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Abstract

LetR be a commutative ring andΓ (R) be its zero-divisor graph. In this paper it is shown that
any finite commutative ringR, the edge chromatic number ofΓ (R) is equal to the maximum degre
of Γ (R), unlessΓ (R) is a complete graph of odd order. In [D.F. Anderson, A. Frazier, A. La
P.S. Livingston, in: Lecture Notes in Pure and Appl. Math., Vol. 220, Marcel Dekker, New Y
2001, pp. 61–72] it has been proved that ifR andS are finite reduced rings which are not field
thenΓ (R)� Γ (S) if and only ifR � S. Here we generalize this result and prove that ifR is a finite
reduced ring which is not isomorphic toZ2 × Z2 or to Z6 andS is a ring such thatΓ (R) � Γ (S),
thenR � S.
 2004 Elsevier Inc. All rights reserved.
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Introduction

The concept of zero-divisor graph of a commutative ring was introduced by I. Be
1988 [6]. He let all elements of the ring be vertices of the graph and was interested m
in colorings. In [4], Anderson and Livingston introduced and studied the zero-divisor g
whose vertices are the non-zero zero-divisors. This graph turns out to best exhi
properties of the set of zero-divisors of a commutative ring. The zero-divisor graph
us to study the algebraic properties of rings using graph theoretical tools. We can tra
some algebraic properties of a ring to graph theory language and then the geo
properties of graphs help us to explore some interesting results in the algebraic str
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of rings. The zero-divisor graph of a commutative ring has been studied extensiv
Anderson, Frazier, Lauve, Levy, Livingston and Shapiro, see [2–4]. The zero-divisor
concept has recently been extended to non-commutative rings, see [7].

Throughout the paper, all rings are assumed to be commutative with unity 1�= 0. If R
is a ring,Z(R) denotes its set of zero-divisors. A ringR is said to bereducedif R has no
non-zero nilpotent element. A ringR is said to bedecomposableif R can be written as
R1 × R2, whereR1 andR2 are rings; otherwiseR is said to beindecomposable. If X is
either an element or a subset ofR, then Ann(X) denotes the annihilator ofX in R. For any
subsetX of R, we defineX∗ = X\{0}. The zero-divisor graph ofR, denoted byΓ (R), is
a graph with vertex setZ(R)∗ in which two verticesx andy are adjacent if and only i
x �= y andxy = 0.

For a graphG, the degreed(v) of a vertexv in G is the number of edges incide
to v. We denote the minimum and maximum degree of vertices ofG by δ(G) and∆(G),
respectively. A graphG is regular if the degrees of all vertices ofG are the same. W
denote thecomplete graphwith n vertices andcomplete bipartite graphwith two parts of
sizesm andn, byKn andKm,n, respectively. The complete bipartite graphK1,n, is called
a star. A Hamiltonian cycleof G is a cycle that contains every vertex ofG. A graph is
Hamiltonianif it contains a Hamiltonian cycle. A subsetX of the vertices ofG is called
a clique if the induced subgraph onX is a complete graph. Ak-vertex coloringof a graph
G is an assignment ofk colors{1, . . . , k} to the vertices ofG such that no two adjacen
vertices have the same color. Thevertex chromatic numberχ(G) of a graphG, is the
minimum k for whichG has ak-vertex coloring. Ak-edge coloringof a graphG is an
assignment ofk colors{1, . . . , k} to the edges ofG such that no two adjacent edges ha
the same color. Theedge chromatic numberχ ′(G) of a graphG, is the minimumk for
which G has ak-edge coloring. A graphG is said to becritical if G is connected and
χ ′(G)=∆(G)+ 1 and for any edgee of G, we haveχ ′(G \ {e}) < χ ′(G).

Beck in [6] proved several interesting theorems for the vertex chromatic numb
a zero-divisor graph. For example, he showed that for any commutative ringR, if R is
a direct product of finitely many reduced rings and principal ideal rings, thenχ(Γ (R))

equals to the size of maximum clique ofΓ (R). Although Beck used a different grap
his results apply to the current setting. There are many interesting questions abou
divisor graphs. For instance, Anderson, Frazier, Lauve and Livingston asked in [2]
which finite commutative ringsR, isΓ (R) planar?” In [1] it was proved that ifR is a finite
local ring such thatΓ (R) has at least 33 vertices, thenΓ (R) is not a planar graph.

Results

The vertex chromatic number of zero-divisor graphs has been studied extensiv
Beck in [6]. Here we will study the edge chromatic number of zero-divisor graphs
prove that ifR is a finite commutative ring, thenχ ′(Γ (R))=∆(Γ (R)), unlessΓ (R) is a
complete graph of odd order.

If G is a graph, clearly in any edge coloring ofG, the edges incident with one verte
should be colored with different colors. This observation implies thatχ ′(G)�∆(G). An
important theorem due to Vizing is the following.
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Vizing’s Theorem [8, p. 16]. If G is a simple graph, then eitherχ ′(G) = ∆(G) or
χ ′(G)=∆(G)+ 1.

Also the following lemma is a key to our proof.

Vizing’s Adjacency Lemma [8, p. 24]. If G is a critical graph, thenG has at least
∆(G)− δ(G)+ 2 vertices of maximum degree.

Remark 1. We note that ifG is a graph andχ ′(G) = ∆(G) + 1, then there exist
a subgraph ofG, sayG1, such thatχ ′(G1) = ∆(G) + 1 and for any edgee of G1
we haveχ ′(G1\{e}) = ∆(G). ClearlyG1 has a connected subgraph, sayH , such that
χ ′(H) = ∆(G) + 1. The graphH is a critical graph with maximum degree∆(G). If x
is a vertex ofH with degree∆(G), then by Vizing’s Adjacency Lemma,H has at leas
∆(G) − dH (v) + 2 vertices of degree∆(G), for any vertexv which is adjacent tox.
Therefore ifG is a graph such that for every vertexu of maximum degree there exists
edgeuv such that∆(G)− d(v)+ 2 is more than the number of vertices with maxim
degree inG, then by the above argument and Vizing’s Theorem, we haveχ ′(G)=∆(G).

It is not hard to see that ifR is an Artinian local ring, then the Jacobson radical oR
equalsZ(R). ThusZ(R) is a nilpotent ideal and this implies that ifR is not a field, then
Ann(Z(R)) �= {0}. Moreover, each element of Ann(Z(R))∗ is adjacent to each other vert
of Γ (R).

Theorem 1. If R is a finite local ring which is not a field, thenχ ′(Γ (R)) = ∆(Γ (R)),
unlessΓ (R) is a complete graph of odd order.

Proof. SinceR is a finite local ring, Ann(Z(R)) �= {0}. If Γ (R) is a complete graph, the
by [8, Theorem 1.2, p. 12], we are done. Thus suppose thatΓ (R) is not a complete grap
and so Ann(Z(R)) �= Z(R). If x ∈ Z(R)\Ann(Z(R)), then there is an elementa ∈ Z(R)
such thatax �= 0. This implies thatx is adjacent to no vertices ofa+Ann(Z(R)). Therefore
d(x)� |Z(R)∗|− |Ann(Z(R))|. Hence∆(Γ (R))− d(x)+ 2� |Ann(Z(R))|+ 1. Clearly,
Ann(Z(R))∗ is the set of all vertices of maximum degree inΓ (R). So, by Remark 1, we
haveχ ′(Γ (R))=∆(Γ (R)). ✷

Now using König’s Theorem, we show that the previous theorem is true for any
commutative ring.

König’s Theorem [8, p. 11].For any bipartite graphG, we haveχ ′(G)=∆(G).

Remark 2. Assume thatR = R1 × · · · × Rn is a finite decomposable commutative rin
We note that ifx = (x1, . . . , xn) has maximum degree inΓ (R), thenx has exactly one
non-zero component, sayx1. Now suppose thatR1 is a local ring. We consider two case
If R1 is a field, then∆(Γ (R))= d(x)= |R2| · · · |Rn| − 1; If R1 is not a field, then we hav
x1 ∈ Ann(Z(R1))

∗ and∆(Γ (R))= d(x)= |Z(R1)||R2| · · · |Rn| − 2.
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Theorem 2. If R is a finite decomposable ring, thenχ ′(Γ (R))=∆(Γ (R)).

Proof. It is well known that every commutative Artinian ring is isomorphic to the dir
product of finitely many local rings, see [5, p. 90]. Suppose thatR =R1 ×· · · ×Rn, where
n� 2 and eachRi is a local ring. By Remark 2, without loss of generality suppose tha
non-zero components of the vertices with maximum degree inΓ (R) occur inR1, . . . ,Rk .
First we claim that all of the ringsR1, . . . ,Rk are fields or none of them are fields. Worki
towards a contradiction suppose thatR1 is a field andR2 is not a field. Now, every verte
with maximum degree inR1 × {0}× · · · × {0} has degree|R2| · · · |Rn| − 1 and each verte
with maximum degree in{0}×R2×{0}×· · ·×{0} has degree|R1||Z(R2)||R3| · · · |Rn|−2.
Thus we have|Z(R2)||R3| · · · |Rn|(|R1| − |R2/Z(R2)|) = 1, a contradiction. Therefor
by Remark 2, for anyi, 1 � i � k, ∆(Γ (R)) = |R1| · · · |Ri−1||Z(Ri)||Ri+1| · · · |Rn| − ε,
whereε = 1 or 2. Hence, we have|R1/Z(R1)| = · · · = |Rk/Z(Rk)|. Moreover, since for
eachj , k + 1 � j � n, the degree of any vertex in{0} × · · · × {0} ×Rj × {0} × · · · × {0}
is less than∆(Γ (R)), we have

∣∣Rj/Z(Rj )
∣∣ �

∣∣R1/Z(R1)
∣∣. (∗)

For anyt , 1� t � n, suppose thatet is the element whoset th component is one and oth
components are zero. First, suppose that the ringsR1, . . . ,Rk are not fields. ThenΓ (R)
has

∑k
t=1 |Ann(Z(Rt ))∗| vertices of maximum degree. Clearly, every vertex of maxim

degree inΓ (R) is adjacent to at least one of theet ’s. Now for anyi, 1� i � n, we have

∆
(
Γ (R)

) − d(ei)+ 2 �
(|R1| · · · |Ri−1|

∣∣Z(Ri)
∣∣|Ri+1| · · · |Rn| − 2

)

− (|R1| · · · |Ri−1||Ri+1| · · · |Rn| − 1
) + 2

= |R1| · · · |Ri−1|
(∣∣Z(Ri)

∣∣ − 1
)|Ri+1| · · · |Rn| + 1

>

k∑

t=1

∣∣Ann
(
Z(Rt)

)∗∣∣.

Hence by Remark 1, we conclude thatχ ′(Γ (R))=∆(Γ (R)). Next, suppose that the ring
R1, . . . ,Rk are fields. ThenΓ (R) has

∑k
t=1 |R∗

t | vertices of maximum degree. Ifn > 2,
then every vertex of maximum degree inΓ (R) is adjacent to 1− et , for somet , 1� t � k.
Note that in this case|R1| = · · · = |Rk| and if we set|R1| = a, then by(∗) we have
|Rj | � a, for any j , j > k. Now sincean−1 − a + 2> n(a − 1), for any i, 1 � i � k,
we have

∆
(
Γ (R)

) − d(1− ei)+ 2= (|R1| · · · |Ri−1||Ri+1| · · · |Rn| − 1
) − (|Ri | − 1

) + 2

� an−1 − a + 2>
k∑

t=1

∣∣R∗
t

∣∣.

Thus by Remark 1, we conclude thatχ ′(Γ (R)) = ∆(Γ (R)). So assume thatn = 2.
If k = 1 andR2 is not a field, then by(∗) we have|R2| � 2|R1|. Since in this case
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any vertex of maximum degree inΓ (R) is adjacent toe2 and∆(Γ (R)) − d(e2) + 2 =
(|R2| − 1) − (|R1| − 1) + 2> |R∗

1|, by Remark 1, we obtainχ ′(Γ (R)) = ∆(Γ (R)). If
eitherk = 1 andR2 is a field ork = 2, thenΓ (R) is a complete bipartite graph. Hence,
König’s Theorem, we haveχ ′(Γ (R))=∆(Γ (R)) and the proof is complete.✷

Now we are in a position to assert our main theorem.

Theorem 3. If R is a finite ring, thenχ ′(Γ (R)) = ∆(Γ (R)), unlessΓ (R) is a complete
graph of odd order.

The question of whenΓ (R) � Γ (S) implies thatR � S is very interesting and thi
question has been investigated in [2] and [3]. In [3] it is shown that for any commu
ringR, Γ (T (R)) andΓ (R) are isomorphic, whereT (R) is the ring of fractions ofR with
respect to the multiplicatively closed subsetR \Z(R) of R.

Theorem 4. If R1, . . . ,Rn andS1, . . . , Sm are finite local rings, then the following hold:

(i) For n � 2, Γ (R1 × · · · × Rn) � Γ (S1) if and only if n = 2 and eitherR1 × R2 �
Z2 × Z2 or R1 × R2 � Z2 × Z3. In the first case eitherS1 � Z9 or S1 � Z3[x]/(x2)

and in the later caseS1 is isomorphic to one of the ringsZ8, Z2[x]/(x3), or
Z4[x]/(2x, x2 − 2).

(ii) For n,m � 2, Γ (R1 × · · · × Rn) � Γ (S1 × · · · × Sm) if and only ifn =m and there
exists a permutationπ over {1, . . . , n} such that for anyi, 1 � i � n, |Ri | = |Sπ(i)|
andΓ (Ri)� Γ (Sπ(i)).

Proof. (i) Sincen � 2, we haveΓ (R1 × · · · × Rn) � Γ (S1) is not empty and thusS1 is
not a field. SinceΓ (S1) has a vertex which is adjacent to every other vertex inΓ (S1), by
[4, Theorem 2.5], we haveR1 × · · · ×Rn � Z2 × F , whereF is a finite field. Thusn= 2.
On the other hand, sinceΓ (S1)� Γ (Z2 ×F) is a star, by [4, Theorem 2.13], we conclu
thatΓ (Z2 × F) has fewer than four vertices. Hence|F | � 3, andF � Z2 or Z3. Now, by
[2, Example 2.1(a)], the proof is complete. The other direction of the theorem is prov
direct verification.

(ii) First suppose thatn = m and |Ri | = |Si | and Γ (Ri) � Γ (Si) for any i,
1 � i � n. Define the functionfi :Ri → Si , by fi(0) = 0, and fi is a one to one
correspondence betweenRi\Z(Ri) andSi\Z(Si) and the restriction offi to Z(Ri)∗ is
a graph isomorphism betweenΓ (Ri) andΓ (Si). Now, it is easy to see that the functio
f :Γ (R1×· · ·×Rn)→ Γ (S1×· · ·×Sn) defined byf (x1, . . . , xn)= (f1(x1), . . . , fn(xn))

is a graph isomorphism.
Conversely suppose thatf :Γ (R1 × · · · × Rn) → Γ (S1 × · · · × Sm) is a graph

isomorphism. By Remark 2, without loss of generality we may assume thatx =
(r,0, . . . ,0) is a vertex with maximum degree inΓ (R1 × · · · × Rn). Thus f (x) in
Γ (S1 × · · · × Sm) has maximum degree. By applying a permutation, we may ass
that y = f (x) = (s,0, . . . ,0). Now, we show that|R1| = |S1| andΓ (R1) � Γ (S1). First
assume thatR1 � Z2. Toward a contradiction, suppose thatS1 is not isomorphic toZ2. If
B = (S1\(Z(S1) ∪ {s})) × {0} × · · · × {0}, then every vertex inB has maximum degre
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among all vertices inΓ (S1 ×· · ·×Sm) which are not adjacent toy. But among all vertices
of Γ (R1 × · · · ×Rn) which are not adjacent tox, those vertices having maximum degr
are those whose first components are one and have just one non-zero component o
their first components. For instance, assume that(1, t,0, . . . ,0) is one of these vertices
We know thatd((1, t,0, . . . ,0))= |Z(R2)||R3| · · · |Rn| − 1 and the degree of each vert
in B is |S2| · · · |Sm| − 1. This implies that|Z(R2)||R3| · · · |Rn| = |S2| · · · |Sm|. Also, we
haved(x) = |R2| · · · |Rn| − 1. If S1 is a field, then we haved(y) = |S2| · · · |Sm| − 1.
It follows that |R2| · · · |Rn| − 1 = |S2| · · · |Sm| − 1. Therefore|R2| = |Z(R2)|, which is
a contradiction. Thus we conclude thatS1 is not a field. Hence we find thatd(y) =
|Z(S1)||S2| · · · |Sm| − 2. This yields|R2| · · · |Rn| − 1 = |Z(S1)||S2| · · · |Sm| − 2, hence
|Z(R2)||R3| · · · |Rn|(|Z(S1)| − |R2/Z(R2)|) = 1. Thereforen = 2 and |Z(R2)| = 1. It
follows thatR2 is a field. Thusx is adjacent to the all vertices ofΓ (R1 × · · · × Rn) and
sinceB �= ∅, it is a contradiction. SoS1 � Z2 and in this case the assertion is proved.

Thus we may assume that neitherR1 norS1 is isomorphic toZ2. If A= (R1\(Z(R1)∪
{r}))× {0} × · · · × {0}, then every vertex inA has maximum degree among all vertices
Γ (R1 × · · · × Rn) which are not adjacent tox. The degree of any vertex inA is equal to
|R2| · · · |Rn| − 1. Also, sinceS1 �� Z2, B is the set of all vertices inΓ (S1 × · · · × Sm) with
maximum degree among the all vertices which are not adjacent toy. Since the degree o
each vertex inB is |S2| · · · |Sm| − 1, we should have|R2| · · · |Rn| − 1 = |S2| · · · |Sm| − 1.

If R1 is a field andS1 is not a field, as we saw in the previous case, we haved(x) =
|R2| · · · |Rn| − 1 andd(y)= |Z(S1)||S2| · · · |Sm| − 2, hence|R2| · · · |Rn|(|Z(S1)| − 1)= 1,
a contradiction. Thus bothR1 andS1 are fields or none of them are fields. First suppose
R1 andS1 are fields. Now, we know that|A| = |R1| − 2 and|B| = |S1| − 2 are equal. This
implies that|R1| = |S1|. Since in this caseΓ (R1) andΓ (S1) are empty, there is nothing t
prove.

So, suppose thatR1 andS1 are not fields. Henced(x)= |Z(R1)||R2| · · · |Rn| − 2 and
d(y) = |Z(S1)||S2| · · · |Sm| − 2. This implies that|Z(R1)||R2| · · · |Rn| = |Z(S1)||S2| · · ·
|Sm| and so we obtain|Z(R1)| = |Z(S1)|. Now, we know that|A| = |R1| − |Z(R1)| and
|B| = |S1| − |Z(S1)| are equal, hence|R1| = |S1|. Clearly, the restriction off to A is a
one to one correspondence betweenA andB. So we may assume thatf (1,0, . . . ,0) =
(u,0, . . . ,0), whereu ∈ S1\Z(S1). If a ∈ Z(R1) andf (a,0, . . . ,0) = (b1, . . . , bm), we
show thatb2 = · · · = bm = 0. Since every vertex adjacent to(1,0, . . . ,0) in Γ (R1 ×
· · · × Rn) is adjacent to(a,0, . . . ,0), every vertex adjacent to(u,0, . . . ,0) is adjacent
to (b1, . . . , bm). Since, for anyi, 2 � i � m, the verticesei are adjacent to(u,0, . . . ,0),
we haveb2 = · · · = bm = 0, whereei is the element whoseith component is one and oth
components are zero. Thusb1 �= 0. This implies that the functionf1 :Γ (R1)→ Γ (S1)

defined bya → f (a,0, . . . ,0) = (b,0, . . . ,0) → b is a graph isomorphism, and th
Γ (R1)� Γ (S1).

If (0, a2, . . . , an) is non-zero, thenf (0, a2, . . . , an) is adjacent to(u,0, . . . ,0). So,
we may write f (0, a2, . . . , an) = (0, b2, . . . , bm). Now, we show that the functio
f ′ :Γ (R2 × · · · ×Rn)→ Γ (S2 × · · · × Sm) defined by(a2, . . . , an)→ f (0, a2, . . . , an)=
(0, b2, . . . , bm) → (b2, . . . , bm) is well-defined. Indeed, if(a2, . . . , an) is a vertex in
Γ (R2 × · · · × Rn), then there exists an indexi, 2� i �m, such thatbi is a zero-divisor.
The reason is that otherwised((0, b2, . . . , bm)) = |S1| − 1 whereasd((0, a2, . . . , an)) >

|R1|− 1, because at least one of theai ’s is zero-divisor. Clearlyf ′ is a graph isomorphism
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and thereforeΓ (R2 ×· · ·×Rn)� Γ (S2 ×· · ·×Sm). If n,m� 3, we repeat this procedur
Suppose thatn > m. Thus, by rearrangement, we may assume thatΓ (Rm × · · · × Rn) �
Γ (Sm). By part (i), we haveRm × · · · × Rn � Z2 × Z2 or Z2 × Z3 and |Sm| = 8 or 9.
Hencen=m+ 1. Since{0} × · · · × {0} ×Rm × {0} contains a vertex of maximum degr
in Γ (R1 × · · · × Rn), by Remark 2, we haveR1 � · · · � Rm−1 � Z2. This implies that
S1 � · · · � Sm−1 � Z2. Now, we have∆(Γ (R1 × · · · × Rn)) = 2n−1 − 1 or 3· 2n−2 − 1
and∆(Γ (S1 × · · · × Sm)) = 2m−2|Sm| − 1. Thus|Sm| = 4 or 6, a contradiction. Henc
n=m. So, by repeating the above proof and rearrangement, we haveΓ (Ri)� Γ (Si) for
any i, 1� i � n, and|Ri | = |Si | for any i, 1� i � n− 1. Now, sinceΓ (R1 × · · · × Rn)
andΓ (S1 × · · · × Sn) have the same maximum degree we conclude that|Rn| = |Sn| and
the proof is complete. ✷

Recently Anderson, Frazier, Lauve, and Livingston in [2] have proved that ifR and
S are finite reduced rings which are not fields, thenΓ (R) � Γ (S) if and only if R � S.
In what follows we generalize this result. Indeed we show that if one of the two rin
reduced the assertion remains true.

Theorem 5. LetR be a finite reduced ring andS be a ring such thatS is not an integral
domain. IfΓ (R)� Γ (S), thenR � S, unlessR � Z2 × Z2, Z6 andS is a local ring.

Proof. SinceΓ (S) is finite, by [4, Theorem 2.2], we haveS is finite. SinceΓ (R) is not
empty,R is not a field. Thus by [5, Theorem 8.7, p. 90] we may writeR � F1 × · · · × Fn
andS � S1 × · · · × Sm, wheren � 2 andFi ’s are finite fields andSi ’s are finite local
rings. Ifm = 1, by part (i) of the previous theorem,n= 2 andR � Z2 × Z2 or Z2 × Z3.
So, suppose thatn,m� 2. Now, by part (ii) of the previous theorem, we haven=m and
there exists a permutationπ over{1, . . . , n} such thatΓ (Si)� Γ (Fπ(i)) and|Si | = |Fπ(i)|.
Since theFi ’s are finite fields,Si � Fπ(i) for any i, 1� i � n. ThusR � S and the proof
is complete. ✷

Now we want to characterize all regular graphs which can be the zero-divisor gra
a commutative ring. The following theorem shows that any infinite zero-divisor grap
a vertex with infinite degree.

Theorem 6. If R is a ring such thatR is not an integral domain and every vertex ofΓ (R)
has finite degree, thenR is a finite ring.

Proof. SupposeR is an infinite ring. Letx andy be non-zero elements ofR such that
xy = 0. ThenyR∗ ⊆ Ann(x). If yR∗ is infinite, thenx has infinite degree inΓ (R). If yR∗
is finite, there exists an infinite subsetA of R∗ such that ifa1, a2 ∈ A, thenya1 = ya2. If
a0 is a fixed element ofA, then{a0 − a | a ∈ A} is an infinite subset of Ann(y) and soy
has infinite degree inΓ (R), a contradiction. ✷
Theorem 7. LetR be a finite ring. IfΓ (R) is a regular graph, then it is either a comple
graph or a complete bipartite graph.



854 S. Akbari, A. Mohammadian / Journal of Algebra 274 (2004) 847–855

e

.

raphs

ne

only

one.

t

.7,

nian

e

Proof. Assume thatΓ (R) is a regular graph of degreer. First we assume thatR =
R1 × R2 is a decomposable ring. Since the degree of(1,0) is |R2| − 1 and the degre
of (0,1) is |R1| − 1, we have|R1| = |R2| = r + 1. We show thatR1 is a field. If
not, then there exist two non-zero elementsa and b in R1 such thatab = 0. But
({0} × R2) ∪ {(b,1)} ⊆ Ann((a,0)) and it follows thatd((a,0))� r + 1, a contradiction
Similarly, R2 must be a field. So in this case,Γ (R) � Kr,r . Now, suppose thatR is an
indecomposable ring. By [5, Theorem 8.7, p. 90],R is a local ring andZ(R) is a nilpotent
ideal. Thus Ann(Z(R)) �= {0} and sinceΓ (R) is a regular graph, we conclude thatΓ (R)
is a complete graph.✷

In the sequel we determine a family of commutative rings whose zero-divisor g
are Hamiltonian.

Theorem 8. Let R be a finite decomposable ring. IfΓ (R) is a Hamiltonian graph, then
Γ (R)�Kn,n, for some natural numbern.

Proof. SinceR is a decomposable ring, we may writeR =R1 ×R2. Clearly, it suffices to
show thatR1 andR2 are fields. Suppose thatZ(R1) �= {0}. PutA=Z(R1)

∗ × (R2\Z(R2))

andB = Z(R1)
∗ × {0}. We note thatB is the set of all vertices adjacent to at least o

vertex of A, and that there are no edges between the vertices ofA. Now, it is easy
to see that a Hamiltonian cycle inΓ (R) contains a matching betweenA andB which
includes all vertices ofA. Hence|A| � |B| and this implies that|R2\Z(R2)| � 1. Because
a commutative Artinian ring is a finite direct product of local rings, and since the
non-zero-divisor element ofR2 is the identity,R2 must be a finite direct product ofZ2’s.
Let x be that element ofR2 whose first component is zero and other components are
So (1, x) is a vertex of degree 1 inΓ (R), which is impossible. ThusR1 and similarlyR2
are fields and the proof is complete.✷
Theorem 9. LetR be a finite principal ideal ring. IfΓ (R) is a Hamiltonian graph, then i
is either a complete graph or a complete bipartite graph.

Proof. If R is a decomposable ring, then by the previous theorem,Γ (R) is a complete
bipartite graph. Hence supposeR is an indecomposable ring. Now by [5, Theorem 8
p. 90],R is a local ring andZ(R) is a principal ideal. LetZ(R)=Rx. If Ann(x) �=Z(R),
thenx /∈ Ann(x). Since Ann(x)= Ann(Z(R)), the vertices ofx + Ann(x) are adjacent to
all vertices of Ann(x)∗ and not adjacent to any other vertex. Now, along a Hamilto
cycle, when we leave a vertex ofx + Ann(x) we reach a vertex of Ann(x)∗, but this is
impossible, since|Ann(x)∗|< |x+Ann(x)|. Thus Ann(x)=Z(R) andΓ (R) is a complete
graph. ✷
Corollary 1. The graphΓ (Zn) is a Hamiltonian graph if and only ifn= p2, wherep is a
prime more than3 and in this caseΓ (Zn)�Kp−1.

Proof. If Zn is a decomposable ring as we saw in the proof of Theorem 8, thenZn �
Zp × Zp , wherep is a prime number, a contradiction. Now ifZn is an indecomposabl



S. Akbari, A. Mohammadian / Journal of Algebra 274 (2004) 847–855 855

get a

t
nian

ology

II, in:

lgebras,

) 434–

969.

(2002)
ring, thenn = pr , wherep is a prime number andr is a natural number. Ifr � 3, then
two verticesp and 2p are not adjacent and according to the proof of Theorem 9, we
contradiction. Thereforer = 2 andΓ (Zn)�Kp−1. ✷
Remark 3. If R = Z3[x, y]/(x2 + xy, y2 + 2xy), thenR is a local ring with unique
maximal idealZ(R) such thatZ(R)3 = {0}. Note thatΓ (R) is a Hamiltonian graph which
is neither a complete graph nor a complete bipartite graph (sincex̄ andȳ are not adjacen
and x̄, x̄ȳ, 2x̄ȳ are mutually adjacent). The following sequence shows a Hamilto
cycle inΓ (R):

x̄→ x̄ + ȳ→ x̄ + x̄ȳ→ x̄ + ȳ + x̄ȳ→ x̄ + 2x̄ȳ→ x̄ + ȳ + 2x̄ȳ→ 2x̄

→ 2x̄ + 2ȳ→ 2x̄ + x̄ȳ→ 2x̄ + 2ȳ + x̄ȳ→ 2x̄ + 2x̄ȳ→ 2x̄ + 2ȳ + 2x̄ȳ→ x̄ȳ

→ ȳ→ x̄ + 2ȳ→ ȳ + x̄ȳ→ x̄ + 2ȳ + x̄ȳ→ ȳ + 2x̄ȳ→ x̄ + 2ȳ + 2x̄ȳ→ 2ȳ

→ 2x̄ + ȳ→ 2ȳ + x̄ȳ→ 2x̄ + ȳ + x̄ȳ→ 2ȳ + 2x̄ȳ→ 2x̄ + ȳ + 2x̄ȳ→ 2x̄ȳ→ x̄.
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