On the zero-divisor graph of a commutative ring

S. Akbari a,b,* and A. Mohammadian a

a Department of Mathematical Sciences, Sharif University of Technology, P.O. Box 11365-9415, Tehran, Iran
b Institute for Studies in Theoretical Physics and Mathematics, Tehran, Iran

Received 20 March 2003
Communicated by Paul Roberts

Abstract

Let \(R \) be a commutative ring and \(\Gamma(R) \) be its zero-divisor graph. In this paper it is shown that for any finite commutative ring \(R \), the edge chromatic number of \(\Gamma(R) \) is equal to the maximum degree of \(\Gamma(R) \), unless \(\Gamma(R) \) is a complete graph of odd order. In [D.F. Anderson, A. Frazier, A. Lauve, P.S. Livingston, in: Lecture Notes in Pure and Appl. Math., Vol. 220, Marcel Dekker, New York, 2001, pp. 61–72] it has been proved that if \(R \) and \(S \) are finite reduced rings which are not fields, then \(\Gamma(R) \cong \Gamma(S) \) if and only if \(R \cong S \). Here we generalize this result and prove that if \(R \) is a finite reduced ring which is not isomorphic to \(\mathbb{Z}_2 \times \mathbb{Z}_2 \) or to \(\mathbb{Z}_6 \) and \(S \) is a ring such that \(\Gamma(R) \cong \Gamma(S) \), then \(R \cong S \).

© 2004 Elsevier Inc. All rights reserved.

Keywords: Zero-divisor graph; Edge coloring; Hamiltonian

Introduction

The concept of zero-divisor graph of a commutative ring was introduced by I. Beck in 1988 [6]. He let all elements of the ring be vertices of the graph and was interested mainly in colorings. In [4], Anderson and Livingston introduced and studied the zero-divisor graph whose vertices are the non-zero zero-divisors. This graph turns out to best exhibit the properties of the set of zero-divisors of a commutative ring. The zero-divisor graph helps us to study the algebraic properties of rings using graph theoretical tools. We can translate some algebraic properties of a ring to graph theory language and then the geometric properties of graphs help us to explore some interesting results in the algebraic structures.
of rings. The zero-divisor graph of a commutative ring has been studied extensively by Anderson, Frazier, Lauve, Levy, Livingston and Shapiro, see [2–4]. The zero-divisor graph concept has recently been extended to non-commutative rings, see [7].

Throughout the paper, all rings are assumed to be commutative with unity $1 \neq 0$. If R is a ring, $Z(R)$ denotes its set of zero-divisors. A ring R is said to be reduced if R has no non-zero nilpotent element. A ring R is said to be decomposable if R can be written as $R_1 \times R_2$, where R_1 and R_2 are rings; otherwise R is said to be indecomposable. If X is either an element or a subset of R, then $\text{Ann}(X)$ denotes the annihilator of X in R. For any subset X of R, we define $X^* = X \setminus \{0\}$. The zero-divisor graph of R, denoted by $\Gamma(R)$, is a graph with vertex set $Z(R)^*$ in which two vertices x and y are adjacent if and only if $x \neq y$ and $xy = 0$.

For a graph G, the degree $d(v)$ of a vertex v in G is the number of edges incident to v. We denote the minimum and maximum degree of vertices of G by $\delta(G)$ and $\Delta(G)$, respectively. A graph G is regular if the degrees of all vertices of G are the same. We denote the complete graph with n vertices and complete bipartite graph with two parts of sizes m and n, by K_n and $K_{m,n}$, respectively. The complete bipartite graph $K_{1,n}$, is called a star. A Hamiltonian cycle of G is a cycle that contains every vertex of G. A graph is Hamiltonian if it contains a Hamiltonian cycle. A subset X of the vertices of G is called a clique if the induced subgraph on X is a complete graph. A k-vertex coloring of a graph G is an assignment of k colors $\{1, \ldots, k\}$ to the vertices of G such that no two adjacent vertices have the same color. The vertex chromatic number $\chi(G)$ of a graph G, is the minimum k for which G has a k-vertex coloring. A k-edge coloring of a graph G is an assignment of k colors $\{1, \ldots, k\}$ to the edges of G such that no two adjacent edges have the same color. The edge chromatic number $\chi'(G)$ of a graph G, is the minimum k for which G has a k-edge coloring. A graph G is said to be critical if G is connected and $\chi'(G) = \Delta(G) + 1$ and for any edge e of G, we have $\chi'(G \setminus \{e\}) < \chi'(G)$.

Beck in [6] proved several interesting theorems for the vertex chromatic number of a zero-divisor graph. For example, he showed that for any commutative ring R, if R is a direct product of finitely many reduced rings and principal ideal rings, then $\chi(\Gamma(R))$ equals to the size of maximum clique of $\Gamma(R)$. Although Beck used a different graph, his results apply to the current setting. There are many interesting questions about zero-divisor graphs. For instance, Anderson, Frazier, Lauve and Livingston asked in [2]: “For which finite commutative rings R, is $\Gamma(R)$ planar?” In [1] it was proved that if R is a finite local ring such that $\Gamma(R)$ has at least 33 vertices, then $\Gamma(R)$ is not a planar graph.

Results

The vertex chromatic number of zero-divisor graphs has been studied extensively by Beck in [6]. Here we will study the edge chromatic number of zero-divisor graphs and prove that if R is a finite commutative ring, then $\chi'(\Gamma(R)) = \Delta(\Gamma(R))$, unless $\Gamma(R)$ is a complete graph of odd order.

If G is a graph, clearly in any edge coloring of G, the edges incident with one vertex should be colored with different colors. This observation implies that $\chi'(G) \geq \Delta(G)$. An important theorem due to Vizing is the following.
Vizing’s Theorem [8, p. 16]. If G is a simple graph, then either $\chi'(G) = \Delta(G)$ or $\chi'(G) = \Delta(G) + 1$.

Also the following lemma is a key to our proof.

Vizing’s Adjacency Lemma [8, p. 24]. If G is a critical graph, then G has at least $\Delta(G) - \delta(G) + 2$ vertices of maximum degree.

Remark 1. We note that if G is a graph and $\chi'(G) = \Delta(G) + 1$, then there exists a subgraph of G, say G_1, such that $\chi'(G_1) = \Delta(G) + 1$ and for any edge e of G_1 we have $\chi'(G_1 \setminus e) = \Delta(G)$. Clearly G_1 has a connected subgraph, say H, such that $\chi'(H) = \Delta(G) + 1$. The graph H is a critical graph with maximum degree $\Delta(G)$. If x is a vertex of H with degree $\Delta(G)$, then by Vizing’s Adjacency Lemma, H has at least $\Delta(G) - d_H(v) + 2$ vertices of degree $\Delta(G)$, for any vertex v which is adjacent to x. Therefore if G is a graph such that for every vertex u of maximum degree there exists an edge uv such that $\Delta(G) - d(u) + 2$ is more than the number of vertices with maximum degree in G, then by the above argument and Vizing’s Theorem, we have $\chi'(G) = \Delta(G)$.

It is not hard to see that if R is an Artinian local ring, then the Jacobson radical of R equals $Z(R)$. Thus $Z(R)$ is a nilpotent ideal and this implies that if R is not a field, then $\text{Ann}(Z(R)) \neq \{0\}$. Moreover, each element of $\text{Ann}(Z(R))^*$ is adjacent to each other vertex of $\Gamma(R)$.

Theorem 1. If R is a finite local ring which is not a field, then $\chi'(\Gamma(R)) = \Delta(\Gamma(R))$, unless $\Gamma(R)$ is a complete graph of odd order.

Proof. Since R is a finite local ring, $\text{Ann}(Z(R)) \neq \{0\}$. If $\Gamma(R)$ is a complete graph, then by [8, Theorem 1.2, p. 12], we are done. Thus suppose that $\Gamma(R)$ is not a complete graph and so $\text{Ann}(Z(R)) \neq Z(R)$. If $x \in Z(R) \setminus \text{Ann}(Z(R))$, then there is an element $a \in Z(R)$ such that $ax \neq 0$. This implies that x is adjacent to no vertices of $a + \text{Ann}(Z(R))$. Therefore $d(x) \leq |Z(R)| - |\text{Ann}(Z(R))|$. Hence $\Delta(\Gamma(R)) - d(x) + 2 \geq |\text{Ann}(Z(R))| + 1$. Clearly, $\text{Ann}(Z(R))^*$ is the set of all vertices of maximum degree in $\Gamma(R)$. So, by Remark 1, we have $\chi'(\Gamma(R)) = \Delta(\Gamma(R))$. \Box

Now using König’s Theorem, we show that the previous theorem is true for any finite commutative ring.

König’s Theorem [8, p. 11]. For any bipartite graph G, we have $\chi'(G) = \Delta(G)$.

Remark 2. Assume that $R = R_1 \times \cdots \times R_n$ is a finite decomposable commutative ring. We note that if $x = (x_1, \ldots, x_n)$ has maximum degree in $\Gamma(R)$, then x has exactly one non-zero component, say x_1. Now suppose that R_1 is a local ring. We consider two cases: If R_1 is a field, then $\Delta(\Gamma(R)) = d(x) = |R_2| \cdots |R_n| - 1$; If R_1 is not a field, then we have $x_1 \in \text{Ann}(Z(R_1))^*$ and $\Delta(\Gamma(R)) = d(x) = |Z(R_1)||R_2| \cdots |R_n| - 2$.
Theorem 2. If R is a finite decomposable ring, then $\chi'(\Gamma(R)) = \Delta(\Gamma(R))$.

Proof. It is well known that every commutative Artinian ring is isomorphic to the direct product of finitely many local rings, see [5, p. 90]. Suppose that $R = R_1 \times \cdots \times R_n$, where $n \geq 2$ and each R_i is a local ring. By Remark 2, without loss of generality suppose that the non-zero components of the vertices with maximum degree in $\Gamma(R)$ occur in R_1, \ldots, R_k.

First we claim that all of the rings R_1, \ldots, R_k are fields or none of them are fields. Working towards a contradiction suppose that R_1 is a field and R_2 is not a field. Now, every vertex with maximum degree in $R_1 \times \{0\} \times \cdots \times \{0\}$ has degree $|R_1||Z(R_2)||R_3| \cdots |R_n| - 2$. Thus we have $|Z(R_2)||R_3| \cdots |R_n|(|R_1| - |R_2/Z(R_2)|) = 1$, a contradiction. Therefore by Remark 2, for any i, $1 \leq i \leq k$, $\Delta(\Gamma(R)) = |R_1| \cdots |R_{i-1}||Z(R_i)||R_{i+1}||R_{i+2}||R_n| - 1$, where $r = 1$ or 2. Hence, we have $|R_1/Z(R_1)| = \cdots = |R_k/Z(R_k)|$. Moreover, since for each j, $k + 1 \leq j \leq n$, the degree of any vertex in $\{0\} \times \cdots \times \{0\} \times R_j \times \{0\} \times \cdots \times \{0\}$ is less than $\Delta(\Gamma(R))$, we have

$$|R_j/Z(R_j)| \geq |R_1/Z(R_1)|.$$

For any t, $1 \leq t \leq n$, suppose that e_t is the element whose tth component is one and other components are zero. First, suppose that the rings R_1, \ldots, R_k are not fields. Then $\Gamma(R)$ has $\sum_{i=1}^k |\text{Ann}(Z(R_i))|$ vertices of maximum degree. Clearly, every vertex of maximum degree in $\Gamma(R)$ is adjacent to at least one of the e_t’s. Now for any i, $1 \leq i \leq n$, we have

$$\Delta(\Gamma(R)) - d(e_t) + 2 \geq (|R_1| \cdots |R_{i-1}||Z(R_i)||R_{i+1}| \cdots |R_n| - 2)$$

$$- (|R_1| \cdots |R_{i-1}||R_{i+1}| \cdots |R_n| - 1) + 2$$

$$= |R_1| \cdots |R_{i-1}||Z(R_i)| - 1||R_{i+1}| \cdots |R_n| + 1$$

$$> \sum_{i=1}^k |\text{Ann}(Z(R_i))|.$$

Hence by Remark 1, we conclude that $\chi'(\Gamma(R)) = \Delta(\Gamma(R))$. Next, suppose that the rings R_1, \ldots, R_n are fields. Then $\Gamma(R)$ has $\sum_{i=1}^k |R_i^*|$ vertices of maximum degree. If $n > 2$, then every vertex of maximum degree in $\Gamma(R)$ is adjacent to $1 - e_i$, for some i, $1 \leq i \leq k$. Note that in this case $|R_1| = \cdots = |R_k|$ and if we set $|R_1| = a$, then by (\ast) we have $|R_j| \geq a$, for any j, $j > k$. Now since $a^{n-1} - a + 2 > n(a-1)$, for any i, $1 \leq i \leq k$, we have

$$\Delta(\Gamma(R)) - d(1 - e_i) + 2 \geq (|R_1| \cdots |R_{i-1}||R_{i+1}| \cdots |R_n| - 1) - (|R_1| - 1) + 2$$

$$\geq a^{n-1} - a + 2 > \sum_{i=1}^k |R_i^*|.$$

Thus by Remark 1, we conclude that $\chi'(\Gamma(R)) = \Delta(\Gamma(R))$. So assume that $n = 2$. If $k = 1$ and R_2 is not a field, then by (\ast) we have $|R_2| \geq 2|R_1|$. Since in this case
any vertex of maximum degree in $\Gamma(R)$ is adjacent to e_2 and $\Delta(\Gamma(R)) - d(e_2) + 2 = (|R_2| - 1) - (|R_1| - 1) + 2 > |R_1|$, by Remark 1, we obtain $\chi'(\Gamma(R)) = \Delta(\Gamma(R))$. If either $k = 1$ and R_2 is a field or $k = 2$, then $\Gamma(R)$ is a complete bipartite graph. Hence, by König’s Theorem, we have $\chi'(\Gamma(R)) = \Delta(\Gamma(R))$ and the proof is complete. \hfill \square

Now we are in a position to assert our main theorem.

Theorem 3. If R is a finite ring, then $\chi'(\Gamma(R)) = \Delta(\Gamma(R))$, unless $\Gamma(R)$ is a complete graph of odd order.

The question of when $\Gamma(R) \cong \Gamma(S)$ implies that $R \cong S$ is very interesting and this question has been investigated in [2] and [3]. In [3] it is shown that for any commutative ring R, $\Gamma(\Gamma(R))$ and $\Gamma(R)$ are isomorphic, where $T(R)$ is the ring of fractions of R with respect to the multiplicatively closed subset $R \setminus Z(R)$ of R.

Theorem 4. If R_1, \ldots, R_n and S_1, \ldots, S_m are finite local rings, then the following hold:

(i) For $n \geq 2$, $\Gamma(R_1 \times \cdots \times R_n) \cong \Gamma(S_1)$ if and only if $n = 2$ and either $R_1 \times R_2 \cong \mathbb{Z}_2 \times \mathbb{Z}_2$ or $R_1 \times R_2 \cong \mathbb{Z}_2 \times \mathbb{Z}_3$. In the first case either $S_1 \cong \mathbb{Z}_3[x]/(x^2)$ and in the later case S_1 is isomorphic to one of the rings \mathbb{Z}_8, $\mathbb{Z}_2[x]/(x^3)$, or $\mathbb{Z}_4[x]/(2x, x^2 - 2)$.

(ii) For $n, m \geq 2$, $\Gamma(R_1 \times \cdots \times R_n) \cong \Gamma(S_1 \times \cdots \times S_m)$ if and only if $n = m$ and there exists a permutation π over $\{1, \ldots, n\}$ such that for any i, $1 \leq i \leq n$, $|R_i| = |S_{\pi(i)}|$ and $\Gamma(R_i) \cong \Gamma(S_{\pi(i)})$.

Proof. (i) Since $n \geq 2$, we have $\Gamma(R_1 \times \cdots \times R_n) \cong \Gamma(S_1)$ is not empty and thus S_1 is not a field. Since $\Gamma(S_1)$ has a vertex which is adjacent to every other vertex in $\Gamma(S_1)$, by [4, Theorem 2.5], we have $R_1 \times \cdots \times R_n \cong \mathbb{Z}_2 \times F$, where F is a finite field. Thus $n = 2$. On the other hand, since $\Gamma(S_1) \cong \Gamma(\mathbb{Z}_2 \times F)$ is a star, by [4, Theorem 2.13], we conclude that $\Gamma(\mathbb{Z}_2 \times F)$ has fewer than four vertices. Hence $|F| \leq 3$, and $F \cong \mathbb{Z}_2$ or \mathbb{Z}_3. Now, by [2, Example 2.1(a)], the proof is complete. The other direction of the theorem is proved by direct verification.

(ii) First suppose that $n = m$ and $|R_i| = |S_i|$ and $\Gamma(R_i) \cong \Gamma(S_i)$ for any i, $1 \leq i \leq n$. Define the function $f_i : R_i \rightarrow S_i$, by $f_i(0) = 0$, and f_i is one to one correspondence between $R_i \setminus Z(R_i)$ and $S_i \setminus Z(S_i)$ and the restriction of f_i to $Z(R_i)^*$ is a graph isomorphism between $\Gamma(R_i)$ and $\Gamma(S_i)$. Now, it is easy to see that the function $f : \Gamma(R_1 \times \cdots \times R_n) \rightarrow \Gamma(S_1 \times \cdots \times S_m)$ defined by $f((x_1, \ldots, x_n)) = (f_1(x_1), \ldots, f_n(x_n))$ is a graph isomorphism.

Conversely suppose that $f : \Gamma(R_1 \times \cdots \times R_n) \rightarrow \Gamma(S_1 \times \cdots \times S_m)$ is a graph isomorphism. By Remark 2, without loss of generality we may assume that $x = (r, 0, \ldots, 0)$ is a vertex with maximum degree in $\Gamma(R_1 \times \cdots \times R_n)$. Thus $f(x)$ in $\Gamma(S_1 \times \cdots \times S_m)$ has maximum degree. By applying a permutation, we may assume that $y = f(x) = (s, 0, \ldots, 0)$. Now, we show that $|R_1| = |S_1|$ and $\Gamma(R_1) \cong \Gamma(S_1)$. First assume that $R_1 \cong \mathbb{Z}_2$. Toward a contradiction, suppose that S_1 is not isomorphic to \mathbb{Z}_2. If $B = (S_1 \setminus (Z(S_1) \cup \{s\})) \times \{0\} \times \cdots \times \{0\}$, then every vertex in B has maximum degree.
among all vertices in $\Gamma(S_1 \times \cdots \times S_m)$ which are not adjacent to y. But among all vertices of $\Gamma'(R_1 \times \cdots \times R_n)$ which are not adjacent to x, those vertices having maximum degree are those whose first components are one and have just one non-zero component other than their first components. For instance, assume that $(1, t, 0, \ldots, 0)$ is one of these vertices. We know that $d((1, t, 0, \ldots, 0)) = |Z(R_2)||R_3| \cdots |R_n| - 1$ and the degree of each vertex in B is $|S_2| \cdots |S_m| - 1$. This implies that $|Z(R_2)||R_3| \cdots |R_n| = |S_2| \cdots |S_m|$. Also, we have $d(x) = |S_2| \cdots |R_n| - 1$. If S_1 is a field, then we have $d(y) = |S_2| \cdots |S_m| - 1$. It follows that $|R_2| \cdots |R_n| - 1 = |S_2| \cdots |S_m| - 1$. Therefore $|R_2| = |Z(R_2)|$, which is a contradiction. Thus we conclude that S_1 is not a field. Hence we find that $d(y) = |Z(S_1)| |S_2| \cdots |S_m| - 2$. This yields $|R_2| \cdots |R_n| - 1 = |Z(S_1)| |S_2| \cdots |S_m| - 2$, hence $|Z(R_2)||R_3| \cdots R_n |(Z(S_1)| - |Z(R_2)/Z(R_2)|) = 1$. Therefore $n = 2$ and $|Z(R_2)| = 1$. It follows that R_2 is a field. Thus x is adjacent to the all vertices of $\Gamma(R_1 \times \cdots \times R_n)$ and since $B \neq \emptyset$, it is a contradiction.

Thus we may assume that neither R_1 nor S_1 is isomorphic to \mathbb{Z}_2. If $A = (R_1 \setminus (Z(R_1) \cup \{r\})) \times \{0\} \times \cdots \times \{0\}$, then every vertex in A has maximum degree among all vertices in $\Gamma'(R_1 \times \cdots \times R_n)$ which are not adjacent to x. The degree of any vertex in A is equal to $|R_2| \cdots |R_n| - 1$. Also, since $S_1 \not\subset \mathbb{Z}_2$, B is the set of all vertices in $\Gamma'(S_1 \times \cdots \times S_m)$ with maximum degree among the all vertices which are not adjacent to y. Since the degree of each vertex in B is $|S_2| \cdots |S_m| - 1$, we should have $|R_2| \cdots |R_n| - 1 = |S_2| \cdots |S_m| - 1$.

If R_1 is a field and S_1 is not a field, as we saw in the previous case, we have $d(x) = |R_2| \cdots |R_n| - 1$ and $d(y) = |Z(S_1)| |S_2| \cdots |S_m| - 2$, hence $|R_2| \cdots |R_n| |(Z(S_1)| - 1) = 1$, a contradiction. Thus both R_1 and S_1 are fields or none of them are fields. First suppose that R_1 and S_1 are fields. Now, we know that $|A| = |R_1| - 2$ and $|B| = |S_1| - 2$ are equal. This implies that $|R_1| = |S_1|$. Since in this case $\Gamma'(R_1)$ and $\Gamma'(S_1)$ are empty, there is nothing to prove.

So, suppose that R_1 and S_1 are not fields. Hence $d(x) = |Z(R_1)||R_2| \cdots |R_n| - 2$ and $d(y) = |Z(S_1)| |S_2| \cdots |S_m| - 2$. This implies that $|Z(R_1)||R_2| \cdots |R_n| = |Z(S_1)| |S_2| \cdots |S_m|$ and so we obtain $|Z(R_1)| = |Z(S_1)|$. Now, we know that $|A| = |R_1| - |Z(R_1)|$ and $|B| = |S_1| - |Z(S_1)|$ are equal, hence $|R_1| = |S_1|$. Clearly, the restriction of f to A is a one to one correspondence between A and B. So we may assume that $f(u, 0, 0, \ldots, 0) = (u, S_1 Z(S_1))$ if $a \in Z(R_1)$ and $f(a, 0, 0, 0) = (b_1, \ldots, b_m)$, we show that $b_2 = \cdots = b_m = 0$. Since every vertex adjacent to $(1, 0, 0, \ldots, 0)$ in $\Gamma'(R_1 \times \cdots \times R_n)$ is adjacent to $(a, 0, 0, \ldots, 0)$, every vertex adjacent to $(a, 0, 0, \ldots, 0)$ is adjacent to (b_1, \ldots, b_m). Since, for any i, $2 \leq i \leq m$, the vertices e_i are adjacent to $(u, 0, 0, \ldots, 0)$, we have $b_2 = \cdots = b_m = 0$, where e_i is the element whose ith component is one and other components are zero. Thus $b_1 \neq 0$. This implies that the function $f_1 : \Gamma'(R_1) \rightarrow \Gamma'(S_1)$ defined by $a \rightarrow f(a, 0, 0, 0) = (b, 0, 0, \ldots, 0)$ is a graph isomorphism, and thus $\Gamma(R_1) \cong \Gamma(S_1)$.

If (a_0, a_2, \ldots, a_n) is non-zero, then $f(0, a_2, \ldots, a_n)$ is adjacent to $(u, 0, 0, \ldots, 0)$. So, we may write $f(a_0, a_2, \ldots, a_n) = (0, b_2, \ldots, b_m)$. Now, we show that the function $f'(R_2 \times \cdots \times R_n) \rightarrow \Gamma(S_2 \times \cdots \times S_m)$ defined by $(a_0, a_2, \ldots, a_n) \rightarrow f(0, a_2, \ldots, a_n) = (0, b_2, \ldots, b_m) \rightarrow (b_2, \ldots, b_m)$ is well-defined. Indeed, if (a_0, a_2, \ldots, a_n) is a vertex in $\Gamma'(R_2 \times \cdots \times R_n)$, then there exists an index i, $2 \leq i \leq m$, such that b_i is a zero-divisor.

The reason is that otherwise $d((0, b_2, \ldots, b_m)) = |S_1| - 1$ whereas $d((0, a_2, \ldots, a_n)) > |R_1| - 1$, because at least one of the a_i’s is zero-divisor. Clearly f' is a graph isomorphism
and therefore $\Gamma(R_2 \times \cdots \times R_n) \cong \Gamma(S_2 \times \cdots \times S_m)$. If $n, m \geq 3$, we repeat this procedure.

Suppose that $n > m$. Thus, by rearrangement, we may assume that $\Gamma(R_m \times \cdots \times R_n) \cong \Gamma(S_m)$. By part (i), we have $R_m \times \cdots \times R_n \cong \mathbb{Z}_2 \times \mathbb{Z}_2$ or $\mathbb{Z}_2 \times \mathbb{Z}_3$ and $|S_m| = 8$ or 9.

Hence $n = m + 1$. Since $[0] \times \cdots \times [0] \times R_m \times [0]$ contains a vertex of maximum degree in $\Gamma(R_1 \times \cdots \times R_n)$, by Remark 2, we have $R_1 \cong \cdots \cong R_{m-1} \cong \mathbb{Z}_2$. This implies that $S_1 \cong \cdots \cong S_{m-1} \cong \mathbb{Z}_2$. Now, we have $\Delta(\Gamma(R_1 \times \cdots \times R_n)) = 2^{n-1} - 1$ or $3 \cdot 2^{n-2} - 1$ and $\Delta(\Gamma(S_1 \times \cdots \times S_m)) = 2^{m-2}|S_m| - 1$. Thus $|S_m| = 4$ or 6, a contradiction. Hence $n = m$. So, by repeating the above proof and rearrangement, we have $\Gamma(R_i) \cong \Gamma(S_i)$ for any $i, 1 \leq i \leq n$, and $|R_i| = |S_i|$ for any $i, 1 \leq i \leq n$. Now, since $\Gamma(R_1 \times \cdots \times R_n)$ and $\Gamma(S_1 \times \cdots \times S_m)$ have the same maximum degree we conclude that $|R_n| = |S_n|$ and the proof is complete. □

Recently Anderson, Frazier, Lauve, and Livingston in [2] have proved that if R and S are finite reduced rings which are not fields, then $\Gamma(R) \cong \Gamma(S)$ if and only if $R \cong S$. In what follows we generalize this result. Indeed we show that if one of the two rings is reduced the assertion remains true.

Theorem 5. Let R be a finite reduced ring and S be a ring such that S is not an integral domain. If $\Gamma(R) \cong \Gamma(S)$, then $R \cong S$, unless $R \cong \mathbb{Z}_2 \times \mathbb{Z}_2$, \mathbb{Z}_6 and S is a local ring.

Proof. Since $\Gamma(S)$ is finite, by [4, Theorem 2.2], we have S is finite. Since $\Gamma(R)$ is not empty, R is not a field. Thus by [5, Theorem 8.7, p. 90] we may write $R \cong F_1 \times \cdots \times F_n$ and $S \cong S_1 \times \cdots \times S_m$, where $n \geq 2$ and F_i’s are finite fields and S_i’s are finite local rings. If $m = 1$, by part (i) of the previous theorem, $n = 2$ and $R \cong \mathbb{Z}_2 \times \mathbb{Z}_2$ or $\mathbb{Z}_2 \times \mathbb{Z}_3$. So, suppose that $n, m \geq 2$. Now, by part (ii) of the previous theorem, we have $n = m$ and there exists a permutation π over $[1, \ldots, n]$ such that $\Gamma(S_i) \cong \Gamma(F_{\pi(i)})$ and $|S_i| = |F_{\pi(i)}|$. Since the F_i’s are finite fields, $S_i \cong F_{\pi(i)}$ for any $i, 1 \leq i \leq n$. Thus $R \cong S$ and the proof is complete. □

Now we want to characterize all regular graphs which can be the zero-divisor graph of a commutative ring. The following theorem shows that any infinite zero-divisor graph has a vertex with infinite degree.

Theorem 6. If R is a ring such that R is not an integral domain and every vertex of $\Gamma(R)$ has finite degree, then R is a finite ring.

Proof. Suppose R is an infinite ring. Let x and y be non-zero elements of R such that $xy = 0$. Then $yR^* \subseteq \text{Ann}(x)$. If yR^* is infinite, then x has infinite degree in $\Gamma(R)$. If yR^* is finite, there exists an infinite subset A of R^* such that if $a_1, a_2 \in A$, then $y(a_1 \cdots a_2)$. If a_0 is a fixed element of A, then $\{a_0 - a \mid a \in A\}$ is an infinite subset of $\text{Ann}(y)$ and so y has infinite degree in $\Gamma(R)$, a contradiction. □

Theorem 7. Let R be a finite ring. If $\Gamma(R)$ is a regular graph, then it is either a complete graph or a complete bipartite graph.
Similarly, R includes all vertices of $\Gamma(R)$ to see that a Hamiltonian cycle in $x/\Gamma(R)$ then R. Hence suppose $\{Z(R)\}$ is a bipartite graph. Consequently, the proof is complete.

Theorem 8. Let R be a finite decomposable ring. If $\Gamma(R)$ is a Hamiltonian graph, then $\Gamma(R) \simeq K_{n,n}$ for some natural number n.

Proof. Since R is a decomposable ring, we may write $R = R_1 \times R_2$. Clearly, it suffices to show that R_1 and R_2 are fields. Suppose that $Z(R_1) \neq \{0\}$. Put $A = Z(R_1)^* \times (R_2 \setminus Z(R_2))$ and $B = Z(R_1)^* \times \{0\}$. We note that B is the set of all vertices adjacent to at least one vertex of A, and that there are no edges between the vertices of A. Now, it is easy to see that a Hamiltonian cycle in $\Gamma(R)$ contains a matching between A and B which includes all vertices of A. Hence $|A| \leq |B|$ and this implies that $|R_2 \setminus Z(R_2)| \leq 1$. Because a commutative Artinian ring is a finite direct product of local rings, and since the only non-zero-divisor element of R_2 is the identity, R_2 must be a finite direct product of \mathbb{Z}_2's. Let x be that element of R_2 whose first component is zero and other components are one. So $(1, x)$ is a vertex of degree 1 in $\Gamma(R)$, which is impossible. Thus R_1 and similarly R_2 are fields and the proof is complete.

Theorem 9. Let R be a finite principal ideal ring. If $\Gamma(R)$ is a Hamiltonian graph, then it is either a complete graph or a complete bipartite graph.

Proof. If R is a decomposable ring, then by the previous theorem, $\Gamma(R)$ is a complete bipartite graph. Hence suppose R is an indecomposable ring. Now by [5, Theorem 8.7, p. 90], R is a local ring and $Z(R)$ is a principal ideal. Let $Z(R) = Rx$. If $Ann(x) \neq Z(R)$, then $x \notin Ann(x)$. Since $Ann(x) = Ann(Z(R))$, the vertices of $x + Ann(x)$ are adjacent to all vertices of $Ann(x)^*$ and not adjacent to any other vertex. Now, along a Hamiltonian cycle, when we leave a vertex of $x + Ann(x)$ we reach a vertex of $Ann(x)^*$, but this is impossible, since $|Ann(x)^*| < |x + Ann(x)|$. Thus $Ann(x) = Z(R)$ and $\Gamma(R)$ is a complete graph.

Corollary 1. The graph $\Gamma(\mathbb{Z}_n)$ is a Hamiltonian graph if and only if $n = p^2$, where p is a prime more than 3 and in this case $\Gamma(\mathbb{Z}_n) \simeq K_{p-1}$.

Proof. If \mathbb{Z}_n is a decomposable ring as we saw in the proof of Theorem 8, then $\mathbb{Z}_n \simeq \mathbb{Z}_p \times \mathbb{Z}_p$, where p is a prime number, a contradiction. Now if \mathbb{Z}_n is an indecomposable
then \(n = p^r \), where \(p \) is a prime number and \(r \) is a natural number. If \(r \geq 3 \), then two vertices \(p \) and \(2p \) are not adjacent and according to the proof of Theorem 9, we get a contradiction. Therefore \(r = 2 \) and \(\Gamma(\mathbb{Z}_n) \cong K_{p-1} \). □

Remark 3. If \(R = \mathbb{Z}_3[x, y]/(x^2 + xy, y^2 + 2xy) \), then \(R \) is a local ring with unique maximal ideal \(Z(R) \) such that \(Z(R)^3 = \{0\} \). Note that \(\Gamma(R) \) is a Hamiltonian graph which is neither a complete graph nor a complete bipartite graph (since \(\bar{x} \) and \(\bar{y} \) are not adjacent and \(\bar{x}, \bar{x} \bar{y}, 2 \bar{x} \bar{y} \) are mutually adjacent). The following sequence shows a Hamiltonian cycle in \(\Gamma(R) \):

\[
\begin{align*}
\bar{x} &\rightarrow \bar{x} + \bar{y} \rightarrow \bar{x} + \bar{x} \bar{y} \rightarrow \bar{x} + \bar{y} + \bar{x} \bar{y} \rightarrow \bar{x} + 2\bar{x} \bar{y} \rightarrow \bar{x} + \bar{y} + 2\bar{x} \bar{y} \rightarrow 2\bar{x} \\
&\rightarrow 2\bar{x} + 2\bar{y} \rightarrow 2\bar{x} + \bar{x} \bar{y} \rightarrow 2\bar{x} + 2\bar{y} + \bar{x} \bar{y} \rightarrow 2\bar{x} + 2\bar{x} \bar{y} \rightarrow 2\bar{x} + 2\bar{y} + 2\bar{x} \bar{y} \rightarrow \bar{x} \bar{y} \\
&\rightarrow \bar{y} \rightarrow \bar{x} + 2\bar{y} \rightarrow \bar{y} + \bar{x} \bar{y} \rightarrow \bar{x} + 2\bar{y} + \bar{x} \bar{y} \rightarrow \bar{y} + 2\bar{x} \bar{y} \rightarrow \bar{x} + 2\bar{y} + 2\bar{x} \bar{y} \rightarrow 2\bar{y} \\
&\rightarrow 2\bar{y} + \bar{y} \rightarrow 2\bar{y} + \bar{x} \bar{y} \rightarrow 2\bar{y} + \bar{y} + \bar{x} \bar{y} \rightarrow 2\bar{y} + 2\bar{x} \bar{y} \rightarrow 2\bar{y} + \bar{y} + 2\bar{x} \bar{y} \rightarrow 2\bar{x} \bar{y} \rightarrow \bar{x}.
\end{align*}
\]

Acknowledgments

The authors are indebted to the Research Council of Sharif University of Technology for support. Also the authors thank the referee for her/his valuable comments.

References