there will not be any dependence on the k index and it will be dropped from 
the notations. 
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4 ,1 ,  D i s c r e t e  V o l u m e  I n t e g r a l  o f  S c a l a r  F u n c t i o n  U E HC 

In HC, the grid cell is the primitive elementary volume used to construct FDMs; more complex 
regions will be expressed as a union of these primitive volumes. The discrete analog of the volume 
integral 

v u dV 

is expressed as a sum over the primitive cells, 

I (V) = (4.1) 
cells 

where 1) is the union of the primitive (i, j )  cells (discrete volume). 

4.2. D i s c r e t e  Sur face  I n t e g r a l  o f  V e c t o r  F u n c t i o n  .4 E :HS 

In 7-/8, we define the primitive surfaces to be the faces of 3-D cells (that is S~i,j, S~]~j, S ~ j )  
and express more complex connected surfaces as the union of these surfaces. The discrete analogue 
of the surface integral of a vector, or the flux of a vector, through a surface 

where ~ is unit outward normal to the surface S, is expressed as 

E-surfaces ~/-surfaces ~-surfaces 

where S is the union of primitive cell surfaces. 

4.3. D i s c r e t e  G a u s s '  T h e o r e m  

Gauss' Theorem states that  the flux of a vector through any closed surface is equal to the 
volume integral of the divergence, 

~ov (.4,~) dS= /vdiv.4dV. (4.3) 

The discrete Gauss' Theorem for elementary cell volumes follows directly from the definitions of 
DIV,  of the discrete volume integral, and of the discrete flux of vector: 

VC~j I s 

The discrete Gauss' Theorem for an arbitrary discrete volume 1), 

I t 

follows then from the additive property of discrete volume and surface integrals. 
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4.4 .  D I V , 4  = 0 if a n d  o n l y  if ,4 = C U R L / ~  

PROOF that D I V  C U R L  _-- 0. 
The 2-D D I V  operator is defined only for vectors that lie in plane (x,y),  IfV = (WS~, 

WS~7, 0). A direct calculation easily verifies that D I V  C U R L / 3  = 0, when two first compo- 
nents of vector C U R L B  are given by equations (3.15) and (3.16), and the last component is 
zero: 

( D I V  C U R L / 3 ) i  j 

1 
- yci,----j { [RS~+x,~ S~+~,j - RS~,j S~,j] + [RS~,j+~ S~,~+~ - RS~,j SW,j] } 

{ BL¢~, j+I-BL¢~, j  ] _ 1 [BL¢i+Ij+I - - B L ~ + , , j  S{i+,,j - - - ~  S~i,j 
VCi ,  j [ S~+x,j (4.6) 

+ [  B L " + I ' J + I - B L " J + I S ~ ? i , j + I + B L ¢ i + " j - B L " J S ~ ? i , j ] }  
S~i,j+l STh,j 

1 
- VCi ,~  {[BL¢i+I,j+I - BL¢~+I,j - BL~, j+I + BLed,j] 

+ [-BL¢~+I,j+~ + BL¢~,j+I + BL~i+I,j - B L ~ j ] }  = O. 

This property also results from fundamental principles that are clear in the derivations based on 
algebraic topology [63,64]. 

P R o o f  that if D I V  2~ = 0, then A = CURL/~ .  
We first review the proof for the continuous case. For some differentiable vector * with 

Cartesian components Ax and Au, if 

OA, OAu = 0, (4.7) div  A = ~ + Oy 

then we must show that there is a vector/3 = (0,0,B~), such that A =  cur lB;  that is, 

OB, 
A~ = Oy (4.8) 

and 

where f (x )  is an arbitrary function of x. 
using equation (4.7), we have 

or 

OB~ 
Av = Ox " (4.9) 

The general solution of equation (4.8) is 

f: B~(x, y) = Ax (x, fl) dfl + f (x) ,  (4.10) 
o 

Substituting this expression into equation (4.9) and 

OBz 
Ay(x,  y) = Ox fy u OAx(x, ~) (x, ~) dfl - Of 

- o o ~  ~ (~) 
oy 

= Ay(x ,y)  - A~(x,yo) - ~ (x), 

of 
O--x = - A y ( x ,  Yo). 

Substituting the general solution of equation (4.12), 

j~x x 
f (x )  = - A~ (a, Yo) da + const, 

0 

(4.11) 

(4.12) 

(4.13) 
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into (4.10), and taking constant to be zero gives the explicit formula 

B=(z, y) = A=(~, ~) a~ - A~(~, ~o) a~, ( 4 . 1 4 )  
0 0 

and the continuous theorem is proved. 

The proof for the discrete case follows an identical line of reasoning. We will not repeat 
the proof but will present just the final expression for discrete vector/7. If the discrete vector 
.A = (AS~, AS~I, 0) satisfies DIV A = 0, that is, 

(AS~i+I,i S~i+l,j - AS~i j  S~ij)  = - (AS~li,i+I S~Ti,j - AS~lij+~ S~i j )  , (4.15) 

the corresponding discrete vector/3 = (0, 0, BL¢) such that .4 = CURL/~  is defined by 

j - -1  i--1 

SL( i , j  = Z AS~ij ,  S~ij,  - Z AS~i,,1 S~Ti,,1. 
j'=l i'=l 

( 4 . 1 6 )  

To verify that 

( ) B L(i,j +1 - BL(i,j 
ASfiij = ( C U P / ,  B S ~  i,i = S~i,i 

.# i-1 i-1 { ['~~-1""=1 A S ~ i , ,  ' S~ i , J  ' - ~~-i':1 ASlTi', 1 Si]i', 1 ] - [:~'~,'---11 ASl~i,, ' S~i iJ  ' - ~ i , = l  A S l ~ i ' ,  1 SiTit,1] } 
S~i ,j 

note that the second and fourth terms within the braces cancel, and that, the first and third term 
in braces, after division by S~ij, give us desired result. 

To verify that 

AS~i,j = ((CURL/~)S~)ij = - B L(I+ i,j - B L(Ij 
S~i,j 

S~i, j  

-- I . I . .  f [~"~;~1 (AS~I+l i j  S~i-kl,j -- ms~iij S~i,j)], - ASI~,,I S~i,1 ) 
S~Ti,j 

use equation (4.15) to transform the expression in square brackets 

j -1  
Z (AS~i+I,j S~i-bl,j - AS~i,j S~i,j) 

j ' = l  

j -1 
= - E (ASTliJ+I S~hj+l - AS~i,i S~h,j) 

j l= l  

= -AS~i , i  Syi,j + AScii,1 S~i,1. 

(4.17) 

(4.18) 

The desired result follows directly from equations (4.17) and (4.18). 

4.5. C U R L  A~ = 0 if and  only if .4 = G R A D  U 

PROOF that C U R L  G R A D  U = 0. 
In 2-D, the third component of the discrete gradient, defined by equation (3.10), is zero: 

G L (  -- O. Consequently, from equations (3.15) and (3.16), the components RS~ and RS~  of the 
vector/~ = C U R L  G R A D  U are zero, and we have only to consider the R S (  component defined 
by equation (3.14). 

Direct substitution into equation (3.14) proves the result: 

Ui,i+l-Ui,i . . . . .  rr<,,+,.,.,-,-<,,+,,,,,,,+,,,_ ,,,,,,) r<,,+,,,+,-<,,,.,-, 
S¢i j 

[ ( ( v i + l , j + l  - u ~ + l , j )  - ( v , , ~ + l  - v , , j )  - ( u ~ + ~ , j + ~  - u i , j + ~ )  - ( u ~ + ~ , j  - v ~ , j ) ) ]  _ 0 .  

S¢~j 
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PROOF that if C U R L  A = 0, then A = G R A D  U. 
For the space of nodal scalar discrete functions, H N ,  we can naturally define the discrete 

analog of the directional derivative using the unique set of directions given by the directions of 
the edges of cells. At each node, two discrete directional derivatives, 

~U _ Ui+~,j - U~,j 

$1~,j l~,~ 
(4.19) 

and 
6U _ U~,j+I - U~,j 

6lrli,j  l~li,j ' 

coincide with the components of G R A D  U, defined in equation (3.10). 

In the space 7~£, we introduce the discrete analog of line integral, 

(4.20) 

The discrete analog of the line integral is defined naturally in T/Z:, where the vector field is 
described by its orthogonal projections onto the directions of the edges. These projections coincide 
with expression of the integrand in the line integral. In the discrete case, all the possible paths, 
Ldiscrete, a r e  given by a connected combination of the edges; that is, the end of one edge is the 
beginning of next edge (see Figure 7). 

(1,N) 

J 

(1,l) 

l 

(M,N) 

(M,D 

Figure 7. The discrete analog of the line integral starting at the Q) node and ending 
at the I--I node, follows a connected combination of cell edges. 

We will denote the discrete analog of the line integral as 

I L ( A )  = ~ AL~i,jl~i,j + ~ AL~i,jl~i,j ,  (4.21) 
~-edges r/-edges 

where L is the set of edges that determine the discrete path. 

THEOREM. The discrete line integral of  the vector function A~ = G R A D  U over an arbitrary 
connected path is equal to the difference between function values at the first and last nodes of 
the path. 
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The discrete line integral of G R A D  U over one edge of the path is equal to the difference of 
the function values at the ends of this edge. For example, for edge l~i,j, 

Iz~,. j ( G R A D )  = Ui+l,j - Ui,j l~i,j = Ui+l j  - Ui,j. (4.22) 
1~,3 

The complete line integral can be expressed as the sum of the edge integrals. Because the end 
of one edge is the beginning of next edge in the path, all the function values in the sum of these 
pieces cancel, except for the first and last node. Therefore, the value of line integral of GP,_AD U 
does not depend on the path, and in particular, the line integral of G R A D  U over the dosed 
path is zero. | 

The reverse of this theorem is also true. 

THEOREM. I f  the discrete line integral of the vector function A E ~ £  is zero for any closed 
path, then this vector function is the discrete gradient of some scalar function in HN ;  that is, 

= G R A D  U. 

Consider the two paths L and L' that start at the node (io,jo) and end at the node (i , j) .  By 
the condition of the theorem, 

IL[(iodo)-~(~,j)] (A )  IL L'[(i,j)..-*(io,jo)] + (A )  O, (4.23) 

where the notation explicitly indicates the first and last node in each path. When we change the 
direction of the line integral, the sign changes. Hence, 

That is, the line integral is independent of the path from a fixed node node (io,jo), and it can 
be expressed as a single-valued function, 

U(,5) = ILL[(,o,~.o)_.(,,2] ( A ) ,  (4.25) 

where L can be any path connecting nodes (io,jo) and (i , j) .  
Then for the neighboring node (i + 1, j) ,  

U(i+I,j) U(i,j) L L[(io,jo).--*(i,j)] ( A )  = -- I L [ ( i o , j o ) _ , ( i + l , j ) ] ( A ) - I  L = ILi(i , j )_.( i+l, j)  ] ( A ) ,  (4.26) L 

which also does not depend on path. Along the edge l~i,j, 

U, i+ i , j ) -  U( , , j )= I~,,j (,4) = AL~,j  l~,j, (4.27) 

or 
AL~ij  = U(~+ld) - U(~,j) (4.28) 

Similarly, for the edge l~,j, we have 

AL~?i,j = U(~,j+I) - U(~d) (4.29) 
bTi,j 

Hence, 
A =  G R A D U .  (4.30) | 

Also, given the vector function A, we can explicitly construct the scalar function U. Because 
the line integral does not depend on the path, we can define 

i j 

= AL ,, j + (4.31) 
i'=io J'=Jo 

where io and Jo are arbitrary indices. 
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The C U R L / 3 ,  given by equations (3.15), (3.16), and (3.14), can be expressed in terms of line 
integrals over the 3-D grid as 

I L ( ~ I L (B)  
RS~,,j = os¢,,j,k \ B ]  RSrh,j _ osm,j,k . .  RS¢,,j - ILs¢"J'~(/3) (4.32) 

S¢~,3,k ' S~,j,k ' SG,3,k 

The condition C U R L  A = 0, requires 

(x) 0, Ios~,.~.k OSn,,j.k OS¢,,j.~ (A) = 0, (4.33) 

for any (i , j) .  That  is, the line integral of vector fi, for each primitive closed path (each of them 
contains edges which are the base for a face) are zero. Because any closed path can be formed 
by the union of primitive closed paths, the line integral of A over any closed path is zero, and, 
the previous theorem implies A~ = G R A D  U. | 

5.  D I F F E R E N C I N G  I N  T E R M S  O F  P R I M I T I V E  O P E R A T O R S  

5.1. Primit ive Differencing and Metric Operators 

For a better understanding of the structure of the discrete operators G R A D ,  DIV,  and 
C U R L ,  it is useful to introduce them in terms of primitive difference and metric operators. 

We define the primitive forward difference operators by 

(D~ U)~,j = U i + l , j  - U i , j ,  (D~? U)i,j = Ui,j+l - Ui,j, 

and the backward difference operators by 

(5.1) 

(-~ U)i,j = Ui,j - Ui-l,j, ~ ~  U)i,j = Ui,j - Ui,j-l. (5.2) 

Note that  we are being a little vague in these definitions. The function U can have different 
meanings: it can be a scalar function in H C  or H N  or the component of a vector function in 
7-/8 or 7-/£. 

The primitive metric operators correspond to multiplication of scalars by length, area, or 
volume, and can be defined as following diagonal operators 

and 

(L~ U)i,j = l~i,j Ui,j, (L~ U)i,j = lr/i,j Ui,j, (L4 U)i,j = 14i,j Ui,j, 

(S~ U)~,~ = S~, j  U~,j, (ST U)~,j = S~,~ U~,3, (S4 U)~,j = S¢~,j U~,j, 

= vc ,j u,,j, 

(5.3) 
(5.4) 
(5.5) 

(vN (u) ) = V N ,j U ,j. (5.6) 

5.2. Expressions for GRAD, DIV, and CURL in Terms of of Primitive Operators 

We will interpret the vector functions as column vectors. For example, the vector function 
in 7-/S is represented as 

ws |. 
w s ¢ /  

Also, we will form block operators from the previously defined primitive operators. The rules of 
operation for block operators will be the same as the ones for matrices. 
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The operator G R A D ,  given by formula (3.10), can be represented as 

0 L~ -1 " Dr} ' 

the operator DIV can be represented as 

D I V = ( V C ) - I . ( D ~ , D ~ ? ) . ( S ~  O )  
0 S~? ' 

and the operator C U R L  as 

C U R L  --- 3?7 - 1  0 • 0 0 • 

0 S¢ -1 - D ~  D~ 

6. C O N C L U S I O N  

0 
0 Ly 
0 0 L¢ 

We introduced notations for 2-D logically rectangular grids, described both cell-valued and 
nodal discretizations for scalar functions, and constructed the natural discretizations of vector 
fields, using the vector components normal and tangential to the cell boundaries. We then defined 
natural discrete analogs of the divergence, gradient, and curl operators based on coordinate- 
invariant definitions. 

We introduced the discrete volume integral of scalar functions, the discrete surface integral, and 
a discrete analog of the line integral and proved discrete versions of the main theorems relating 
these objects. These theorems include the the discrete analogs of following: 

• div .4 = 0 if and only if .4 = curl/3; 
• curl  A = 0 if and only if .4 = grad~; 
• if .4 = grad  ~, then the line integral does not depend on path; 
• if the line integral of a vector function is equal to zero for any closed path, then this vector 

is the gradient of a scalar function. 

The natural discrete operators alone are not sufficient to construct discrete analogs of the 
second-order operators div grad, grad dlv, and curl curl, because of inconsistencies in domains 
and range of values. In the next paper [66], we will use the support-operators method to construct 
additional discrete analogs of the divergence, gradient, and curl with complementary domains and 
ranges. These new discrete operators are adjoints to the natural operators, and when combined 
with natural operators defined in this paper, allow all the compound operators to be constructed. 
By construction all of these operators satisfy discrete analogs of the integral identities satisfied 
by the differential operators. We will prove that adjoints operators satisfy similar theorems as 
natural operators. 

A P P E N D I X  

F O R M U L A S  F O R  D I S C R E T E  
O P E R A T O R S  O N  R E C T A N G U L A R  G R I D S  

In this appendix, we present formulas for the discrete operators DIV, GRAD,  and C U R L  on a 
nonuniform 2-D, tensor-product, rectangular grid with spatial steps hXi and hY i (see Figure A. 1). 

Ope ra to r  DIV 

At the internal cells (i, j),  where i = 1 , . . . ,  M - 1  and j -- 1 , . . . ,  N -  1, the formula for operator 
DIV is given by 

WS~+I,~ - WS~,3 WS~?~,~+I - WS~,3 
DIV ~,J hXi hYj ' ÷ (A.1) 

which has the stencil shown in Figure A.2. 
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J 

hrj 

hX i 

i 
Figure A.1. Tensor product, rectangular grid. 

WSq i,j+ ] 
( i,j+I ) ~ ( i+I,j+l ) 

WS~ _Jl_ (DTV N)i,j 

~ WSrl ij 
( i,j ) ( i+l,j ) 

WS~ i+ 1,j 

O - -  WS~ ,  0 - -  W~ l ] ,  -Jf- - -  (DIV "~)i,j 
Figure A.2. Stencil for operator DIV. 

Operator GRAD 

The two components of the vector G = GRAD U = (GL~, GL~}), are defined on corresponding 
edges by 

and 

U i + I j - U ~ j  i = l , . . . , M - 1 ,  j = I , . . . , N ,  (A.2) GL~i,j - hXi ' 

U~,j+I  - U~ j  
CLrli,j = hYj ' i = 1 , . . . ,  M, j = 1 , . . . ,  N - 1, (A.3) 

and have the stencils shown in Figure A.3. 

( i j + l  ) 

o - -  U 

GL~ i, j 

V 

( i+Ij+I ) ( ij+I ) ( i+l,j+I ) 

- 

( i+ l , j )  ( i , j )  ( i + l j )  

O-GL~ *- U , C) - GL'Q 

Figure A.3. Stencils for operator GRAD. 
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O p e r a t o r  C U R L  

The three components  of  the vector ]~ = C U R L  B = ]~ = (RS~, RS~7, RS~),  are defined on 
corresponding faces by 

RS~i,j = BLG'j+I - BLG,~ 
hYj , i = 1 , . . . , M ,  j = 1 , . . . , Y -  1, (A.4) 

RSrl~,j = BL(~+I,j - BL( , , j  i = 1 , . . . , M  - 1, j = 1 , . . . , N ,  (A.5) 
hX~ 

and 

RS(i , j  BL~i+t,j  - BL~?ij BL~i,j+I - BL~i,j 
hX ,  hYj i = I , . . . , M - 1 ,  j = I , . . . , N - 1 .  (A.6) 

The stencils for these components are shown on Figure A.4. 

( i,j+l ) ( i+l i+l ) ( i,j+l ) 

t RS~ i,j [ 

( id ) i+ l,j ) ( i,j ) 
+ -- BL~, 0 - RS~ +-BL~ ,  <>- RS 1] 

( i,j+l ) BL~ij+I • ( i + l j + l  ) . 

BLlli'J t +RS~i'J t BLTli+I'J 

0 - BL~, 0- BLll, + - R S~  

( i+ld+l ) 

STI i,j li+l,j ) 

Figure A.4. Stencils for operator CURL. 
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