On the zero-divisor graph of a commutative ring

S. Akbari ${ }^{\text {a,b,* }}$ and A. Mohammadian ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematical Sciences, Sharif University of Technology, P.O. Box 11365-9415, Tehran, Iran
${ }^{\mathrm{b}}$ Institute for Studies in Theoretical Physics and Mathematics, Tehran, Iran
Received 20 March 2003
Communicated by Paul Roberts

Abstract

Let R be a commutative ring and $\Gamma(R)$ be its zero-divisor graph. In this paper it is shown that for any finite commutative ring R, the edge chromatic number of $\Gamma(R)$ is equal to the maximum degree of $\Gamma(R)$, unless $\Gamma(R)$ is a complete graph of odd order. In [D.F. Anderson, A. Frazier, A. Lauve, P.S. Livingston, in: Lecture Notes in Pure and Appl. Math., Vol. 220, Marcel Dekker, New York, 2001, pp. 61-72] it has been proved that if R and S are finite reduced rings which are not fields, then $\Gamma(R) \simeq \Gamma(S)$ if and only if $R \simeq S$. Here we generalize this result and prove that if R is a finite reduced ring which is not isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ or to \mathbb{Z}_{6} and S is a ring such that $\Gamma(R) \simeq \Gamma(S)$, then $R \simeq S$. © 2004 Elsevier Inc. All rights reserved.

Keywords: Zero-divisor graph; Edge coloring; Hamiltonian

Introduction

The concept of zero-divisor graph of a commutative ring was introduced by I. Beck in 1988 [6]. He let all elements of the ring be vertices of the graph and was interested mainly in colorings. In [4], Anderson and Livingston introduced and studied the zero-divisor graph whose vertices are the non-zero zero-divisors. This graph turns out to best exhibit the properties of the set of zero-divisors of a commutative ring. The zero-divisor graph helps us to study the algebraic properties of rings using graph theoretical tools. We can translate some algebraic properties of a ring to graph theory language and then the geometric properties of graphs help us to explore some interesting results in the algebraic structures

[^0]of rings. The zero-divisor graph of a commutative ring has been studied extensively by Anderson, Frazier, Lauve, Levy, Livingston and Shapiro, see [2-4]. The zero-divisor graph concept has recently been extended to non-commutative rings, see [7].

Throughout the paper, all rings are assumed to be commutative with unity $1 \neq 0$. If R is a ring, $Z(R)$ denotes its set of zero-divisors. A ring R is said to be reduced if R has no non-zero nilpotent element. A ring R is said to be decomposable if R can be written as $R_{1} \times R_{2}$, where R_{1} and R_{2} are rings; otherwise R is said to be indecomposable. If X is either an element or a subset of R, then $\operatorname{Ann}(X)$ denotes the annihilator of X in R. For any subset X of R, we define $X^{*}=X \backslash\{0\}$. The zero-divisor graph of R, denoted by $\Gamma(R)$, is a graph with vertex set $Z(R)^{*}$ in which two vertices x and y are adjacent if and only if $x \neq y$ and $x y=0$.

For a graph G, the degree $d(v)$ of a vertex v in G is the number of edges incident to v. We denote the minimum and maximum degree of vertices of G by $\delta(G)$ and $\Delta(G)$, respectively. A graph G is regular if the degrees of all vertices of G are the same. We denote the complete graph with n vertices and complete bipartite graph with two parts of sizes m and n, by K_{n} and $K_{m, n}$, respectively. The complete bipartite graph $K_{1, n}$, is called a star. A Hamiltonian cycle of G is a cycle that contains every vertex of G. A graph is Hamiltonian if it contains a Hamiltonian cycle. A subset X of the vertices of G is called a clique if the induced subgraph on X is a complete graph. A k-vertex coloring of a graph G is an assignment of k colors $\{1, \ldots, k\}$ to the vertices of G such that no two adjacent vertices have the same color. The vertex chromatic number $\chi(G)$ of a graph G, is the minimum k for which G has a k-vertex coloring. A k-edge coloring of a graph G is an assignment of k colors $\{1, \ldots, k\}$ to the edges of G such that no two adjacent edges have the same color. The edge chromatic number $\chi^{\prime}(G)$ of a graph G, is the minimum k for which G has a k-edge coloring. A graph G is said to be critical if G is connected and $\chi^{\prime}(G)=\Delta(G)+1$ and for any edge e of G, we have $\chi^{\prime}(G \backslash\{e\})<\chi^{\prime}(G)$.

Beck in [6] proved several interesting theorems for the vertex chromatic number of a zero-divisor graph. For example, he showed that for any commutative ring R, if R is a direct product of finitely many reduced rings and principal ideal rings, then $\chi(\Gamma(R))$ equals to the size of maximum clique of $\Gamma(R)$. Although Beck used a different graph, his results apply to the current setting. There are many interesting questions about zerodivisor graphs. For instance, Anderson, Frazier, Lauve and Livingston asked in [2]: "For which finite commutative rings R, is $\Gamma(R)$ planar?" In [1] it was proved that if R is a finite local ring such that $\Gamma(R)$ has at least 33 vertices, then $\Gamma(R)$ is not a planar graph.

Results

The vertex chromatic number of zero-divisor graphs has been studied extensively by Beck in [6]. Here we will study the edge chromatic number of zero-divisor graphs and prove that if R is a finite commutative ring, then $\chi^{\prime}(\Gamma(R))=\Delta(\Gamma(R))$, unless $\Gamma(R)$ is a complete graph of odd order.

If G is a graph, clearly in any edge coloring of G, the edges incident with one vertex should be colored with different colors. This observation implies that $\chi^{\prime}(G) \geqslant \Delta(G)$. An important theorem due to Vizing is the following.

Vizing's Theorem [8, p. 16]. If G is a simple graph, then either $\chi^{\prime}(G)=\Delta(G)$ or $\chi^{\prime}(G)=\Delta(G)+1$.

Also the following lemma is a key to our proof.
Vizing's Adjacency Lemma [8, p. 24]. If G is a critical graph, then G has at least $\Delta(G)-\delta(G)+2$ vertices of maximum degree.

Remark 1. We note that if G is a graph and $\chi^{\prime}(G)=\Delta(G)+1$, then there exists a subgraph of G, say G_{1}, such that $\chi^{\prime}\left(G_{1}\right)=\Delta(G)+1$ and for any edge e of G_{1} we have $\chi^{\prime}\left(G_{1} \backslash\{e\}\right)=\Delta(G)$. Clearly G_{1} has a connected subgraph, say H, such that $\chi^{\prime}(H)=\Delta(G)+1$. The graph H is a critical graph with maximum degree $\Delta(G)$. If x is a vertex of H with degree $\Delta(G)$, then by Vizing's Adjacency Lemma, H has at least $\Delta(G)-d_{H}(v)+2$ vertices of degree $\Delta(G)$, for any vertex v which is adjacent to x. Therefore if G is a graph such that for every vertex u of maximum degree there exists an edge $u v$ such that $\Delta(G)-d(v)+2$ is more than the number of vertices with maximum degree in G, then by the above argument and Vizing's Theorem, we have $\chi^{\prime}(G)=\Delta(G)$.

It is not hard to see that if R is an Artinian local ring, then the Jacobson radical of R equals $Z(R)$. Thus $Z(R)$ is a nilpotent ideal and this implies that if R is not a field, then $\operatorname{Ann}(Z(R)) \neq\{0\}$. Moreover, each element of $\operatorname{Ann}(Z(R))^{*}$ is adjacent to each other vertex of $\Gamma(R)$.

Theorem 1. If R is a finite local ring which is not a field, then $\chi^{\prime}(\Gamma(R))=\Delta(\Gamma(R))$, unless $\Gamma(R)$ is a complete graph of odd order.

Proof. Since R is a finite local ring, $\operatorname{Ann}(Z(R)) \neq\{0\}$. If $\Gamma(R)$ is a complete graph, then by [8, Theorem 1.2, p. 12], we are done. Thus suppose that $\Gamma(R)$ is not a complete graph and so $\operatorname{Ann}(Z(R)) \neq Z(R)$. If $x \in Z(R) \backslash \operatorname{Ann}(Z(R))$, then there is an element $a \in Z(R)$ such that $a x \neq 0$. This implies that x is adjacent to no vertices of $a+\operatorname{Ann}(Z(R))$. Therefore $d(x) \leqslant\left|Z(R)^{*}\right|-|\operatorname{Ann}(Z(R))|$. Hence $\Delta(\Gamma(R))-d(x)+2 \geqslant|\operatorname{Ann}(Z(R))|+1$. Clearly, $\operatorname{Ann}(Z(R))^{*}$ is the set of all vertices of maximum degree in $\Gamma(R)$. So, by Remark 1, we have $\chi^{\prime}(\Gamma(R))=\Delta(\Gamma(R))$.

Now using König's Theorem, we show that the previous theorem is true for any finite commutative ring.

König's Theorem [8, p. 11]. For any bipartite graph G, we have $\chi^{\prime}(G)=\Delta(G)$.
Remark 2. Assume that $R=R_{1} \times \cdots \times R_{n}$ is a finite decomposable commutative ring. We note that if $x=\left(x_{1}, \ldots, x_{n}\right)$ has maximum degree in $\Gamma(R)$, then x has exactly one non-zero component, say x_{1}. Now suppose that R_{1} is a local ring. We consider two cases: If R_{1} is a field, then $\Delta(\Gamma(R))=d(x)=\left|R_{2}\right| \cdots\left|R_{n}\right|-1$; If R_{1} is not a field, then we have $x_{1} \in \operatorname{Ann}\left(Z\left(R_{1}\right)\right)^{*}$ and $\Delta(\Gamma(R))=d(x)=\left|Z\left(R_{1}\right)\right|\left|R_{2}\right| \cdots\left|R_{n}\right|-2$.

Theorem 2. If R is a finite decomposable ring, then $\chi^{\prime}(\Gamma(R))=\Delta(\Gamma(R))$.
Proof. It is well known that every commutative Artinian ring is isomorphic to the direct product of finitely many local rings, see [5, p. 90]. Suppose that $R=R_{1} \times \cdots \times R_{n}$, where $n \geqslant 2$ and each R_{i} is a local ring. By Remark 2 , without loss of generality suppose that the non-zero components of the vertices with maximum degree in $\Gamma(R)$ occur in R_{1}, \ldots, R_{k}. First we claim that all of the rings R_{1}, \ldots, R_{k} are fields or none of them are fields. Working towards a contradiction suppose that R_{1} is a field and R_{2} is not a field. Now, every vertex with maximum degree in $R_{1} \times\{0\} \times \cdots \times\{0\}$ has degree $\left|R_{2}\right| \cdots\left|R_{n}\right|-1$ and each vertex with maximum degree in $\{0\} \times R_{2} \times\{0\} \times \cdots \times\{0\}$ has degree $\left|R_{1}\right|\left|Z\left(R_{2}\right)\right|\left|R_{3}\right| \cdots\left|R_{n}\right|-2$. Thus we have $\left|Z\left(R_{2}\right)\right|\left|R_{3}\right| \cdots\left|R_{n}\right|\left(\left|R_{1}\right|-\left|R_{2} / Z\left(R_{2}\right)\right|\right)=1$, a contradiction. Therefore by Remark 2 , for any $i, 1 \leqslant i \leqslant k, \Delta(\Gamma(R))=\left|R_{1}\right| \cdots\left|R_{i-1}\right|\left|Z\left(R_{i}\right)\right|\left|R_{i+1}\right| \cdots\left|R_{n}\right|-\varepsilon$, where $\varepsilon=1$ or 2 . Hence, we have $\left|R_{1} / Z\left(R_{1}\right)\right|=\cdots=\left|R_{k} / Z\left(R_{k}\right)\right|$. Moreover, since for each $j, k+1 \leqslant j \leqslant n$, the degree of any vertex in $\{0\} \times \cdots \times\{0\} \times R_{j} \times\{0\} \times \cdots \times\{0\}$ is less than $\Delta(\Gamma(R))$, we have

$$
\begin{equation*}
\left|R_{j} / Z\left(R_{j}\right)\right| \geqslant\left|R_{1} / Z\left(R_{1}\right)\right| . \tag{*}
\end{equation*}
$$

For any $t, 1 \leqslant t \leqslant n$, suppose that e_{t} is the element whose t th component is one and other components are zero. First, suppose that the rings R_{1}, \ldots, R_{k} are not fields. Then $\Gamma(R)$ has $\sum_{t=1}^{k}\left|\operatorname{Ann}\left(Z\left(R_{t}\right)\right)^{*}\right|$ vertices of maximum degree. Clearly, every vertex of maximum degree in $\Gamma(R)$ is adjacent to at least one of the e_{t} 's. Now for any $i, 1 \leqslant i \leqslant n$, we have

$$
\begin{aligned}
\Delta(\Gamma(R))-d\left(e_{i}\right)+2 \geqslant & \left(\left|R_{1}\right| \cdots\left|R_{i-1}\right|\left|Z\left(R_{i}\right)\right|\left|R_{i+1}\right| \cdots\left|R_{n}\right|-2\right) \\
& \quad-\left(\left|R_{1}\right| \cdots\left|R_{i-1}\right|\left|R_{i+1}\right| \cdots\left|R_{n}\right|-1\right)+2 \\
= & \left|R_{1}\right| \cdots\left|R_{i-1}\right|\left(\left|Z\left(R_{i}\right)\right|-1\right)\left|R_{i+1}\right| \cdots\left|R_{n}\right|+1 \\
> & \sum_{t=1}^{k}\left|\operatorname{Ann}\left(Z\left(R_{t}\right)\right)^{*}\right| .
\end{aligned}
$$

Hence by Remark 1, we conclude that $\chi^{\prime}(\Gamma(R))=\Delta(\Gamma(R))$. Next, suppose that the rings R_{1}, \ldots, R_{k} are fields. Then $\Gamma(R)$ has $\sum_{t=1}^{k}\left|R_{t}^{*}\right|$ vertices of maximum degree. If $n>2$, then every vertex of maximum degree in $\Gamma(R)$ is adjacent to $1-e_{t}$, for some $t, 1 \leqslant t \leqslant k$. Note that in this case $\left|R_{1}\right|=\cdots=\left|R_{k}\right|$ and if we set $\left|R_{1}\right|=a$, then by ($*$) we have $\left|R_{j}\right| \geqslant a$, for any $j, j>k$. Now since $a^{n-1}-a+2>n(a-1)$, for any $i, 1 \leqslant i \leqslant k$, we have

$$
\begin{aligned}
\Delta(\Gamma(R))-d\left(1-e_{i}\right)+2 & =\left(\left|R_{1}\right| \cdots\left|R_{i-1}\right|\left|R_{i+1}\right| \cdots\left|R_{n}\right|-1\right)-\left(\left|R_{i}\right|-1\right)+2 \\
& \geqslant a^{n-1}-a+2>\sum_{t=1}^{k}\left|R_{t}^{*}\right|
\end{aligned}
$$

Thus by Remark 1 , we conclude that $\chi^{\prime}(\Gamma(R))=\Delta(\Gamma(R))$. So assume that $n=2$. If $k=1$ and R_{2} is not a field, then by $(*)$ we have $\left|R_{2}\right| \geqslant 2\left|R_{1}\right|$. Since in this case
any vertex of maximum degree in $\Gamma(R)$ is adjacent to e_{2} and $\Delta(\Gamma(R))-d\left(e_{2}\right)+2=$ $\left(\left|R_{2}\right|-1\right)-\left(\left|R_{1}\right|-1\right)+2>\left|R_{1}^{*}\right|$, by Remark 1, we obtain $\chi^{\prime}(\Gamma(R))=\Delta(\Gamma(R))$. If either $k=1$ and R_{2} is a field or $k=2$, then $\Gamma(R)$ is a complete bipartite graph. Hence, by König's Theorem, we have $\chi^{\prime}(\Gamma(R))=\Delta(\Gamma(R))$ and the proof is complete.

Now we are in a position to assert our main theorem.
Theorem 3. If R is a finite ring, then $\chi^{\prime}(\Gamma(R))=\Delta(\Gamma(R))$, unless $\Gamma(R)$ is a complete graph of odd order.

The question of when $\Gamma(R) \simeq \Gamma(S)$ implies that $R \simeq S$ is very interesting and this question has been investigated in [2] and [3]. In [3] it is shown that for any commutative ring $R, \Gamma(T(R))$ and $\Gamma(R)$ are isomorphic, where $T(R)$ is the ring of fractions of R with respect to the multiplicatively closed subset $R \backslash Z(R)$ of R.

Theorem 4. If R_{1}, \ldots, R_{n} and S_{1}, \ldots, S_{m} are finite local rings, then the following hold:
(i) For $n \geqslant 2, \Gamma\left(R_{1} \times \cdots \times R_{n}\right) \simeq \Gamma\left(S_{1}\right)$ if and only if $n=2$ and either $R_{1} \times R_{2} \simeq$ $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ or $R_{1} \times R_{2} \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{3}$. In the first case either $S_{1} \simeq \mathbb{Z}_{9}$ or $S_{1} \simeq \mathbb{Z}_{3}[x] /\left(x^{2}\right)$ and in the later case S_{1} is isomorphic to one of the rings $\mathbb{Z}_{8}, \mathbb{Z}_{2}[x] /\left(x^{3}\right)$, or $\mathbb{Z}_{4}[x] /\left(2 x, x^{2}-2\right)$.
(ii) For $n, m \geqslant 2, \Gamma\left(R_{1} \times \cdots \times R_{n}\right) \simeq \Gamma\left(S_{1} \times \cdots \times S_{m}\right)$ if and only if $n=m$ and there exists a permutation π over $\{1, \ldots, n\}$ such that for any $i, 1 \leqslant i \leqslant n,\left|R_{i}\right|=\left|S_{\pi(i)}\right|$ and $\Gamma\left(R_{i}\right) \simeq \Gamma\left(S_{\pi(i)}\right)$.

Proof. (i) Since $n \geqslant 2$, we have $\Gamma\left(R_{1} \times \cdots \times R_{n}\right) \simeq \Gamma\left(S_{1}\right)$ is not empty and thus S_{1} is not a field. Since $\Gamma\left(S_{1}\right)$ has a vertex which is adjacent to every other vertex in $\Gamma\left(S_{1}\right)$, by [4, Theorem 2.5], we have $R_{1} \times \cdots \times R_{n} \simeq \mathbb{Z}_{2} \times F$, where F is a finite field. Thus $n=2$. On the other hand, since $\Gamma\left(S_{1}\right) \simeq \Gamma\left(\mathbb{Z}_{2} \times F\right)$ is a star, by [4, Theorem 2.13], we conclude that $\Gamma\left(\mathbb{Z}_{2} \times F\right)$ has fewer than four vertices. Hence $|F| \leqslant 3$, and $F \simeq \mathbb{Z}_{2}$ or \mathbb{Z}_{3}. Now, by [2, Example 2.1(a)], the proof is complete. The other direction of the theorem is proved by direct verification.
(ii) First suppose that $n=m$ and $\left|R_{i}\right|=\left|S_{i}\right|$ and $\Gamma\left(R_{i}\right) \simeq \Gamma\left(S_{i}\right)$ for any i, $1 \leqslant i \leqslant n$. Define the function $f_{i}: R_{i} \rightarrow S_{i}$, by $f_{i}(0)=0$, and f_{i} is a one to one correspondence between $R_{i} \backslash Z\left(R_{i}\right)$ and $S_{i} \backslash Z\left(S_{i}\right)$ and the restriction of f_{i} to $Z\left(R_{i}\right)^{*}$ is a graph isomorphism between $\Gamma\left(R_{i}\right)$ and $\Gamma\left(S_{i}\right)$. Now, it is easy to see that the function $f: \Gamma\left(R_{1} \times \cdots \times R_{n}\right) \rightarrow \Gamma\left(S_{1} \times \cdots \times S_{n}\right)$ defined by $f\left(x_{1}, \ldots, x_{n}\right)=\left(f_{1}\left(x_{1}\right), \ldots, f_{n}\left(x_{n}\right)\right)$ is a graph isomorphism.

Conversely suppose that $f: \Gamma\left(R_{1} \times \cdots \times R_{n}\right) \rightarrow \Gamma\left(S_{1} \times \cdots \times S_{m}\right)$ is a graph isomorphism. By Remark 2, without loss of generality we may assume that $x=$ $(r, 0, \ldots, 0)$ is a vertex with maximum degree in $\Gamma\left(R_{1} \times \cdots \times R_{n}\right)$. Thus $f(x)$ in $\Gamma\left(S_{1} \times \cdots \times S_{m}\right)$ has maximum degree. By applying a permutation, we may assume that $y=f(x)=(s, 0, \ldots, 0)$. Now, we show that $\left|R_{1}\right|=\left|S_{1}\right|$ and $\Gamma\left(R_{1}\right) \simeq \Gamma\left(S_{1}\right)$. First assume that $R_{1} \simeq \mathbb{Z}_{2}$. Toward a contradiction, suppose that S_{1} is not isomorphic to \mathbb{Z}_{2}. If $\mathcal{B}=\left(S_{1} \backslash\left(Z\left(S_{1}\right) \cup\{s\}\right)\right) \times\{0\} \times \cdots \times\{0\}$, then every vertex in \mathcal{B} has maximum degree
among all vertices in $\Gamma\left(S_{1} \times \cdots \times S_{m}\right)$ which are not adjacent to y. But among all vertices of $\Gamma\left(R_{1} \times \cdots \times R_{n}\right)$ which are not adjacent to x, those vertices having maximum degree are those whose first components are one and have just one non-zero component other than their first components. For instance, assume that $(1, t, 0, \ldots, 0)$ is one of these vertices. We know that $d((1, t, 0, \ldots, 0))=\left|Z\left(R_{2}\right)\right|\left|R_{3}\right| \cdots\left|R_{n}\right|-1$ and the degree of each vertex in \mathcal{B} is $\left|S_{2}\right| \cdots\left|S_{m}\right|-1$. This implies that $\left|Z\left(R_{2}\right)\right|\left|R_{3}\right| \cdots\left|R_{n}\right|=\left|S_{2}\right| \cdots\left|S_{m}\right|$. Also, we have $d(x)=\left|R_{2}\right| \cdots\left|R_{n}\right|-1$. If S_{1} is a field, then we have $d(y)=\left|S_{2}\right| \cdots\left|S_{m}\right|-1$. It follows that $\left|R_{2}\right| \cdots\left|R_{n}\right|-1=\left|S_{2}\right| \cdots\left|S_{m}\right|-1$. Therefore $\left|R_{2}\right|=\left|Z\left(R_{2}\right)\right|$, which is a contradiction. Thus we conclude that S_{1} is not a field. Hence we find that $d(y)=$ $\left|Z\left(S_{1}\right)\right|\left|S_{2}\right| \cdots\left|S_{m}\right|-2$. This yields $\left|R_{2}\right| \cdots\left|R_{n}\right|-1=\left|Z\left(S_{1}\right)\right|\left|S_{2}\right| \cdots\left|S_{m}\right|-2$, hence $\left|Z\left(R_{2}\right)\right|\left|R_{3}\right| \cdots\left|R_{n}\right|\left(\left|Z\left(S_{1}\right)\right|-\left|R_{2} / Z\left(R_{2}\right)\right|\right)=1$. Therefore $n=2$ and $\left|Z\left(R_{2}\right)\right|=1$. It follows that R_{2} is a field. Thus x is adjacent to the all vertices of $\Gamma\left(R_{1} \times \cdots \times R_{n}\right)$ and since $\mathcal{B} \neq \varnothing$, it is a contradiction. So $S_{1} \simeq \mathbb{Z}_{2}$ and in this case the assertion is proved.

Thus we may assume that neither R_{1} nor S_{1} is isomorphic to \mathbb{Z}_{2}. If $\mathcal{A}=\left(R_{1} \backslash\left(Z\left(R_{1}\right) \cup\right.\right.$ $\{r\})) \times\{0\} \times \cdots \times\{0\}$, then every vertex in \mathcal{A} has maximum degree among all vertices in $\Gamma\left(R_{1} \times \cdots \times R_{n}\right)$ which are not adjacent to x. The degree of any vertex in \mathcal{A} is equal to $\left|R_{2}\right| \cdots\left|R_{n}\right|-1$. Also, since $S_{1} \nsucceq \mathbb{Z}_{2}, \mathcal{B}$ is the set of all vertices in $\Gamma\left(S_{1} \times \cdots \times S_{m}\right)$ with maximum degree among the all vertices which are not adjacent to y. Since the degree of each vertex in \mathcal{B} is $\left|S_{2}\right| \cdots\left|S_{m}\right|-1$, we should have $\left|R_{2}\right| \cdots\left|R_{n}\right|-1=\left|S_{2}\right| \cdots\left|S_{m}\right|-1$.

If R_{1} is a field and S_{1} is not a field, as we saw in the previous case, we have $d(x)=$ $\left|R_{2}\right| \cdots\left|R_{n}\right|-1$ and $d(y)=\left|Z\left(S_{1}\right)\right|\left|S_{2}\right| \cdots\left|S_{m}\right|-2$, hence $\left|R_{2}\right| \cdots\left|R_{n}\right|\left(\left|Z\left(S_{1}\right)\right|-1\right)=1$, a contradiction. Thus both R_{1} and S_{1} are fields or none of them are fields. First suppose that R_{1} and S_{1} are fields. Now, we know that $|\mathcal{A}|=\left|R_{1}\right|-2$ and $|\mathcal{B}|=\left|S_{1}\right|-2$ are equal. This implies that $\left|R_{1}\right|=\left|S_{1}\right|$. Since in this case $\Gamma\left(R_{1}\right)$ and $\Gamma\left(S_{1}\right)$ are empty, there is nothing to prove.

So, suppose that R_{1} and S_{1} are not fields. Hence $d(x)=\left|Z\left(R_{1}\right)\right|\left|R_{2}\right| \cdots\left|R_{n}\right|-2$ and $d(y)=\left|Z\left(S_{1}\right)\right|\left|S_{2}\right| \cdots\left|S_{m}\right|-2$. This implies that $\left|Z\left(R_{1}\right)\right|\left|R_{2}\right| \cdots\left|R_{n}\right|=\left|Z\left(S_{1}\right)\right|\left|S_{2}\right| \cdots$ $\left|S_{m}\right|$ and so we obtain $\left|Z\left(R_{1}\right)\right|=\left|Z\left(S_{1}\right)\right|$. Now, we know that $|\mathcal{A}|=\left|R_{1}\right|-\left|Z\left(R_{1}\right)\right|$ and $|\mathcal{B}|=\left|S_{1}\right|-\left|Z\left(S_{1}\right)\right|$ are equal, hence $\left|R_{1}\right|=\left|S_{1}\right|$. Clearly, the restriction of f to \mathcal{A} is a one to one correspondence between \mathcal{A} and \mathcal{B}. So we may assume that $f(1,0, \ldots, 0)=$ $(u, 0, \ldots, 0)$, where $u \in S_{1} \backslash Z\left(S_{1}\right)$. If $a \in Z\left(R_{1}\right)$ and $f(a, 0, \ldots, 0)=\left(b_{1}, \ldots, b_{m}\right)$, we show that $b_{2}=\cdots=b_{m}=0$. Since every vertex adjacent to $(1,0, \ldots, 0)$ in $\Gamma\left(R_{1} \times\right.$ $\cdots \times R_{n}$) is adjacent to ($a, 0, \ldots, 0$), every vertex adjacent to ($u, 0, \ldots, 0$) is adjacent to $\left(b_{1}, \ldots, b_{m}\right)$. Since, for any $i, 2 \leqslant i \leqslant m$, the vertices e_{i} are adjacent to $(u, 0, \ldots, 0)$, we have $b_{2}=\cdots=b_{m}=0$, where e_{i} is the element whose i th component is one and other components are zero. Thus $b_{1} \neq 0$. This implies that the function $f_{1}: \Gamma\left(R_{1}\right) \rightarrow \Gamma\left(S_{1}\right)$ defined by $a \rightarrow f(a, 0, \ldots, 0)=(b, 0, \ldots, 0) \rightarrow b$ is a graph isomorphism, and thus $\Gamma\left(R_{1}\right) \simeq \Gamma\left(S_{1}\right)$.

If $\left(0, a_{2}, \ldots, a_{n}\right)$ is non-zero, then $f\left(0, a_{2}, \ldots, a_{n}\right)$ is adjacent to $(u, 0, \ldots, 0)$. So, we may write $f\left(0, a_{2}, \ldots, a_{n}\right)=\left(0, b_{2}, \ldots, b_{m}\right)$. Now, we show that the function $f^{\prime}: \Gamma\left(R_{2} \times \cdots \times R_{n}\right) \rightarrow \Gamma\left(S_{2} \times \cdots \times S_{m}\right)$ defined by $\left(a_{2}, \ldots, a_{n}\right) \rightarrow f\left(0, a_{2}, \ldots, a_{n}\right)=$ $\left(0, b_{2}, \ldots, b_{m}\right) \rightarrow\left(b_{2}, \ldots, b_{m}\right)$ is well-defined. Indeed, if $\left(a_{2}, \ldots, a_{n}\right)$ is a vertex in $\Gamma\left(R_{2} \times \cdots \times R_{n}\right)$, then there exists an index $i, 2 \leqslant i \leqslant m$, such that b_{i} is a zero-divisor. The reason is that otherwise $d\left(\left(0, b_{2}, \ldots, b_{m}\right)\right)=\left|S_{1}\right|-1$ whereas $d\left(\left(0, a_{2}, \ldots, a_{n}\right)\right)>$ $\left|R_{1}\right|-1$, because at least one of the a_{i} 's is zero-divisor. Clearly f^{\prime} is a graph isomorphism
and therefore $\Gamma\left(R_{2} \times \cdots \times R_{n}\right) \simeq \Gamma\left(S_{2} \times \cdots \times S_{m}\right)$. If $n, m \geqslant 3$, we repeat this procedure. Suppose that $n>m$. Thus, by rearrangement, we may assume that $\Gamma\left(R_{m} \times \cdots \times R_{n}\right) \simeq$ $\Gamma\left(S_{m}\right)$. By part (i), we have $R_{m} \times \cdots \times R_{n} \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ or $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$ and $\left|S_{m}\right|=8$ or 9 . Hence $n=m+1$. Since $\{0\} \times \cdots \times\{0\} \times R_{m} \times\{0\}$ contains a vertex of maximum degree in $\Gamma\left(R_{1} \times \cdots \times R_{n}\right)$, by Remark 2, we have $R_{1} \simeq \cdots \simeq R_{m-1} \simeq \mathbb{Z}_{2}$. This implies that $S_{1} \simeq \cdots \simeq S_{m-1} \simeq \mathbb{Z}_{2}$. Now, we have $\Delta\left(\Gamma\left(R_{1} \times \cdots \times R_{n}\right)\right)=2^{n-1}-1$ or $3 \cdot 2^{n-2}-1$ and $\Delta\left(\Gamma\left(S_{1} \times \cdots \times S_{m}\right)\right)=2^{m-2}\left|S_{m}\right|-1$. Thus $\left|S_{m}\right|=4$ or 6 , a contradiction. Hence $n=m$. So, by repeating the above proof and rearrangement, we have $\Gamma\left(R_{i}\right) \simeq \Gamma\left(S_{i}\right)$ for any $i, 1 \leqslant i \leqslant n$, and $\left|R_{i}\right|=\left|S_{i}\right|$ for any $i, 1 \leqslant i \leqslant n-1$. Now, since $\Gamma\left(R_{1} \times \cdots \times R_{n}\right)$ and $\Gamma\left(S_{1} \times \cdots \times S_{n}\right)$ have the same maximum degree we conclude that $\left|R_{n}\right|=\left|S_{n}\right|$ and the proof is complete.

Recently Anderson, Frazier, Lauve, and Livingston in [2] have proved that if R and S are finite reduced rings which are not fields, then $\Gamma(R) \simeq \Gamma(S)$ if and only if $R \simeq S$. In what follows we generalize this result. Indeed we show that if one of the two rings is reduced the assertion remains true.

Theorem 5. Let R be a finite reduced ring and S be a ring such that S is not an integral domain. If $\Gamma(R) \simeq \Gamma(S)$, then $R \simeq S$, unless $R \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{2}, \mathbb{Z}_{6}$ and S is a local ring.

Proof. Since $\Gamma(S)$ is finite, by [4, Theorem 2.2], we have S is finite. Since $\Gamma(R)$ is not empty, R is not a field. Thus by [5, Theorem 8.7, p. 90] we may write $R \simeq F_{1} \times \cdots \times F_{n}$ and $S \simeq S_{1} \times \cdots \times S_{m}$, where $n \geqslant 2$ and F_{i} 's are finite fields and S_{i} 's are finite local rings. If $m=1$, by part (i) of the previous theorem, $n=2$ and $R \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ or $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$. So, suppose that $n, m \geqslant 2$. Now, by part (ii) of the previous theorem, we have $n=m$ and there exists a permutation π over $\{1, \ldots, n\}$ such that $\Gamma\left(S_{i}\right) \simeq \Gamma\left(F_{\pi(i)}\right)$ and $\left|S_{i}\right|=\left|F_{\pi(i)}\right|$. Since the F_{i} 's are finite fields, $S_{i} \simeq F_{\pi(i)}$ for any $i, 1 \leqslant i \leqslant n$. Thus $R \simeq S$ and the proof is complete.

Now we want to characterize all regular graphs which can be the zero-divisor graph of a commutative ring. The following theorem shows that any infinite zero-divisor graph has a vertex with infinite degree.

Theorem 6. If R is a ring such that R is not an integral domain and every vertex of $\Gamma(R)$ has finite degree, then R is a finite ring.

Proof. Suppose R is an infinite ring. Let x and y be non-zero elements of R such that $x y=0$. Then $y R^{*} \subseteq \operatorname{Ann}(x)$. If $y R^{*}$ is infinite, then x has infinite degree in $\Gamma(R)$. If $y R^{*}$ is finite, there exists an infinite subset A of R^{*} such that if $a_{1}, a_{2} \in A$, then $y a_{1}=y a_{2}$. If a_{0} is a fixed element of A, then $\left\{a_{0}-a \mid a \in A\right\}$ is an infinite subset of $\operatorname{Ann}(y)$ and so y has infinite degree in $\Gamma(R)$, a contradiction.

Theorem 7. Let R be a finite ring. If $\Gamma(R)$ is a regular graph, then it is either a complete graph or a complete bipartite graph.

Proof. Assume that $\Gamma(R)$ is a regular graph of degree r. First we assume that $R=$ $R_{1} \times R_{2}$ is a decomposable ring. Since the degree of $(1,0)$ is $\left|R_{2}\right|-1$ and the degree of $(0,1)$ is $\left|R_{1}\right|-1$, we have $\left|R_{1}\right|=\left|R_{2}\right|=r+1$. We show that R_{1} is a field. If not, then there exist two non-zero elements a and b in R_{1} such that $a b=0$. But $\left(\{0\} \times R_{2}\right) \cup\{(b, 1)\} \subseteq \operatorname{Ann}((a, 0))$ and it follows that $d((a, 0)) \geqslant r+1$, a contradiction. Similarly, R_{2} must be a field. So in this case, $\Gamma(R) \simeq K_{r, r}$. Now, suppose that R is an indecomposable ring. By [5, Theorem 8.7, p. 90], R is a local ring and $Z(R)$ is a nilpotent ideal. Thus $\operatorname{Ann}(Z(R)) \neq\{0\}$ and since $\Gamma(R)$ is a regular graph, we conclude that $\Gamma(R)$ is a complete graph.

In the sequel we determine a family of commutative rings whose zero-divisor graphs are Hamiltonian.

Theorem 8. Let R be a finite decomposable ring. If $\Gamma(R)$ is a Hamiltonian graph, then $\Gamma(R) \simeq K_{n, n}$, for some natural number n.

Proof. Since R is a decomposable ring, we may write $R=R_{1} \times R_{2}$. Clearly, it suffices to show that R_{1} and R_{2} are fields. Suppose that $Z\left(R_{1}\right) \neq\{0\}$. Put $\mathcal{A}=Z\left(R_{1}\right)^{*} \times\left(R_{2} \backslash Z\left(R_{2}\right)\right)$ and $\mathcal{B}=Z\left(R_{1}\right)^{*} \times\{0\}$. We note that \mathcal{B} is the set of all vertices adjacent to at least one vertex of \mathcal{A}, and that there are no edges between the vertices of \mathcal{A}. Now, it is easy to see that a Hamiltonian cycle in $\Gamma(R)$ contains a matching between \mathcal{A} and \mathcal{B} which includes all vertices of \mathcal{A}. Hence $|\mathcal{A}| \leqslant|\mathcal{B}|$ and this implies that $\left|R_{2} \backslash Z\left(R_{2}\right)\right| \leqslant 1$. Because a commutative Artinian ring is a finite direct product of local rings, and since the only non-zero-divisor element of R_{2} is the identity, R_{2} must be a finite direct product of \mathbb{Z}_{2} 's. Let x be that element of R_{2} whose first component is zero and other components are one. So $(1, x)$ is a vertex of degree 1 in $\Gamma(R)$, which is impossible. Thus R_{1} and similarly R_{2} are fields and the proof is complete.

Theorem 9. Let R be a finite principal ideal ring. If $\Gamma(R)$ is a Hamiltonian graph, then it is either a complete graph or a complete bipartite graph.

Proof. If R is a decomposable ring, then by the previous theorem, $\Gamma(R)$ is a complete bipartite graph. Hence suppose R is an indecomposable ring. Now by [5, Theorem 8.7, p. 90], R is a local ring and $Z(R)$ is a principal ideal. Let $Z(R)=R x$. If $\operatorname{Ann}(x) \neq Z(R)$, then $x \notin \operatorname{Ann}(x)$. Since $\operatorname{Ann}(x)=\operatorname{Ann}(Z(R))$, the vertices of $x+\operatorname{Ann}(x)$ are adjacent to all vertices of $\operatorname{Ann}(x)^{*}$ and not adjacent to any other vertex. Now, along a Hamiltonian cycle, when we leave a vertex of $x+\operatorname{Ann}(x)$ we reach a vertex of $\operatorname{Ann}(x)^{*}$, but this is impossible, since $\left|\operatorname{Ann}(x)^{*}\right|<|x+\operatorname{Ann}(x)|$. Thus $\operatorname{Ann}(x)=Z(R)$ and $\Gamma(R)$ is a complete graph.

Corollary 1. The graph $\Gamma\left(\mathbb{Z}_{n}\right)$ is a Hamiltonian graph if and only if $n=p^{2}$, where p is a prime more than 3 and in this case $\Gamma\left(\mathbb{Z}_{n}\right) \simeq K_{p-1}$.

Proof. If \mathbb{Z}_{n} is a decomposable ring as we saw in the proof of Theorem 8, then $\mathbb{Z}_{n} \simeq$ $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$, where p is a prime number, a contradiction. Now if \mathbb{Z}_{n} is an indecomposable
ring, then $n=p^{r}$, where p is a prime number and r is a natural number. If $r \geqslant 3$, then two vertices p and $2 p$ are not adjacent and according to the proof of Theorem 9 , we get a contradiction. Therefore $r=2$ and $\Gamma\left(\mathbb{Z}_{n}\right) \simeq K_{p-1}$.

Remark 3. If $R=\mathbb{Z}_{3}[x, y] /\left(x^{2}+x y, y^{2}+2 x y\right)$, then R is a local ring with unique maximal ideal $Z(R)$ such that $Z(R)^{3}=\{0\}$. Note that $\Gamma(R)$ is a Hamiltonian graph which is neither a complete graph nor a complete bipartite graph (since \bar{x} and \bar{y} are not adjacent and $\bar{x}, \bar{x} \bar{y}, 2 \bar{x} \bar{y}$ are mutually adjacent). The following sequence shows a Hamiltonian cycle in $\Gamma(R)$:

$$
\begin{aligned}
\bar{x} & \rightarrow \bar{x}+\bar{y} \rightarrow \bar{x}+\bar{x} \bar{y} \rightarrow \bar{x}+\bar{y}+\bar{x} \bar{y} \rightarrow \bar{x}+2 \bar{x} \bar{y} \rightarrow \bar{x}+\bar{y}+2 \bar{x} \bar{y} \rightarrow 2 \bar{x} \\
& \rightarrow 2 \bar{x}+2 \bar{y} \rightarrow 2 \bar{x}+\bar{x} \bar{y} \rightarrow 2 \bar{x}+2 \bar{y}+\bar{x} \bar{y} \rightarrow 2 \bar{x}+2 \bar{x} \bar{y} \rightarrow 2 \bar{x}+2 \bar{y}+2 \bar{x} \bar{y} \rightarrow \bar{x} \bar{y} \\
& \rightarrow \bar{y} \rightarrow \bar{x}+2 \bar{y} \rightarrow \bar{y}+\bar{x} \bar{y} \rightarrow \bar{x}+2 \bar{y}+\bar{x} \bar{y} \rightarrow \bar{y}+2 \bar{x} \bar{y} \rightarrow \bar{x}+2 \bar{y}+2 \bar{x} \bar{y} \rightarrow 2 \bar{y} \\
& \rightarrow 2 \bar{x}+\bar{y} \rightarrow 2 \bar{y}+\bar{x} \bar{y} \rightarrow 2 \bar{x}+\bar{y}+\bar{x} \bar{y} \rightarrow 2 \bar{y}+2 \bar{x} \bar{y} \rightarrow 2 \bar{x}+\bar{y}+2 \bar{x} \bar{y} \rightarrow 2 \bar{x} \bar{y} \rightarrow \bar{x}
\end{aligned}
$$

Acknowledgments

The authors are indebted to the Research Council of Sharif University of Technology for support. Also the authors thank the referee for her/his valuable comments.

References

[1] S. Akbari, H.R. Maimani, S. Yassemi, When a zero-divisor graph is planar or complete r-partite graph, J. Algebra, submitted for publication.
[2] D.F. Anderson, A. Frazier, A. Lauve, P.S. Livingston, The zero-divisor graph of a commutative ring, II, in: Lecture Notes in Pure and Appl. Math., vol. 220, Marcel Dekker, New York, 2001, pp. 61-72.
[3] D.F. Anderson, R. Levy, J. Shapiro, Zero-divisor graphs, von Neumann regular rings, and Boolean algebras, J. Pure Appl. Algebra, submitted for publication.
[4] D.F. Anderson, P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999) 434447.
[5] M.F. Atiyah, I.G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, MA, 1969.
[6] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988) 208-226.
[7] S.P. Redmond, The zero-divisor graph of a non-commutative ring, Internat. J. Commutative Rings 1 (4) (2002) 203-211.
[8] H.P. Yap, Some Topics in Graph Theory, in: London Math. Soc. Lecture Note Ser., vol. 108, 1986.

[^0]: * Corresponding author.

 E-mail addresses: s_akbari@sina.sharif.ac.ir (S. Akbari), ali_m@mehr.sharif.edu (A. Mohammadian).

