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1. INTRODUCTION 

Let P,(x) be the Legendre polynomial of degree n normalized so that 
P,( 1) = 1. Let f be a function of bounded variation on [ - 1, 1 ] and 

the nth partial sum of the Fourier-Legendre series off: One has 

%u) = (k + 9 1’ f(t) fw) dt -1 
and 

where 

S,(f;x)=l” f(f)K,(x, t)dt, 
-I 

K&r, t) = ;- 
CO 

(k + $) P/?(x) P/((t) 

or 

n + 1 K,(“G 2) = 2 ( 
R + 1 (xl W) - p, + ,O) R(x) 

x-t I- 
As is well known, the Fourier-Legendre series of a functionf of bounded 

variation on [-1, l] converges at every point x E (-1, 1) to 
WCx + 0) + o-(x - 0)) c see [ 1, The Series of Legendre’s Coeffkients, 
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pp. 388-395; 2; 31). We are interested here in finding an estimate for the rate 
of convergence of the sequence S,(J; X) to +(f(x + 0) + f(x - 0)). Some 
results in that direction were obtained in [4, p, 761 for functions of bounded 
variation which are either continuous or differentiable in a neighborhood of 
the point x. 

The main result of this paper can be stated as follows. 

THEOREM 1. Let f be a function of bounded variation on [- 1, 11. Then, 
forxE(-l,l)andn>2 

IuAx)-W(x+O)+f(x-O))I 

~ 28(1 -x2)-3/2 ’ 
c If (x + 0) - f (x - Oh 

n k=l 
(14 

where 

g,w = f (0 - f (x - 0)9 -l<t<x 

= 0, t=x (1.2) 

=f(t)-f(x+O), x<t<l 

and c(g) is the total variation of g on [a, b]. 

If f is a continuous function of bounded variation the inequality. (1.1) 
becomes 

IS”(f-J) -f(x)1 < 28(1 -nx2)-3’2 q7 v=‘::;:;:(f). 
hi1 

(1.3) 

The right-hand side of (1.1) converges to zero as n + co since continuity 
of g,(t) at t = x implies that 

Results of this type for the Fourier series of a 2n-periodic function of 
bounded variation on [-X, n] were proved in [5]. 

As far as the precision of estimates (1.1) and (1.3) is concerned, we can 
show that (1.3) cannot be improved asymptotically by considering the 
Fourier-Legendre expansion of the function f(x) = Ix Ill2 at x = 0. We have 
for all x E (-1, l), 

f(x) = \xp = 2 g (-q*+’ 
4m + 1 

(4m - 1)(4m + 3) PZm(X) 
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and so, 

Since 
1.3.5.... (2m- 1) 

P**(O)= C-1)” 2 4 6 . . . . . . . (2m) 

it follows that 

1 >+ z - 
m--n+1 

&f2 

1 1 
> - -. 

( ) w fi 

On the other hand, from (1.3) follows that 

Since V;f(f) = c?‘~, we have 

Hence, for the function f(x) = 1 x 11’2 we have 

1 102 

ww 
< I S”(.L 0) -SW G -* 

6 
A look at the proof of Theorem 1 shows that the following more general 
result is true. 

THEOREM 2. Let KJx, t) be a continuous function of two variables on 
[a, b] x [a, b] and let L, be the operator which transforms a function f of 
bounded variation on [a, b] into the function 

Ln(f,x) = jb f(r)K,(x, t) df, x E [a, b]. 
a 
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If; for a fixed x E (a, 6) and n > 1, the kernel K,(x, t) satisJies conditions 

(i) ljXK,(x,r)dr-f 1 <+and ljbK,(x,r)dr--fi <q, 
a x 

(ii) j 

xt(b-x)/n 
IK,(x, 711 d7 < B(x), 

x-(x-a)/n 

(iii> 1 j’ K,(x, z) dr ) < nE(x)t) (a < t < x < b)and 
a 

K,(x, 7) dr 6 nF”i, (a c x < t < 4, 

where A(x), B(x) and C(x) are positive functions on (a, b), then there exists 
a positive number M(f, x), depending only on f and x, such that 

where, as before, 

g,(t) = J-(t) - f(x - Oh a<t<x 

= 0, t=x 

= f(t) - f(x + O), x<t<bb. 

2. LEMMAS 

The proof of Theorem 1 is based on a number of properties of Legendre 
polynomials. These properties are listed and some of them proved in this 
section. 

LEMMA 1. We have 

1’2 (1 -x2)-%-“*, x E (-1, I>, (2.1) 

Ij;P,(t)dt /$ 4* 
(2n + l)(n - 1 )‘I2 ’ 

n 2 2, a,P E [-I, I], (2.2) 

I ’ J&(x, t) dt = 4 - fP,(x) P,, 1(x), 
x 

(24 

I 
x J&(x, t) dt = f + iP,(x) I’,, ,(x). P.4) 
-1 
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Proof of Lemma 1. Most of the properties (2.1)-(2.4) are well known. 
Inequality (2.1) can be found in [4, p. 281 or [6, p. 1631. Inequality (2.2) is a 
consequence of the inequality 

1j.i P”(t)dt 1 < 8 j-?l /dt, 
(2n + 1)(2(n - ,))I’2 0 

which can be found in [4, p. 721. 
As for the proof of (2.3), observe that 

(2n+ l)P,(t>=P:,+,(t)-P:,-,(t) 

and consequently 

1.’ K&x, t) dt = + t 
.X k?O 

(2k + 1) P&x) 1’ Pk(t) dt 
x 

= G + + kt, Pk(X)(Pk+ I@) - pk- &>>i:. 

Since P k+l(l)-Pk-,(l)=O, it follows that 

l-x 1 “, 
“’ K,(x, t) dt = 2 - - 
x 

2 & Pk(X)(Pk+ lcx) - pk- ,(x)> 
k-l 

l-x 1 “, 
= - + T & 2 (Pk-,(X) Pk(X) - ‘Lb) pk+ 1(x)) 

k-1 

l-x 
= --j-- + 20(x) Pi(X) - 2%) p,, ,(x>* 

The proof of formula (2.4) is similar. 

LEMMA 2. ForxE(-l,l)andn>2 

1 
.x+(1-x)/n 
x-(1ix)ln IK,,(x, 4 dt < &T. 

Proof of Lemma 2. Using (2.1) we find that 

(2.5) 

1 K,(x, t)l = + (k + ;) Pk(x) Pk(t) 
k=O 
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and it follows that 

I 
xt(l-x)/n 

IKk 4 dt 
X-Cl txvn 

&+ 
3n xt (1 -x)/n dt 

n $1 -x2)V2 I x-(1+x)/n (1 - f2Y2’ 
P-6) 

To evaluate the integral on the right-hand side of (2.6) suppose first that 
O<x < 1. Then 

I 
x+(1-x)/n dt 
x-(l+x),n (1 - t2y2 = O2 - & 

wherecos8,=x-(l+x)/n,cos8,=x+(l-x)/n.Ifn~2andO~x<l, 
we have cos 8, > - 4, which means that 0 < 0 < 2rc/3. 

To estimate 8, - 8,, observe that by the mean-value theorem, 

cos 8, - cos 8, = (8, - e,) sin r, 

where 0i < c < 8,. 
If 0 ( < < 43 and n > 2 we have 

sin c > sin 8, = (1 - cos eJ/2(i + cos ey 

> ((l-x) (l-+))1’2(l+x)~2 

> -A-. (1 - x2)V2. 
7 

If 7r/3 < l< 2rr/3, we have 

d- sinr,t>-$>-$(l -x2)rj2. 

Consequently, 

2 
- = cos e1 - cos 8, > --+ (1 - x2)1/2(e2 - e,) 
n d- 

or 

e2 - 8, < * (1 -x2)-l/2, 
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Hence 

I 
x+(1-x)/n dt 2\/2 
x-(l+x),n (1 _ t2)l12 G n (1 -x2)Y2, 

and (2.5) follows from this inequality and (2.6) if 0 <x & 1 and 12 > 2. 
If-1 <x<O, 

c x+(l-x)‘n lK,(x, t)l dt =j-‘x’+‘l+‘X”” IK,(- 1x1, t)dt. 
x-(1+x)/n -IX-Cl-IxlKn 

Since K,(-x, t) = K,(x, -t) we have 

I J+(‘-~)‘” IK,(x, t)l dt= (-‘x’+(‘+‘x’Kn IK,,(lxI, -t)l dt 
‘n ‘x-(1 +x)/n 

and (2.5) follows again 

J-I.-(I-lXl)/ 

I 

Ixl+(l-lXl)/fl 
= 

Ixl-(l+lxlYn 
IKn(lxI, t>l dt 

LEMMA 3. For-l<t<x< 1 andn>2. 

I 
K,(x, 7) dr < 

-1 
,,6 q (1 -x2)-1’2 

andfor-l<x<t<landn>2 

1 

K,(x, 7) dr G n(t rx) (1 -x2)-? 

(2.7) 

(2.8) 

Proof of Lemma 3. Since 

n + 1 K,(x, 7) = y-- ( 
p,+ dx) K(7) -p,(x) p,, ,(7) 

x-7 i 

and l/(x - 7) for fixed x E (-1, 1) is an increasing function of 7 on [-I, t], 
-1 < t < x, we find, by the mean-value theorem, that 

I ’ K,(x, 7) dr = 
-1 
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Now, using inequalities (2.1) and (2.2), we get 

I n+l 1 “* 4( 2~) 1’2 
K,(x, r) dz 

< s - 
-1 2 

x-t 
* 2n+ l (n-1)-l’* 

-w (1 -x*)-I/2 

n-t1 8 
<-----*----- 

(n + l)-“‘(n - 1)-I’* 
2 x-t (2n + 1) 

1 
+ (& + 3)n (1 -x2>- ’ 

1 
I/Z 

Since n - 1 > (n + 1)/3 for n > 2, it follows that 

-’ 
I! 

K,(x, t) dt < 2u + JN 
-1 

(.#- t)n (1 -x2)Y2 

and (2.7) follows. 
The proof of (2.8) is similar. 

3. PROOF OF THEOREM 1 

For any fixed x f (- 1, 1) we have 

S(.L x) = j1 f(t) K&G t) dt 
-1 

= j” 
-1 

(f(t) - f(x - 0)) K,(x, t) dt + j’ (J(t) - f(~c + 0)) K&G t> dt 
x 

+ j-(x - 0) jx 
--I 

K,(x, t) dt + f(x + 0) j’ K,(x, t) dt. 
x 

Using (1.2), (2.3) and (2.4), this equality becomes 

&tcf, 4 = 4 (Rx - 0) + f(x + 0)) 

+ i ’ g,(t) K(x, 0 dt - i(ftx + 0) -J-(X - 0)) P,,(x) P, + 1 (x). 
-1 
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Hence 

15 

I S,(f, x> - xm + 0) + f(x - (911 
< 11 .’ &(~>~,(X~ r> dt + :Is(x + 0) -f(x - 011 P,(x) Pn+,(x)l. (3.1) 

-1 

For the second term on the right-hand side of inequality (3.1) we have by 
(2.1) 

ilS(x+O)-f(x-O)/IP,(x)~,,,(x)l~~lf(x+0)--f(x-0)l~1 -x2>-‘. 

Hence, Theorem 1 will be proved if we establish that 

1 f g,(t)K,(x, t) / < 28(1 -nx2)y2 i, V;+;:;;;:(g,) (3.2) 
I 

foralln>2andxE(-1,l). 
To do this we first decompose the integral on the left-hand side of (3.2) in 

three parts, as follows. 

1' g,(t) K,(x, t> df 

--I 

zz 
ii 

.x-(l+x)/n + Cxt(l-x)/n + (1 

j g,(t) K,(x, t) dt 
\J - , Jx-(~+x)/n ‘,+(I-x)/n/ 

= ‘4,t.L x) + B”(f, x) + C,(f, x). 

The evaluation of the middle term is easy in view of 
?E [x-(1 +x)/n,x+(l -x)/n], 

I g&l = I g,(t) - &>I G cl: T:K(gA 

and so 

(3.3) 

Lemma 2. For 

Using Lemma 2, we find that 

(3.4) 
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The evaluations of A”(f, x) and C,(f, x are similar. In the first case let us ) 
denote 

1+x 
y=x- n and 1,(x, t) = 1’ K,(x, r) dr. 

-1 

We have then 

By partial integration 

AtILL 4 = &L(Y) k(x9 Y> - j” &Ax, 4 &,(t). 
-1 

Hence 

Using the fact that 

I gx(Y)l= I g,(Y) - &(X)l G %L) 

and that by Lemma 3, 

IWG 4 < n(xy t) (1 -x*y for --l<t<y<x, 

we find that 

J 
Y 

_ 1 & d(-c’:( gx)) = - & v gx, + Jy vx g,> dt 

-1 (x - t)* ’ 

it follows that 
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Replacing the variable t in the last integral by x - (1 + x)/t we find that 

-x-(1+x)/n 

1 dt 1 n 
-1 

%L) (x _ qZ = - I 1+x, %,+xdgx) dt 

1 n-1 
<- \’ %(l+x,,kk) 1+x kfel 

and so 

In order to evaluate C,(f, x), let z =x + (1 -x)/n and A,(x, t) = 
I: K,(x, T) dr. We have then 

c,(A x) = j’ g,(t) K,(x, 0 dt = - j1 g,(t) a.@ t). L L 
Using partial integration we find that 

UL x> = g,(z) 4,(x, z) + j’ An& 4 &x(t) L 
so that 

I C,(f, xl G I g,(z)1 I4(x, zl + j’ Mxv 91 dV’,k)- 
z 

Since 

I &(ZI = I &(Z> - &(XI G v’;(gA 
and, by Lemma 3, 

IA”k 01 G n(t 6+) (1 -x2)rV2 for x<t<l, 

we find that 

Icn(f,X)l + -x2>-“* (-& vz,(g,) +i’ -&dVx(gx)) . 
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Using partial integration again, we see that 

and the preceding inequalily becomes 

Replacing the variable t in the last integral by x + (1 -x)/t, we find that 

j 

1 dt 1 
’ 

x+(1-x)/n 
‘v’,(gx> @ _ x)2 = - 

1 l-x, 

v; + (1 -x)/f( g,) dt 

1 
n-1 

<- 
\’ ~~+u-x)/k(gx), 

l-x kfz, 

Using this inequality we get 

IC,(J;x)l< n(llTx) (1 -x2)-“* g-1 ~+(‘-x)‘kk) 

<$ (1 -x2)-3/2 2 V;+“-““ygJ. 
k=l 

(3.6) 

Finally, from (3.3), (3.4), (3.5) and (3.6), we obtain 

++(I -x*)-3/2 <- 

ktl 
~:‘~:~:1:k>* 

Inequality (3.2) then follows, since (1 -x*)-l < (1 --x*)-~‘* and 
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