Variations on a theorem by Alan Camina on conjugacy class sizes

Antonio Beltrán a,*, María José Felipe b

a Departamento de Matemáticas, Universidad Jaume I, 12071 Castellón, Spain
b Departamento de Matemática Aplicada and IMPA-UPV, Universidad Politécnica de Valencia, 46022 Valencia, Spain

Received 1 January 2005
Available online 25 August 2005
Communicated by Paul Flavell

Abstract

Let G be a finite group. We extend Alan Camina’s theorem on conjugacy class sizes which asserts that if the conjugacy class sizes of G are exactly $\{1, p^a, q^b, p^aq^b\}$ for two primes p and q, then G is nilpotent. If we assume that G is solvable, we show that when the set of conjugacy class sizes of G is $\{1, m, n, mn\}$ with m and n arbitrary positive integers such that $(m, n) = 1$, then G is nilpotent and $m = p^a$ and $n = q^b$ for two primes p and q.

© 2005 Elsevier Inc. All rights reserved.

1. Introduction

We will assume that any group is finite. It is well known that there is a strong relation between the structure of a group and the sizes of its conjugacy classes and there exist several results studying the solvability or the nilpotence of a group under some arithmetical conditions on its conjugacy class sizes. N. Itô shows in [12] that if the sizes of the conjugacy classes of a group G are $\{1, m\}$, then G is nilpotent, $m = p^a$ for some prime p and $G = P \times A$, with P a Sylow p-subgroup of G and $A \subseteq Z(G)$. There exist other deeper

* Corresponding author.
E-mail addresses: abeltran@mat.uji.es (A. Beltrán), mfelipe@mat.upv.es (M.J. Felipe).

0021-8693/$ – see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2005.06.031
results. For instance, in [13], Itô shows that if the conjugacy class sizes of G are $\{1, n, m\}$, then G is solvable. D. Chillag and M. Herzog prove in [7] that if 4 does not divide any conjugacy class size of G, then G is solvable. Later, A.R. Camina and R.D. Camina gave a proof of that result independent of the Classification of Simple Finite Groups in [5]. On the other hand, A.R. Camina proves in [6] that if the conjugacy class sizes of G are $\{1, p^a, q^b, p^aq^b\}$, with p and q two distinct primes, then G is nilpotent. Notice that the hypotheses of Camina’s theorem imply the solvability of G just by using Burnside’s p^aq^b-theorem.

In the introduction of [6], Camina asserts that it seems extremely likely that a group whose conjugacy class sizes satisfy the following property is solvable: If m and n are the cardinals of two distinct conjugacy classes of G with $m \leq n$, then either m divides n and $(n/m, m) = 1$, or $(m, n) = 1$ and there is a class of size mn. One particular case of this property is when the set of such cardinals is exactly $\{1, n, m, nm\}$ with $(n, m) = 1$, however it seems difficult to prove the solvability of such groups. In this paper, we prove the following.

Theorem A. Let G be a solvable group and suppose that the conjugacy class sizes of G are $\{1, n, m, nm\}$ with $(m, n) = 1$. Then G is nilpotent and $n = p^a$ and $m = q^b$ for some distinct primes p and q.

In order to show Theorem A, we will first prove a particular case which is also an extension of Camina’s theorem. We also present a new proof of it, without making use of some results due to I.M. Isaacs and D.S. Passman in [11] on primitive permutation groups which appeared in the original proof. Such an extension is the following.

Theorem B. Let G be a solvable group and suppose that the conjugacy class sizes of G are $\{1, p^a, n, p^an\}$ with $(p, n) = 1$ and $a \geq 0$. Then G is nilpotent and $n = q^b$ for some prime q.

Recently, there have appeared some papers analyzing the p-structure of p-solvable groups when some arithmetical conditions on the sizes of the conjugacy classes of p'-elements are imposed (see, for instance, [2,3] or [14]). More precisely, in the proofs of Theorems A and B we will use the main result of [3]. We believe that it is remarkable how we use these results related to local information of a group to obtain global information on the structure of the group.

We will denote by x^G the conjugacy class of x in G and we call $|x^G|$ the index of x in G. The rest of the notation is standard.

2. Preliminary results

We will need the following elementary results on conjugacy classes of π-elements where π is an arbitrary set of primes.

Lemma 1. Let G be a π-separable group.
(a) The conjugacy class size of any π'-element of G is a π-number if and only if G has abelian Hall π'-subgroups.

(b) The conjugacy class size of every π-element of G is a π-number if and only if $G = H \times K$, where H and K are a Hall π-subgroup and a π-complement of G, respectively.

Proof. (a) is easy to prove by arguing on induction on the order of G, and (b) is exactly [4, Lemma 8].

We stress that Lemma 1 implies that if G is p-solvable and p does not divide any conjugacy class size, then G has a central Sylow p-subgroup. In fact, the hypothesis of p-solvability is not needed, as the following result shows.

Lemma 2. Let G be a group. A prime p does not divide any conjugacy class size of G if and only if G has a central Sylow p-subgroup.

Proof. See, for instance, [9, Theorem 33.4].

We will use the following result due to N. Itô, which characterizes the structure of those groups which possess only two conjugacy class sizes.

Theorem 3. Suppose that 1 and $m > 1$ are the only lengths of conjugacy classes of a group G. Then $G = P \times A$, where $P \in \text{Syl}_p(G)$ and A is abelian. In particular, then m is a power of p.

Proof. See [9, Theorem 33.6].

The authors obtained in [3] the following generalization of Itô’s theorem for p-regular conjugacy classes in p-solvable groups.

Theorem 4. Suppose that G is a finite p-solvable group and that $\{1, m\}$ are the p-regular conjugacy class sizes of G. Then $m = p^a q^b$, with q a prime distinct from p and $a, b \geq 0$. If $b = 0$ the G has abelian p-complement. If $b \neq 0$, then $G = P Q \times A$, with $P \in \text{Syl}_p(G)$, $Q \in \text{Syl}_q(G)$ and $A \subseteq \mathbb{Z}(G)$. Furthermore, if $a = 0$ then $G = P \times Q \times A$.

Proof. This is exactly [3, Theorem A].

We will also make use of the classic Thompson’s $A \times B$-Lemma.

Proof. See, for instance, [1, 24.2].

We will prove the following result on conjugacy class sizes.
Lemma 6. Suppose that the three smallest non-trivial indices of elements of a group G are $a < b < c$, with $(a, b) = 1$ and $a^2 < c$. Then the set \{ $g \in G$: $|g^G| = 1$ or a \} is a normal subgroup of G.

Proof. Let C_1, C_2, \ldots , C_s be the distinct conjugacy classes of G, and write K_i for the class sum of the elements of C_i. It is well known that

$$K_i K_j = \sum_{r=1}^{s} a_{ijr} K_r$$

where a_{ijr} is a non-negative integer for all $i, j, r = 1, \ldots , s$. In addition, by [8, 87.4], for instance, for $1 \leq i, j, r \leq s$ there exists a non-negative integer l such that

$$a_{ijr} = \frac{|C_j|}{|C_r|} l.$$

Now, assume that C_i and C_j are two classes of size a and notice that

$$a^2 = \sum_{r=1}^{s} a_{ijr} |C_r|.$$

Since $a^2 < c$, this shows that if $|C_r| \geq c$, then $a_{ijr} = 0$. Moreover, if $|C_r| = b$ then $a_{ijr} = al/b$ for some $l \geq 0$, so in particular, b divides l and a divides a_{ijr}. Thus ab must divide $a_{ijr} |C_r|$, which forces $a_{ijr} = 0$. From these facts we deduce that \{ $g \in G$: $|g^G| = 1$ or a \} is a (normal) subgroup of G. \(\Box\)

Notice that if the solvability hypothesis of Theorem A is eliminated, then by Lemma 6, it follows in the thesis of the theorem that G is not simple. Finally, we will use the following result due to A. Camina.

Lemma 7. Let G be a group such that p^a is the highest power of the prime p which divides the index of an element of G. Assume that there is a p-element in G whose index is precisely p^a. Then G has a normal p-complement.

Proof. This is [6, Theorem 1]. \(\Box\)

3. Proof of Theorem B

As we have pointed out in the introduction, we will also give a new proof of Camina’s theorem in the proof of Theorem B.

Proof of Theorem B. The proof has been divided into several steps.

Step 1. If G is p-nilpotent then the theorem is proved.
Suppose that G is p-nilpotent and let H be the normal p-complement of G. For every $x \in H$ we have

If $|x^G| = 1$ or p^a, then $H \subseteq C_G(x)$ and thus $|x^H| = 1$. If $|x^G| = n$ or $p^a n$, then the above equality along with the fact that $|x^H|$ divides $|x^G|$ imply that $|x^H| = n$. Therefore, any conjugacy class of p'-elements of G has size 1 or n, and by Theorem 4, we have that $n = p^a q^b$ for some prime $q \neq p$. Since $(n, p) = 1$, then $n = q^b$ and again by Theorem 4, we conclude that G is nilpotent, so the theorem is proved.

Step 2. We may assume that there are no p'-elements of index p^a. Consequently, there exists some p'-element of index p^a.

If G has a p'-element of index p^a then by Lemma 7, G is p-nilpotent and the theorem is proved by Step 1. In order to see the consequence in this step it is enough to consider the decomposition of any element of index p^a as a product of a p-element by a p'-element.

Step 3. We may assume that there are no p'-elements of index n. Consequently, there exist p-elements of index n.

Suppose that y is a p'-element of index n. Notice that the Sylow p-subgroups of G cannot be central. Thus, we can choose some non-central p-element $x \in C_G(y)$ and then $C_G(xy) = C_G(x) \cap C_G(y)$ and $|C_G(y) : C_G(x) \cap C_G(y)|$ must be equal to 1 or p^a. Hence, any p-element of $C_G(y)$ has index 1 or p^a in $C_G(y)$. By Lemma 1(b), we can write $C_G(y) = P_x \times V_y$, with $P_x \in Syl_p(G)$ and V_y a p'-group. Now, choose H a p'-complement of G such that $V_y \subseteq H$. By Step 2, there exists some p'-element, say t, of index p^a and up to conjugacy we may assume that $H \subseteq C_G(t)$. Therefore, $y \in V_y \subseteq C_G(t)$, so $t \in C_G(y)$ and thus, $t \in V_y$. In particular, $P_y \subseteq C_G(t)$, contradicting the fact that t has index p^a.

The consequence in the statement follows as in the above step.

Step 4. If x is a p-element of index $p^a n$, then $C_G(x) = P_x \times V_x$ with P_x a p-group and V_x an abelian p'-group such that $V_x \not\subseteq Z(G)$. If y is a p'-element of index $p^a n$, then $C_G(y) = P_y \times V_y$ with P_y an abelian p-group such that $P_y \not\subseteq Z(G)$ and V_y a p'-group.

Let x be a p-element of index $p^a n$ and let y be any p'-element of $C_G(x)$. Notice that $C_G(xy) = C_G(x) \cap C_G(y) \subseteq C_G(x)$ and since $p^a n$ is the largest class size of G, then $C_G(xy) = C_G(x)$, so $C_G(x) \subseteq C_G(y)$. This implies that $y \in Z(C_G(x))$, so we can write $C_G(x) = P_x \times V_x$ with P_x a p-group and V_x an abelian p'-group. It remains to show that V_x cannot be central in G.

Suppose that $V_x \subseteq Z(G)$, and notice that then $V_x = Z(G)_{p'}$ and $|G : Z(G)|_{p'} = n$. Choose z a non-central p-element, which must have index n or $p^a n$ by Step 2. In every case, notice that $Z(G)_{p'}$ is a p'-complement of $C_G(z)$. This implies that if we choose any non-central p'-element w of G, then any p-element of $C_G(w)$ must be central in G.

Thus $Z(G)_p$ is a Sylow p-subgroup of $C_G(w)$. Since w has index p^a or $p^a n$, then $|G : Z(G)|_p = p^a$. This yields

$$|G : Z(G)| = |G : Z(G)|_p |G : Z(G)|_{p'} = p^a n,$$

which contradicts the existence in G of elements of index $p^a n$. Thus, the first assertion of the step is proved.

The second part of this step can be proved by reasoning in a similar way with a p'-element of index $p^a n$.

Step 5. $n = q^b$ or $n = q^b r^c$ for some primes q and r distinct from p. Consequently, in the first case we can assume that G is a $\{p, q\}$-group, and in the second one that G is a $\{p, q, r\}$-group.

By Step 2, we can choose a p'-element, say y, of index p^a. Furthermore, if we consider the primary decomposition of y as a product of elements of prime power order, it is immediate that we can assume y to be a q-element for some prime $q \neq p$. Now if we take a q'-element w of $C_G(y)$, we have $C_G(wy) = C_G(w) \cap C_G(y)$ and $|C_G(y) : C_G(w) \cap C_G(y)|$ must be 1 or n. This proves that any q'-element of $C_G(y)$ has index 1 or n in $C_G(y)$, so we can apply Theorem 4 to conclude that $n = q^b r^c$, with $b, c \geq 0$ and r some prime distinct from q and p (since $(n, p) = 1$). Therefore, the first assertion of this step follows. The second assertion follows by applying Lemma 2.

Step 6. If $p^a > n$, then the set

$$L_p := \{ x : x \text{ is } p\text{-element and } |x^G| = 1 \text{ or } n \}$$

is an abelian normal p-subgroup of G. If $p^a < n$, then the set

$$L_{p'} := \{ x : x \text{ is } p'\text{-element and } |x^G| = 1 \text{ or } p^a \}$$

is an abelian normal p'-subgroup of G.

It is enough to apply Lemma 6 to obtain that if $p^a > n$ then the set $W := \{ x : |x^G| = 1 \text{ or } n \}$ is a normal subgroup of G. Analogously, if $p^a < n$, then the set $W' := \{ x : |x^G| = 1 \text{ or } p^a \}$ is a normal subgroup of G.

Now, if x is any element of index n and factorize $x = x_p x_{p'}$, with x_p and $x_{p'}$ a p-element and a p'-element, respectively, it follows that $x_{p'}$ must be central by Step 2, whence $x \in L_p \times Z(G)_{p'}$. Therefore, $W = L_p \times Z(G)_{p'}$ and L_p is also a normal p-subgroup of G. The argument for $L_{p'}$ is similar.

Finally, we see for instance that L_p is abelian, as the argument for $L_{p'}$ is the same. If we take any $y \in L_p$ then $|L_p : C_{L_p}(y)|$ divides $(|L_p|, n) = 1$. Consequently, L_p is abelian.

For the rest of the proof we fix the following notation. If $p^a < n$, we define

$$L_s := \{ x : x \text{ is an } s\text{-element and } |x^G| = 1 \text{ or } p^a \}$$
for any prime s dividing n. Notice that L_s is an abelian normal subgroup of G by Step 6. Moreover, by Step 5, we have $n = q^b$ or $n = q^b r^c$ for two primes q and r distinct from p, so $s \in \{q, r\}$. We are going to distinguish three cases: $p^a > n$, $n = q^b > p^a$ and $n = q^b r^c > p^a$ with $b, c > 0$.

Step 7.

(7.1) If $p^a > n$, then L_p is an abelian normal Sylow p-subgroup of G.

(7.2) If $n = q^b > p^a$, then G is p-nilpotent and the theorem is proved.

(7.3) If $n = q^b r^c > p^a$ with $b, c > 0$ and if $L_s \subseteq Z(G)$ for some $s \in \{q, r\}$ (observe that by Step 2 such a prime s must exist), then L_s is an abelian normal Sylow s-subgroup of G.

(7.1) In order to prove that L_p is a Sylow p-subgroup of G it is enough to show, by taking into account Step 2, that there are no p-elements of index $p^a n$. Suppose that z is a p-element of index $p^a n$ and by Step 4, write $C_G(z) = P_z \times V_z$, with V_z a non-central abelian p'-group and P_z a p-group. If $t \in V_z$, it is clear that $C_G(z) \subseteq C_G(t)$, so in particular $C_{L_p}(z) \subseteq C_{L_p}(t)$. By applying Theorem 5, we get $t \in M := C_G(L_p)$ and therefore, $V_z \subseteq M$. On the other hand, by Step 3, we know that t has index p^a or $p^a n$, so $|C_G(t) : C_G(z)|$ must be equal to 1 or n. This proves that $L_p \subseteq C_G(z)$ and we conclude that L_p centralizes every p-element of index $p^a n$. But on the other hand, any p-element of index n trivially centralizes L_p as it is abelian. Therefore, we conclude that any p-element of G lies in M, whence $|G : M|$ is a p'-number. Furthermore, since $L_p \subseteq M \subseteq C_G(k)$ for any k non-central element of L_p, which has index n, then n must divide $|G : M|$. Now, if we consider the equality

$$|G : M| |M : V_z| = |G : C_G(z)| |C_G(z) : V_z|,$$

then all the properties remarked above imply that V_z is a p-complement of M.

Let x be a p-element of G, which we know lies in M. If x has index 1 or n, then it certainly follows that $x \in Z(M)$. If x has index $p^a n$, then by Step 4, we write $C_G(x) = P_x \times V_x$ with V_x a non-central abelian p'-group and P_x a p-group. As we have seen above, V_x is a p-complement of M, and in particular $V_x \subseteq C_M(x)$ and $|M : C_M(x)|$ is a p-number. Therefore, we have shown that the index of any p-element of M is a p-number. Thus, by applying Lemma 1(b), we can factor $M = P \times T$, where $P \in \text{Syl}_p(G)$ and T is a p'-group, which must be equal to V_x. In particular, P is normal in G. But now, if we choose some non-central $y \in V_x$, then $P \subseteq C_G(y)$, which contradicts Step 3.

(7.2) If $n = q^b > p^a$, we can argue as in case (7.1) to show that L_q is a normal Sylow q-subgroup of G. But in this case we know that G is a $\{p, q\}$-group by Step 5, so G is p-nilpotent and the theorem is proved by Step 1.

(7.3) In this case, by Step 5, G can be assumed to be a $\{p, q, r\}$-group. Moreover, we can assume without loss of generality that the fixed prime s of the statement is, for instance, q and we will prove that L_q is a Sylow q-subgroup of G.

To prove this, since we know that L_q is an abelian normal subgroup of G, it is sufficient to show that G does not possess q-elements of index $p^a n$. Suppose that w is such an
element and write, by Step 4, $C_G(w) = P_w \times V_w$, with V_w a p'-group and P_w a non-central abelian p-group. If $u \in P_w$, it is clear that $C_G(w) \subseteq C_G(u)$, so in particular $CL_q(w) \subseteq C_L_q(u)$. By applying Theorem 5, we get $u \in N \coloneqq C_G(L_q)$. Consequently, L_q centralizes any p-element of $C_G(w)$, that is, $P_w \subseteq N$. On the other hand, if we take some non-central $u \in P_w$, then it has index n or $p^a n$ by Step 2, so $|C_G(u) : C_G(w)|$ must be 1 or p^a. This proves that $L_q \subseteq C_G(w)$ and hence, L_q centralizes every q-element of index $p^a n$. But also, any q-element of index p^a trivially centralizes L_q as it is abelian. Therefore, any q-element of G lies in N, so in particular, $N \subseteq C_G(y)$ for any $y \in L_q$ and p^a divides $|G : N|$. Now, if we consider the equality

$$|G : N||N : P_w| = |G : C_G(w)||C_G(w) : P_w|,$$

then all the above properties imply that $P_w \in Syl_{p}(N)$.

We claim that the index in N of any q-element (which lies in N) is either 1 or a fixed p'-number. Let y be a q-element of G, which we know that has index 1, p^a or $p^a n$. If y has index 1 or p^a, then certainly $y \in Z(N)$ and the claim is proved. Assume then that y has index $p^a n$. As in the above paragraph, we can write $C_G(y) = P_y \times V_y$ with V_y a p'-group and P_y a non-central abelian p-group. However, we have seen that $P_y \in Syl_{p}(N)$, so in particular, $P_y \subseteq C_N(y)$ and $|N : C_N(y)|$ is a p'-number. Let t be a q'-element of $C_G(y)$ and notice that $C_G(yt) = C_G(y) \cap C_G(t) \subseteq C_G(y)$. Hence, $C_G(yt) = C_G(y)$ and $C_G(y) \subseteq C_G(t)$. Therefore, $t \in Z(C_G(y))$ and we may write $C_G(y) = Q_y \times T_y$ with Q_y a q-group and T_y an abelian q'-group, which moreover cannot be central in G since $P_y \subseteq T_y$.

In addition, if we choose any non-central $t \in T_y$, we get $C_G(y) \subseteq C_G(t)$. In particular, $CL_q(y) \subseteq CL_q(t)$, and by Theorem 5, we obtain that $L_q \subseteq C_G(t)$, whence $T_y \subseteq N$. Since we know that any q-element lies in N, we conclude that $C_G(y) \subseteq N$. Now the following equality

$$|G : N||N : C_G(y)| = p^a n,$$

with the fact that p^a divides $|G : N|$, force $|N : C_G(y)|$ to be a fixed p'-number, $m := p^a n / |G : N|$ for every q-element w of index $p^a n$. Thus, the claim of this paragraph is proved.

Now, we will show that any p-element of N has also index 1 or m in N. Let x be a non-central p-element of N. Up to conjugacy, we can assume, for instance, that $x \in P_w$ where $P_w \times V_w$ is the decomposition of $C_G(w)$ and w is a fixed q-element of index $p^a n$, given at the beginning of this case. It is clear that $C_G(w) \subseteq C_G(x)$ and then $|x^G| = n$ or p^a. We also know that $C_G(w) \subseteq N$ by the above paragraph, so $P_w \subseteq C_G(w) \subseteq C_N(x)$. Also, as P_w is a Sylow p-subgroup of N, then $|C_N(x) : C_G(w)|$ is a p'-number. If $|x^G| = n$, then the following equalities

$$|G : N||N : C_N(x)||C_N(x) : C_G(w)| = p^a n = |G : C_G(x)||C_G(x) : C_G(w)|$$

imply that $C_G(w) = C_N(x)$ and $|N : C_N(x)| = m$. In the other case, that is, when $|x^G| = p^a$ then $C_G(w) = C_N(x)$ and $|N : C_N(x)| = m$, as we wanted to prove.
Finally, we will show that any \(\{p, q\} \)-element of \(N \) has also index 1 or \(m \). Let \(x \) be a non-central \(\{p, q\} \)-element of \(N \) and write \(x = x_p x_q \), where \(x_p \) and \(x_q \) are the \(p \)-part and the \(q \)-part of \(x \). We have \(C_G(x) = C_G(x_p) \cap C_G(x_q) \) and we distinguish three possibilities for the index of \(x_q \) in \(G \). If \(x_q \) is central in \(G \), then \(G_G(x) = C_G(x_p) \) and \(C_N(x) = C_N(x_p) \), so \(|x^{N}| = |x_p^{N}| = 1 \) or \(m \) according to the above paragraph. If \(|x_q^{G}| = p^a \) then \(x_q \in L_q \), so \(x_q \in Z(N) \), so \(C_N(x) = C_N(x_p) \) and again by the above paragraph we get \(|x^{N}| = 1 \) or \(m \). Finally, if \(|x_q^{G}| = p^a m \), it follows that \(C_G(x) = C_G(x_q) \) and \(C_N(x) = C_N(x_q) \), so \(|x^{N}| = |x_q^{N}| = 1 \) or \(m \), since we have proved above that all \(q \)-elements in \(N \) also have index 1 or \(m \) in \(N \).

Now we are able to apply Theorem 4 and obtain that \(N = R Q \times A \), with \(R \in \text{Syl}_q(N) \), \(Q \in \text{Syl}_p(G) \) and \(A \) abelian. In particular, the non-central \(p \)-elements of \(N \), which exist because \(P_w \subseteq N \), have index not divisible by \(q \), which is a contradiction with Step 2.

Step 8.

(8.1) If \(p^a > n \), then the \(p \)-complements of \(G \) are abelian.

(8.2) If \(n = q^b r^c > p^a \), with \(b, c > 0 \), then the Sylow \(p \)-subgroups of \(G \) are abelian.

(8.1) Let \(H \) be a \(p \)-complement of \(G \) and assume that it is not abelian. By Lemma 1(a) and Step 3, there exist \(p \)-elements in \(H \) of index \(p^a n \). Let \(w \) be any such element. By Step 4, we write \(C_G(w) = P_w \times V_w \) with \(P_w \) an abelian \(p \)-group such that \(P_w \not\subseteq Z(G) \) and \(V_w \) a \(p \)-group. We will prove that \(V_w \) is abelian too. We may choose a non-central \(p \)-element \(u \in C_G(w) \), which certainly satisfies \(C_G(w) \subseteq C_G(u) \). By (7.1), we know that \(|u^G| = n \), so \(|C_G(u) : C_G(w)| = p^a \). Therefore, \(V_w \) is a \(p \)-Hall subgroup of \(C_G(u) \). On the other hand, if \(v \) is a \(p \)-element of \(C_G(u) \), then \(|C_G(u) : C_G(uv)| = |C_G(u) : C_G(u) \cap C_G(v)| \) is a power of \(p \). Thus, by Lemma 1(b), \(C_G(u) \) has abelian Hall \(p \)-subgroups. So \(V_w \) is abelian as we wanted to show and consequently, \(C_G(w) \) is abelian too.

If \(Z(H) = Z(G) \), then there would not be \(p \)-elements of index \(p^a \), and this yields a contradiction with Step 2. Thus there exist non-central elements in \(Z(H) \). For any such element, say \(y \), note that \(y \in C_G(w) \) and as \(C_G(w) \) is abelian, we have \(C_G(w) \subseteq C_G(y) = C_{L_p}^{(y)} H \). Moreover, since \(L_p \subseteq G \), we have \(C_{L_p}^{(y)} \subseteq C_G(y) \). Since \(H \subseteq C_G(y) \) and \(L_p \) is abelian, it follows that \(T := C_{L_p}^{(y)} \subseteq G \). Furthermore, as \(|C_G(y) : C_G(w)| = n \), it follows that \(T \) is the Sylow \(p \)-subgroup of \(C_G(w) \), so \(T = P_w \) and in particular, \(T \) is not central in \(G \). Notice that we have also proved that \(T \) centralizes any \(p \)-element in \(H \) of index \(p^a n \) and any element in \(Z(H) \).

Now, if we take \(v \in H \) of index \(p^a \), then there exists some \(g \in G \) such that \(H^g \subseteq C_G(v) \), whence \(v^{-1} g^{-1} \in Z(H) \). By the above paragraph, \(T \subseteq C_G(v^{-1} g^{-1}) \) and as \(T \) is normal in \(G \), we get that \(T \) also centralizes \(v \). Then \(T \subseteq C_G(H) \) and as \(L_p \) is abelian, we conclude that \(T \subseteq Z(G) \), a contradiction.

(8.2) In this case, we know that \(G \) is a \(\{p, q, r\} \)-group by Step 5. For one prime in \(\{q, r\} \), say \(q \), we can assume without loss that \(L_q \) is non-central in \(G \), so by (7.3), \(L_q \) is an abelian normal Sylow \(q \)-subgroup of \(G \). If \(L_r \) is also non-central, then \(L_r \) is, again by (7.3), an abelian normal Sylow \(r \)-subgroup of \(G \). Consequently, \(L_p = L_q \times L_r \) would be an abelian normal \(p \)-complement of \(G \), so by Step 1, the theorem is proved. Accordingly, we
may assume that \(L_r \subseteq Z(G) \), that is to assume that every non-central \(r \)-element of \(G \) has index \(p^a n \).

Let \(P \in \text{Syl}_p(G) \) and suppose that \(P \) is not abelian. We will work to get a contradiction. By Step 2, there exist \(p \)-elements of index \(p^a n \). Let \(z \in P \) be any such element. By Step 4, we write \(C_G(z) = P_z \times V_z \), where \(V_z \) is a abelian \(p' \)-group with \(V_z \not\subseteq Z(G) \) and \(P_z \) is a \(p \)-group. Let \(R_0 \) be a Sylow \(r \)-subgroup of \(C_G(z) \) and let \(R_0 \cap R \) where \(R \) is a Sylow \(r \)-subgroup of \(G \). If \(R_0 \) is central, there can be no \(r \)-elements of index \(p^a n \) as \(|R : R_0| = r^e \). But then \(R_0 \) contains \(r \)-elements, say \(w \), of index \(p^a n \). Since \(w \in V_z \), then \(C_G(z) \subseteq C_G(w) \), so \(C_G(w) = C_G(z) \). By applying Step 4, we conclude that \(C_G(z) \) is abelian. This is true for all \(z \in P \) of index \(p^a n \).

On the other hand, notice that there must exist \(p \)-elements in \(Z(P) - Z(G)_p \), otherwise there would not exist \(p \)-elements of index \(n \), a contradiction with Step 3. For any \(x \in Z(P) - Z(G)_p \) and for any \(z \in P \) of index \(p^a n \), we have \(C_G(z) \subseteq C_G(x) \). Since \(L_q \subseteq G \), then \(C_{L_q}(x) \subseteq C_G(x) \) and as \(|C_G(x) : C_G(z)| = p^a \), it follows that \(T := C_{L_q}(x) \) is the Sylow \(q \)-subgroup of \(C_G(z) \) for all \(z \in P \) of index \(p^a n \). Furthermore, we observe that \(T \) does not depend on the choice of \(x \).

Now, let \(R \) be a Sylow \(r \)-subgroup of \(G \) and note that \(G = R P L_q \). Let \(y \) be a non-central element of \(R \), which we know that has index \(p^a n \) by the first paragraph (and this element exists because \(r \) divides \(n \)). Again by Step 4, we write \(C_G(y) = P_y \times V_y \), with \(P_y \) an abelian \(p' \)-group such that \(P_y \not\subseteq Z(G) \) and \(V_y \) a \(p' \)-group. If we take \(k \in P_y \), then \(C_G(y) \subseteq C_G(k) \). We distinguish two possibilities for the index of \(k \). If \(|k^G| = p^a n \), then \(C_G(y) = C_G(k) \) and there exists \(g \in L_q R \) such that \(P_y \subseteq P^g \). Also, by the above paragraph we observe that \(T^g \) must be the Sylow \(q \)-subgroup of \(C_G(k) = C_G(y) \). If \(|k^G| = n \), we may choose \(g \in L_q R \) such that \(P_y \subseteq P^g \subseteq C_G(k) \). Then \(C_{L_q}(k) \) is the Sylow \(q \)-subgroup of \(C_G(k) \) and we know that \(C_{L_q}(k) \) is the Sylow \(q \)-subgroup of \(C_G(u) \) for all \(u \in P^g \) of index \(p^a n \). Hence, \(C_{L_q}(k) = T^g \), for some \(g \in L_q R \). Since \(|C_G(k) : C_G(y)| = p^a \), we have \(T^g \subseteq C_G(y) \). Therefore, we have proved that for any non-central \(y \in R \) there exists some \(g \in L_q R \) such that \(T^g \) is a Sylow \(q \)-subgroup of \(C_G(y) \). This yields

\[
R \subseteq \bigcup_{g \in L_q R} C_{L_q R}(T^g)
\]

and hence,

\[
L_q R = \bigcup_{g \in L_q R} C_{L_q R}(T^g) L_q,
\]

which implies that \(L_q R = C_{L_q R}(T)L_q \) and then \(R \subseteq C_G(T^g) \) for some \(g \in L_q R \). We define \(H := R^{g^{-1}} L_q \) and observe that since \(L_q \) is abelian then \(H \subseteq C_G(T) \).

We will prove now that \(P \subseteq C_G(T) \). We have seen above that \(T \subseteq C_G(z) \) for all \(z \in P \) of index \(p^a n \), so we only have to show that \(T \) also centralizes any element in \(P \) of index \(n \). Let \(x \in P \) such that \(|x^G| = n \). Then there exists some \(g \in H \) such that \(P^g \subseteq C_G(x) \), whence, \(x^{g^{-1}} \in Z(P) \). We know then that \(C_{L_q}(x^{g^{-1}}) \) is a Sylow \(q \)-subgroup of \(C_G(z) \) for all \(z \in P \) of index \(p^a n \) too, so \(T = C_{L_q}(x^{g^{-1}}) \). As \(g \) centralizes \(T \), we obtain \(T = T^g \subseteq C_G(x) \). We conclude that \(P \subseteq C_G(T) \), as required.
The above paragraphs show that $T \subseteq Z(G)$. But now, if y is a non-central element of R of index p^an, then, as we have seen above, there exists some $g \in G$ such that T^g is a central Sylow q-subgroup of $C_G(y)$. As L_q is non-central, we can take some v of index p^a and we have that $C_G(v)$ must contain some Sylow r-subgroup. This contradicts the above assertion.

Step 9 (Conclusion). (9.1) Assume first that $p^a > n$. We claim that each prime divisor s of n satisfies $|G : Z(G)| = n_s$, so we will get $|G : Z(G)|_{p'} = n$. Suppose that this is proved. Let z be an element of index p^an and write $z = z_p'z_{p''}$, with z_p' and $z_{p''}$ the p-part and p'-part of z, respectively. If $z_p \notin Z(G)$, then by Step 7, $|z_p'| = n$ and $Z(G)_{p'}$ is a Hall p'-subgroup of $C_G(z)$, so $z_{p''} \in Z(G)$, which is a contradiction since z has index p^an. If $z_p \in Z(G)$, then $|z_p'| = p^an$, so $z_{p''} \in Z(G)$ and this is a contradiction too.

We will prove the above claim. Let s be a prime divisor of n and let S be a Sylow s-subgroup of G. By applying Brodkey’s theorem (see, for instance, [10, 5.28]) and taking into account Step (8.1), we deduce that there exists some p-element $y \in L_p$ such that $S \cap S' = O_s(G)$. But notice that $[O_s(G), L_p] = 1$ and as the p-complements of G are abelian by (8.1), it follows that $O_s(G) = Z(G)_s$. Furthermore, y cannot be central in L_p, otherwise S would be central in G contradicting the fact that s divides n. Consequently, y must have index n in G. If we choose a p-complement H of G with $S \subseteq H$, then $C_G(y) = L_pC_H(y)$. If w is a p-element of $C_H(y)$, then $w = y^{-1}wy \in S \cap S' = Z(G)_s$. Thus, we deduce that every s-element of $C_G(y)$ lies in $Z(G)$ and hence, $|G : C_G(y)|_s = |G : Z(G)|_s = n_s$, as required.

(9.2) Suppose now that $p^a < n = q^br^c$, with $b, c > 0$. Arguing the same as at the beginning of (8.2), we can assume that L_q is non-central, and thus, L_q is an abelian normal Sylow q-subgroup of G. We can also assume that $L_r \subseteq Z(G)$. Therefore, there exists a non-central r-element in G of index p^an. Take $y \in L_q$ of index p^a and let w be a q'-element of $C_G(y)$. Then $|C_G(y) : C_G(yw)| = |C_G(y) : C_G(y) \cap C_G(w)|$ is equal to 1 or $n = q^br^c$. By applying Theorem 4, we obtain that $C_G(y) = QR \times A$, where Q and R are q and r-Sylow subgroups of G and A is an abelian p-subgroup. By (8.2), the Sylow p-subgroups of G are abelian, so we have $A \subseteq Z(G)$ and as a consequence, $p^a = |G : Z(G)|$. But if we take $g \in G$ an r-element of index p^an, then by Step 4, $C_G(g) = P_g \times V_g$, with P_g a non-central abelian p-subgroup, and this is the final contradiction.

4. Proof of Theorem A

Proof of Theorem A. We will assume, for instance, that $m < n$ and we will denote by π the set of primes dividing n. By Lemma 2, we can assume that the only primes dividing $|G|$ are the primes in π and the prime divisors of m.

Step 1. If G has a normal Hall π-subgroup, then the theorem is proved.

Suppose that H is a normal Hall π-subgroup of G. For every $x \in H$ we have

If $|x^G| = 1$ or m, then $H \subseteq C_G(x)$ and thus $|x^H| = 1$. If $|x^G| = n$ or mn, then the above equality with the fact that $|x^H|$ divides $|x^G|$ imply that $|x^H| = 1$ or m. Therefore, any conjugacy class in H has size 1 or m, so by Theorem 3 we get $m = p^a$ for some prime p. Then we can apply Theorem B to obtain that G is nilpotent and $n = q^b$, so the theorem is proved.

Step 2. We may assume that there are no π-elements of index n and that there are no π'-elements of index m.

Suppose that x is a π-element of index n. By considering the primary decomposition of x we can assume without loss that x is a p-element for some prime $p \in \pi$. Now if y is a π'-element of $C_G(x)$, then $C_G(xy) = C_G(x) \cap C_G(y) \subseteq C_G(x)$ and this forces $|C_G(x) : C_G(x) \cap C_G(y)| = 1$ or m. By applying Theorem 4, we obtain that $m = p^c q^b$, but as $(n, m) = 1$, then $m = q^b$ and G would be nilpotent by applying Theorem B. In this case we have necessarily $n = p^a$ for some $a > 0$.

The second assertion is also true since we can argue symmetrically with m and n.

Step 3. If x is a π-element of index mn, then $C_G(x) = H_x \times K_x$ with H_x a π-group and K_x an abelian π'-group such that $K_x \not\subseteq Z(G)$. Symmetrically, if y is a π'-element of index mn, then $C_G(y) = H_y \times K_y$ with H_y an abelian π-group such that $H_y \not\subseteq Z(G)$ and K_y a π'-group.

This step follows arguing exactly as in Steps 4 and 5 of Theorem B.

Step 4. Write $L_{\pi} := \{x : x$ is π-element and $|x^G| = 1$ or $m\}$. Then L_{π} is an abelian normal π-subgroup of G.

By applying Lemma 6, we obtain that the set $W := \{x : |x^G| = 1$ or $m\}$ is a normal subgroup of G. Now, if x is any element of index m and factorize $x = x_{\pi} x_{\pi'}$, with x_{π} and $x_{\pi'}$ a π-element and a π'-element, respectively, it follows that $x_{\pi'}$ must be central by Step 2, whence $x \in L_{\pi} \times Z(G)_{\pi'}$. Therefore, $W = L_{\pi} \times Z(G)_{\pi'}$ and consequently, L_{π} is a normal π-subgroup of G.

Finally, if we take any $y \in L_{\pi}$ then $|L_{\pi} : C_{L_{\pi}}(y)|$ divides ($|L_{\pi}|, m) = 1$, so L_{π} is abelian.

Step 5. We may assume that $n = q^b r^c$ for some distinct primes q and r.

As a consequence of Step 2, we may choose a π-element, say x, of index m. It is enough to consider the decomposition of any element of index m as a product of a π-element by a π'-element. In addition, if we consider the primary decomposition of x as a product of elements of prime power order, we can assume without loss that x is a q-element for some prime $q \in \pi$. Now if we take a q'-element $w \in C_G(x)$, we have $C_G(wx) = C_G(w) \cap C_G(x)$ and $|C_G(x) : C_G(w) \cap C_G(x)|$ must be 1 or n. This proves that any q'-element of $C_G(x)$ has index 1 or n in $C_G(x)$, so we can apply Theorem 2 to conclude that $n = q^b r^c$, with...
\(b, c \geq 0 \), as wanted. Moreover, we can assume \(b, c > 0 \) by Theorem B. Thus the step is proved.

We have seen that we can assume \(\pi = \{ q, r \} \) and since \(L_\pi \) is abelian we can certainly write \(L_\pi = L_q \times L_r \) where \(L_q \) and \(L_r \) are defined in the same way as \(L_\pi \) but for \(q \) and \(r \)-elements, respectively. Furthermore, as we know that there exist \(\pi \)-elements of index \(m \), we will assume without loss that one of these subgroups, say \(L_q \), is non-central in \(G \).

Step 6. \(L_q \) is a Sylow \(q \)-subgroup of \(G \).

This step can be proved by reasoning in the same way as in (7.3) of the proof of Theorem B.

Step 7. \(G \) has abelian Hall \(\pi' \)-subgroups.

If we take \(K \) a Hall \(\pi' \)-subgroup of \(G \), then \(G = KRL_q \), with \(R \in \text{Syl}_r(G) \) and one can prove, by following the same arguments as in (8.2) of the proof of Theorem B, that \(K \) is abelian.

Step 8 (*Conclusion*). We can get a contradiction if we mimic the proof of (9.2) in Theorem B. □

Acknowledgments

The authors thank the referee for all his/her comments and suggestions. This work was partially supported by grant Fundació Caixa Castellò P1 1A2003-06 and grant MTM2004-06067-C02-02.

References