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Abstract

Let R be a commutative ring and (R) be its zero-divisor graph. In this paper it is shown that for
any finite commutative rin@®, the edge chromatic number Bf(R) is equal to the maximum degree
of I'(R), unlessI"(R) is a complete graph of odd order. In [D.F. Anderson, A. Frazier, A. Lauve,
P.S. Livingston, in: Lecture Notes in Pure and Appl. Math., Vol. 220, Marcel Dekker, New York,
2001, pp. 61-72] it has been proved thaRifand S are finite reduced rings which are not fields,
thenl"(R) >~ I'(S) if and only if R >~ S. Here we generalize this result and prove tha if a finite
reduced ring which is not isomorphic &»p x Z» or to Zg and S is a ring such thaf"(R) ~ I"(S),
thenR =~ §.

0 2004 Elsevier Inc. All rights reserved.
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Introduction

The concept of zero-divisor graph of a commutative ring was introduced by I. Beck in
1988 [6]. He let all elements of the ring be vertices of the graph and was interested mainly
in colorings. In [4], Anderson and Livingston introduced and studied the zero-divisor graph
whose vertices are the non-zero zero-divisors. This graph turns out to best exhibit the
properties of the set of zero-divisors of a commutative ring. The zero-divisor graph helps
us to study the algebraic properties of rings using graph theoretical tools. We can translate
some algebraic properties of a ring to graph theory language and then the geometric
properties of graphs help us to explore some interesting results in the algebraic structures
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of rings. The zero-divisor graph of a commutative ring has been studied extensively by
Anderson, Frazier, Lauve, Levy, Livingston and Shapiro, see [2—4]. The zero-divisor graph
concept has recently been extended to non-commutative rings, see [7].

Throughout the paper, all rings are assumed to be commutative with ugity.1f R
is a ring,Z(R) denotes its set of zero-divisors. A rimgis said to beeducedif R has no
non-zero nilpotent element. A ring§ is said to bedecomposablé R can be written as
R1 x Rz, whereR; and R, are rings; otherwise is said to bandecomposabldf X is
either an element or a subset®fthen Ann(X) denotes the annihilator &f in R. For any
subsetX of R, we defineX* = X\{0}. The zero-divisor graph ak, denoted by"(R), is
a graph with vertex seZ (R)* in which two verticest andy are adjacent if and only if
x #yandxy=0.

For a graphG, the degreei(v) of a vertexv in G is the number of edges incident
to v. We denote the minimum and maximum degree of vertices bl §(G) and A(G),
respectively. A graplG is regular if the degrees of all vertices af are the same. We
denote theomplete graplwith n vertices ancdcomplete bipartite grapkvith two parts of
sizesm andn, by K,, andK,, ,, respectively. The complete bipartite grafh,, is called
a star. A Hamiltonian cycleof G is a cycle that contains every vertex 6f A graph is
Hamiltonianif it contains a Hamiltonian cycle. A subsgt of the vertices ofG is called
acliqueif the induced subgraph ok is a complete graph. A-vertex coloringof a graph
G is an assignment of colors{1, ..., k} to the vertices olG such that no two adjacent
vertices have the same color. Thertex chromatic numbeyg (G) of a graphG, is the
minimum k for which G has ak-vertex coloring. Ak-edge coloringof a graphG is an
assignment of colors{1, ..., k} to the edges of; such that no two adjacent edges have
the same color. Thedge chromatic numbey’(G) of a graphG, is the minimumk for
which G has ak-edge coloring. A grapl@ is said to becritical if G is connected and
x'(G) = A(G) + 1 and for any edge of G, we havey’ (G \ {e}) < x'(G).

Beck in [6] proved several interesting theorems for the vertex chromatic number of
a zero-divisor graph. For example, he showed that for any commutativeryinfg R is
a direct product of finitely many reduced rings and principal ideal rings, }h@n(R))
equals to the size of maximum clique Hf(R). Although Beck used a different graph,
his results apply to the current setting. There are many interesting questions about zero-
divisor graphs. For instance, Anderson, Frazier, Lauve and Livingston asked in [2]: “For
which finite commutative ring®, is I" (R) planar?” In [1] it was proved that iR is a finite
local ring such thaf”(R) has at least 33 vertices, théh(R) is not a planar graph.

Results

The vertex chromatic number of zero-divisor graphs has been studied extensively by
Beck in [6]. Here we will study the edge chromatic number of zero-divisor graphs and
prove that ifR is a finite commutative ring, theg'(I"(R)) = A(I"'(R)), unlessI"(R) is a
complete graph of odd order.

If G is a graph, clearly in any edge coloring 6f the edges incident with one vertex
should be colored with different colors. This observation implies jé6) > A(G). An
important theorem due to Vizing is the following.
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Vizing's Theorem [8, p. 16]. If G is a simple graph, then eithex’(G) = A(G) or
x'(G) = A(G) + 1.

Also the following lemma is a key to our proof.

Vizing's Adjacency Lemma [8, p. 24]. If G is a critical graph, thenG has at least
A(G) — 8(G) + 2 vertices of maximum degree.

Remark 1. We note that ifG is a graph andy’(G) = A(G) + 1, then there exists
a subgraph ofG, say Gi, such thaty’(G1) = A(G) + 1 and for any edge of G;
we havey’(Gi\{e}) = A(G). Clearly G1 has a connected subgraph, sdy such that
x'(H) = A(G) + 1. The graphH is a critical graph with maximum degre®&(G). If x

is a vertex ofH with degreeA(G), then by Vizing's Adjacency Lemma{ has at least
A(G) — dy(v) + 2 vertices of degree\(G), for any vertexv which is adjacent tox.
Therefore ifG is a graph such that for every vertexof maximum degree there exists an
edgeuv such thatA(G) — d(v) + 2 is more than the number of vertices with maximum
degree inG, then by the above argument and Vizing’s Theorem, we k@) = A(G).

It is not hard to see that iR is an Artinian local ring, then the Jacobson radicaRof
equalsZ(R). ThusZ(R) is a nilpotent ideal and this implies that&f is not a field, then
Ann(Z(R)) # {0}. Moreover, each element of AGA(R))* is adjacent to each other vertex
of I'(R).

Theorem 1. If R is a finite local ring which is not a field, thep/(I'(R)) = A(I"(R)),
unlessl"(R) is a complete graph of odd order.

Proof. SinceRr is a finite local ring, AnZ (R)) # {0}. If I"(R) is a complete graph, then
by [8, Theorem 1.2, p. 12], we are done. Thus supposeltii&) is not a complete graph
and so AnZ(R)) # Z(R). If x € Z(R)\ AnnN(Z(R)), then there is an elemeate Z(R)
such thatix # 0. This implies that is adjacent to no vertices of+ Ann(Z (R)). Therefore
d(x) <|Z(R)*| —|Ann(Z(R))|. HenceA(I'(R)) —d(x) +2 > |Ann(Z(R))| + 1. Clearly,
Ann(Z(R))* is the set of all vertices of maximum degreeliiR). So, by Remark 1, we
havey’(I'(R)) = A(I'(R)). O

Now using Koénig's Theorem, we show that the previous theorem is true for any finite
commutative ring.

Konig'sTheorem [8, p. 11].For any bipartite graphG, we havey’(G) = A(G).

Remark 2. Assume thatR = R x --- X R, is a finite decomposable commutative ring.
We note that ifx = (x1, ..., x,) has maximum degree ifF(R), thenx has exactly one
non-zero component, say. Now suppose thak; is a local ring. We consider two cases:
If Ryisafield, themnA(I"'(R)) =d(x) =|R2|---|R,| — 1; If Ry is not a field, then we have
x1 € ANN(Z(R1))* andA(I"(R)) = d(x) = |Z(RD)I|R2| - - | Rn| — 2.
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Theorem 2. If R is a finite decomposable ring, theid(I" (R)) = A(I"(R)).

Proof. It is well known that every commutative Artinian ring is isomorphic to the direct
product of finitely many local rings, see [5, p. 90]. Suppose thatR; x --- x R,, where

n > 2 and eactr; is a local ring. By Remark 2, without loss of generality suppose that the
non-zero components of the vertices with maximum degrge(iR) occur inRy, ..., R.
First we claim that all of the ringR1, ..., Ry are fields or none of them are fields. Working
towards a contradiction suppose ttRatis a field andR; is not a field. Now, every vertex
with maximum degree iRy x {0} x --- x {0} has degre¢R| - - -|R,| — 1 and each vertex
with maximum degree if0} x R2 x {0} x - - - x {0} has degre€R1||Z(R2)||R3] - - - | Ry | — 2.
Thus we havgZ(R2)||R3]---|R,|(JR1] — |R2/Z(R2)|) = 1, a contradiction. Therefore
by Remark 2, for any, 1 <i <k, A(I'(R)) = [R1|--- [Ri—1[|Z(R) || Ri 41| - - - | Ru| — &,
wheree =1 or 2. Hence, we haviR1/Z(R1)| = --- = |Rx/Z(Ry)|. Moreover, since for
eachj, k + 1< j <n, the degree of any vertex {®} x --- x {0} x R; x {0} x --- x {0}

is less thamA (1" (R)), we have

|R;j/Z(R))| = |R1/Z(RY)|. (%)

For anyr, 1<t < n, suppose that; is the element whosgh component is one and other
components are zero. First, suppose that the rigs. ., Ry are not fields. Therd (R)
hast:l |Ann(Z (R;))*| vertices of maximum degree. Clearly, every vertex of maximum
degree in"(R) is adjacent to at least one of thgs. Now for anyi, 1 <i < n, we have

A(C(R)) —d(ei)) + 2> (IR1] -+ |Ri—1l| Z(R)||Ri41] - -+ | Rn| — 2)
— (IRl |Ri—1l|Rigal - |Ry| — 1) + 2
=Rl - |Ri—1l(|]Z(R)| — 1)|Ri41] -+ |Ra| + 1
k
> > |Ann(Z(R))".
=1

Hence by Remark 1, we conclude thdtI" (R)) = A(I'(R)). Next, suppose that the rings
R1, ..., Ry are fields. Thern" (R) haszﬁ‘:1 |Ry| vertices of maximum degree. if > 2,
then every vertex of maximum degreeli(R) is adjacent to - ¢, for somer, 1 < <k.
Note that in this cas¢R;| = --- = |Rx| and if we set|R1| = a, then by (x) we have
|R;| > a, for any j, j > k. Now sincea" ! —a + 2 > n(a — 1), for anyi, 1 <i <k,
we have

A(T(R)) —d(1—e) +2= (IRl - [Ri—1l|Rital - - |Ra] = 1) = (IRi| — 1) +2

k
>a"t—a+4+2> Z‘Rﬂ
=1

Thus by Remark 1, we conclude that(I"(R)) = A(I'(R)). So assume that = 2.
If k=1 andR2 is not a field, then byx) we have|R2| > 2|R1|. Since in this case
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any vertex of maximum degree iR(R) is adjacent taep and A(I'(R)) — d(e2) + 2 =
(IR2| = 1) — (|R1] — 1) + 2> |R}|, by Remark 1, we obtaix’(I"(R)) = A(I"(R)). If
eitherk = 1 andR; is a field ork = 2, thenI"(R) is a complete bipartite graph. Hence, by
Konig's Theorem, we havg’(I"(R)) = A(I"(R)) and the proof is complete.O

Now we are in a position to assert our main theorem.

Theorem 3. If R is a finite ring, theny'(I"(R)) = A(I"(R)), unlessI"(R) is a complete
graph of odd order.

The question of wherd”(R) ~ I'(S) implies thatR ~ S is very interesting and this
guestion has been investigated in [2] and [3]. In [3] it is shown that for any commutative
ring R, I'(T'(R)) andI"(R) are isomorphic, wher&(R) is the ring of fractions o with
respect to the multiplicatively closed subget Z(R) of R.

Theorem 4.If Ry, ..., R, and Sy, ..., S, are finite local rings, then the following hald

(i) Forn>2, I'(Ry x --- X Ry) >~ I'(Sy) if and only ifn = 2 and eitherR; x Ry ~
Zo x Zs or R1 X Ro >~ Zp x Zs. In the first case eithef; ~ Zg or S1 >~ Z3[x]/(x?)
and in the later caseS; is isomorphic to one of the ring€s, Zo[x1/(x3), or
Zalx1/(2¢,x% = 2).

(i) Forn,m>2, ' (Ry X -+ X Ry) >~ T'(S1 x --- x Sy, if and only ifn = m and there
exists a permutationr over {1, ...,n} such that for any, 1 <i <n, |R;| =[Szl
andI"(R;) == I'(Sr(i))-

Proof. (i) Sincen > 2, we havel’(R1 x --- x R,) =~ I'(S1) is not empty and thus$; is

not a field. Since”(S1) has a vertex which is adjacent to every other vertek {81), by

[4, Theorem 2.5], we havRy x --- x R, >~ Zp x F, whereF is afinite field. Thus: = 2.

On the other hand, sindé(S1) >~ I"' (Zy x F) is a star, by [4, Theorem 2.13], we conclude
thatI"(Zz x F) has fewer than four vertices. Hende| < 3, andF ~ Z, or Z3. Now, by

[2, Example 2.1(a)], the proof is complete. The other direction of the theorem is proved by
direct verification.

(i) First suppose that: = m and |R;| = |S;| and I'(R;) ~ I'(S;) for any i,

1 < i < n. Define the functionf;:R; — S;, by f;(0) =0, and f; is a one to one
correspondence betwedt\ Z(R;) and S;\Z(S;) and the restriction off; to Z(R;)* is

a graph isomorphism betwedn(R;) and I"(S;). Now, it is easy to see that the function
fiT(Rix--XRy)— ['(S1x---x8y,) defined byf (x1, ..., xy) = (f1(x1), ..., fu(xn))

is a graph isomorphism.

Conversely suppose that:I"'(R1 x --- x R,) — I'(S1 x --- x §) is a graph
isomorphism. By Remark 2, without loss of generality we may assume ithat
(r,0,...,0) is a vertex with maximum degree i"(Ry x --- x R,;). Thus f(x) in
'Sy x --- x Sy,) has maximum degree. By applying a permutation, we may assume
thaty = f(x) = (5,0, ...,0). Now, we show thatR1| = |S1| and " (R1) ~ I"(S1). First
assume thakr1 ~ Z,. Toward a contradiction, suppose tifatis not isomorphic t&Z,. If
B = (S1\(Z(S1) U {s})) x {0} x --- x {0}, then every vertex ilB has maximum degree
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among all vertices il (S1 x - - - x S;,) which are not adjacent tp. But among all vertices
of I'(Ry x --- x Ry;) which are not adjacent to, those vertices having maximum degree
are those whose first components are one and have just one non-zero component other than
their first components. For instance, assume ¢hat, O, ..., 0) is one of these vertices.
We know thatd((1,¢,0,...,0)) = |Z(R2)||R3|---|R,| — 1 and the degree of each vertex
in B is |S2]---|Syu| — 1. This implies thaiZ(R2)||R3|- -+ |Ry| = |S2] - - - |Si|. Also, we
haved(x) = |R2|---|R,| — 1. If S1 is a field, then we havé(y) = |S2|---|Sn| — 1.

It follows that |R2|---|R,;| — 1= |S2|---|Swu| — 1. Therefore|R2| = |Z(R2)|, which is

a contradiction. Thus we conclude th&t is not a field. Hence we find thai(y) =
|Z(SDIIS2]---|Sm| — 2. This yields|Ra|---|R,| — 1 = |Z(S1IIS2|---|Sm| — 2, hence
|Z(R2)||R3| - -+ |Ru|(1Z(S1)| — |R2/Z(R2)|) = 1. Thereforen = 2 and|Z(R»)| = 1. It
follows that R is a field. Thusr is adjacent to the all vertices @f(R1 x --- x R,) and
sinceB5 # @, it is a contradiction. S&1 >~ Z> and in this case the assertion is proved.

Thus we may assume that neith&rnor S1 is isomorphic tdZ,. If A= (R1\(Z(R1)U
{rhH) x {0} x --- x {0}, then every vertex itd has maximum degree among all vertices in
I'(R1 x --- x R,) which are not adjacent to. The degree of any vertex i is equal to
|R2|---|R,| — 1. Also, sinceS1 % Zp, B is the set of all vertices it (S1 x - - - x S,;) with
maximum degree among the all vertices which are not adjacent$ince the degree of
each vertex i3 is | S| - - - |S;u| — 1, we should havéRs| - - - [R,| — 1= |S2| -+ |Sn| — 1.

If Ry is a field andSy is not a field, as we saw in the previous case, we lwg =
|R2|---|Ry| —Landd(y) = |Z(SD||S2| - [Sm| — 2, henceRy| - - - [Ry|(|1Z(S1)| — 1) =1,

a contradiction. Thus botR; andsS; are fields or none of them are fields. First suppose that
Ry andS$; are fields. Now, we know thatd| = |R1| — 2 and|B| = |S1| — 2 are equal. This
implies that|R1| = | S1|. Since in this cas€ (R1) andI(S1) are empty, there is nothing to
prove.

So, suppose thak; and Sy are not fields. Hencé(x) = |Z(R1)||R2]---|R,| — 2 and
d(y) = |Z(SDIIS2| -+ |Su| — 2. This implies thatZ(R1)||R2|- - - [Ra| = [Z(SDI|S2|- -
|S;x] and so we obtainZ(R1)| = |Z(S1)|. Now, we know thatA| = |R1| — | Z(R1)| and
|B| = |S1] — |Z(S1)| are equal, hencpr1| = |S1]. Clearly, the restriction off to A is a
one to one correspondence betweérand 5. So we may assume thgt(1,0,...,0) =
(1,0,...,0), whereu € S1\Z(S1). If a € Z(R1) and f(a,0,...,0) = (b1, ..., bw), We
show thatb, = --- = b,, = 0. Since every vertex adjacent t&,0,...,0) in I'(Ry x

- X Ry,) is adjacent to(a, 0, ..., 0), every vertex adjacent tq, 0, ..., 0) is adjacent
to (b1, ..., by). Since, for anyi, 2 < i < m, the vertices; are adjacent tqu, O, ..., 0),
we haveb, = --- = b,, =0, whereg; is the element whosgh component is one and other
components are zero. Thig # 0. This implies that the functiorfy: I'(R1) — I'(S1)
defined bya — f(a,0,...,0) = (b,0,...,0) — b is a graph isomorphism, and thus
T'(R1) ~ I'(S1).

If (0,az,...,a,) is non-zero, thenf(0,ay, ...,a,) is adjacent to(«, 0, ...,0). So,
we may write f(0,ap,...,a,) = (0,b2,...,b,). Now, we show that the function
fliF'(Ryx---x Ry)— I'(S2 x ---x 8, defined by(ay, ...,a,) — f(0,ay,...,a,) =
0,b2,...,by) — (b2, ..., by) is well-defined. Indeed, iflay,...,a,) is a vertex in
I'(R2 x --- x Ry), then there exists an indéx2 < i < m, such that; is a zero-divisor.
The reason is that otherwis& (0, by, ..., by,)) = |S1| — 1 whereasi((0, a, ..., a,)) >
|R1| — 1, because at least one of yés is zero-divisor. Clearlyf’ is a graph isomorphism
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and thereford (Ra x -+ - x R;) >~ I'(S2 x --- x Sy). If n,m > 3, we repeat this procedure.
Suppose that > m. Thus, by rearrangement, we may assume h@,, x --- x R;,) ~

I (S;,). By part (i), we haveRr,, x --- x R, >~ Zp x Zp of Zp x Z3 and|S,,| =8 or 9.
Hencen =m + 1. Since{0} x --- x {0} x R,, x {0} contains a vertex of maximum degree
in I'(Ry x --- X R,), by Remark 2, we hav®1 >~ --- >~ R,,_1 >~ Zp. This implies that
S1~ -~ 8u_1~7Z> Now, we haveA(I'(Ry X --- x R)))=2""1—10r3.- 2721
and A(I'(S1 x -+ X Sp)) = 2"2|S,,| — 1. Thus|S,,| = 4 or 6, a contradiction. Hence
n = m. So, by repeating the above proof and rearrangement, welhéRg =~ I"(S;) for
anyi, 1<i <n,and|R;| =|S;| foranyi, 1<i <n — 1. Now, sincel"(Ry X -+ X Ry)
andI"(S1 x --- x S,) have the same maximum degree we conclude|tRgt= |S,| and
the proof is complete. O

Recently Anderson, Frazier, Lauve, and Livingston in [2] have proved thatahd
S are finite reduced rings which are not fields, thear) ~ I"(S) if and only if R ~ S.
In what follows we generalize this result. Indeed we show that if one of the two rings is
reduced the assertion remains true.

Theorem 5. Let R be a finite reduced ring anfl be a ring such thas is not an integral
domain. IfI"(R) >~ I'(S), thenR >~ S, unlessR >~ Zy x Z», Zg and S is a local ring.

Proof. Sincerl (S) is finite, by [4, Theorem 2.2], we hav&is finite. Sincel" (R) is not
empty,R is not a field. Thus by [5, Theorem 8.7, p. 90] we may wite- F1 x --- x F),
andS ~ S§1 x --- x S,,, wheren > 2 and F;’'s are finite fields ands;’s are finite local
rings. If m = 1, by part (i) of the previous theorem,= 2 andR >~ Z, x Zp or Zy X Z3.
So, suppose that, m > 2. Now, by part (ii) of the previous theorem, we have- m and
there exists a permutatienover{l, ..., n} such thatl"(S;) >~ I (Fx)) and|S;| = | Fz ).
Since theF;’s are finite fieldsS; >~ F ) for anyi, 1 <i <n. ThusR ~ S and the proof
is complete. O

Now we want to characterize all regular graphs which can be the zero-divisor graph of
a commutative ring. The following theorem shows that any infinite zero-divisor graph has
a vertex with infinite degree.

Theorem 6. If R is a ring such thatR is not an integral domain and every vertexiofR)
has finite degree, theR is a finite ring.

Proof. Supposer is an infinite ring. Letx and y be non-zero elements & such that
xy =0. ThenyR* C Ann(x). If yR* is infinite, thenx has infinite degree if"(R). If yR*
is finite, there exists an infinite subsétof R* such that ifa1, az € A, thenya; = yay. If
ap is a fixed element o, then{ap — a | a € A} is an infinite subset of Anty) and soy
has infinite degree i"(R), a contradiction. O

Theorem 7. Let R be a finite ring. If"(R) is a regular graph, then it is either a complete
graph or a complete bipartite graph.
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Proof. Assume thatl"(R) is a regular graph of degree First we assume thak =
R1 x Rz is a decomposable ring. Since the degreé€loD) is |R2| — 1 and the degree
of (0,1) is |R1| — 1, we have|R1| = |R2| = r + 1. We show thatR; is a field. If
not, then there exist two non-zero elementsand » in R1 such thatab = 0. But
({0} x R2) U {(b,1)} € Ann((a, 0)) and it follows thatd((a, 0)) > r + 1, a contradiction.
Similarly, R> must be a field. So in this cas€,(R) ~ K, . Now, suppose thak is an
indecomposable ring. By [5, Theorem 8.7, p. W]is a local ring andZ (R) is a nilpotent
ideal. Thus AnZ(R)) # {0} and sincel" (R) is a regular graph, we conclude thatR)
is a complete graph.O

In the sequel we determine a family of commutative rings whose zero-divisor graphs
are Hamiltonian.

Theorem 8. Let R be a finite decomposable ring.IM(R) is a Hamiltonian graph, then
I'(R) ~ K, », for some natural number.

Proof. SinceR is a decomposable ring, we may wriRe= R1 x R». Clearly, it suffices to
show thatR1 andR> are fields. Suppose thai R1) # {0}. PutA = Z(R1)* x (R2\Z(R2))
andB = Z(R1)* x {0}. We note that is the set of all vertices adjacent to at least one
vertex of A, and that there are no edges between the verticed.dflow, it is easy

to see that a Hamiltonian cycle if(R) contains a matching betwee# and B which
includes all vertices afl. Hence|A| < |B| and this implies thatR2\ Z(R2)| < 1. Because

a commutative Artinian ring is a finite direct product of local rings, and since the only
non-zero-divisor element at; is the identity,R, must be a finite direct product @’s.
Let x be that element oR, whose first component is zero and other components are one.
So(1, x) is a vertex of degree 1 i (R), which is impossible. Thug; and similarly R,

are fields and the proof is complete

Theorem 9. Let R be a finite principal ideal ring. 1" (R) is a Hamiltonian graph, then it
is either a complete graph or a complete bipartite graph.

Proof. If R is a decomposable ring, then by the previous theorE(R) is a complete
bipartite graph. Hence suppogeis an indecomposable ring. Now by [5, Theorem 8.7,
p. 90], R is a local ring andZ (R) is a principal ideal. LeZ (R) = Rx. If Ann(x) £ Z(R),
thenx ¢ Ann(x). Since Anrix) = Ann(Z(R)), the vertices ok + Ann(x) are adjacent to

all vertices of Anrix)* and not adjacent to any other vertex. Now, along a Hamiltonian
cycle, when we leave a vertex of+ Ann(x) we reach a vertex of Anw)*, but this is
impossible, sincAnn(x)*| < |x +Ann(x)|. Thus Anrix) = Z(R) andI"(R) is acomplete
graph. O

Corollary 1. The graphl"(Z,) is a Hamiltonian graph if and only it = p?, wherep is a
prime more thar8 and in this casd™(Z,) ~ K 1.

Proof. If Z, is a decomposable ring as we saw in the proof of Theorem 8, Zhen
Z, x Zp, Wherep is a prime number, a contradiction. NowZf, is an indecomposable
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ring, thenn = p”, wherep is a prime number and is a natural number. If > 3, then
two verticesp and 2p are not adjacent and according to the proof of Theorem 9, we get a
contradiction. Therefore=2 andI"(Z,) ~ K,-1. O

Remark 3. If R = Zg[x, y]/(x? + xy, y% + 2xy), then R is a local ring with unique
maximal idealZ (R) such thatZ(R)2 = {0}. Note that/"(R) is a Hamiltonian graph which

is neither a complete graph nor a complete bipartite graph (sirme®l y are not adjacent
andx, xy, 2xy are mutually adjacent). The following sequence shows a Hamiltonian
cycleinI"(R):

X=>x+y—=>x+xy—>x+y+xy—>x+2y—>x+y+2xy > 2x
> 2+2y > 2+ Xy > 22X+ 2+ Xy > 28+ 2y > 2x + 2y + 2xy —> Xy
—>y=>X+2y=>y+XY > X +2y+Xy > Y+ 2y > X+ 2y +2xy — 2y
-2+ > 2y +Xy > 2c+y+iy—> 2y +2xy > 2k +y + 28y — 2ky —> X.
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