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1. INTRODUCTION

1.1. Statement of the Problem

Let Q be an open bounded domain in R? with a sufficiently smooth, say
C™, boundary I". It would suffice to assume that the boundary I is C*.
This, however, would require more involved estimates at the level of
pseudodifferential calculus used later. In order to avoid unessential com-
plications, we prefer to assume C™ regularity of the boundary. In Q, we
consider the following model of the Kirchoff plate with homogeneous
Dirichlet boundary conditions and a control, u, acting through a second
order boundary condition (as a moment):

w,—ydw,+2Aw=0 in Qr=(0,T)xQ (1.1.a)
w0, -)=w

"} in Q (1.1b)
w, (0, -)=w,

w=0 on 2,=(0,T)xrI (l.1.c)

Aw=ue L,(X ;) on 2,=(0,T)x[T, (1.1.d)

where we assume 0 <y <M. This parameter, y, is proportional to the
square of the thickness of the plate and is therefore assumed to be small.

Closely related to this problem is the limit problem as y |0, which is
called the Euler-Bernoulli plate equation and is described by the following
model (see [10]):
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w,+4*w=0 in Q, (1.2.a)
w(0, - )=w,
in Q (1.2.b)
w,(0,-)=w,
w=0 on 2, (1.2.c)
Aw=uelL,(2;) on X, (1.2.d)

We are interesied in the question of uniform stabilization for both these
models, i.c., can we express u in terms of w, {as a feedback) so that the
resulting system is well-posed and the energy of the system defined in an
appropriate topology decays exponentially with respect to the energy at
t =07 Moreover, we would ideally like the feedback control designed for
model (1.1) to remain effective for its corresponding limit problem (when
1 — 0), i.e., the model (1.2). This is to say that the properties of stabiliza-
tion are “robust” (insensitive} with respect to the parameter of the equation
which, in our case, 18 > 0.

The interest in studying sensitivity of feedback controls with respect to
the parameter y > 0 is motivated by several reasons. Among them is the fact
that the value of the parameter y > 0 is usually very small. Thus it would
be highly undesirable if the feedback control “loses” its properties in the
limit process. We also note that inclusion of y > 0 changes the character of
the models. Model (1.1) (y >0) is of hyperbolic type (with finite speed of
propagation), while model (1.2) is of Petrovsky type (with infinite speed
of propagation).

1.2. Literature

The study of exact controllability and boundary stabilization for both
Euler-Bernoulli and Kirchoff models has attracted attention in recent
years. We shall focus on equations with boundary conditions imposed on
w| and 4w, as in the present models (1.1) and (1.2). For other cases of
boundary conditions, we refer the reader to [11, 197 (exact controllability)
and [2, 10, 227 (stabilization). First results were obtained for the easier
problem of exact controllability (versus stabilization) with L,-controls.
Since the optimal regularity results for (1.1) give

ue Ly(X7)=>(w,w)eC([0, T], H ()N H{(Q)x H{(R2)) (1.3)

(see [16]), while for the corresponding Euler-Bernoulli plate, [13] has
found that

ue Ly(X7)=(w, w,)e C([0, T]; Ho(2)x H'(2)), (1.4)
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the above spaces seem a natural choice of topologies suitable for con-
trollability. The initial controliability results for Euler-Bernoulli model
(1.2) (respectively, Kirchoff model (1.1}) on spaces of optimal regularity as
in (1.4) (respectively, (1.3)) were proved in [19] and with more extensive
treatment in [ 14] (respectively, [11]). In all these references, a suitable dif-
ferential multiplier method was used which produced exact controllability
under the assumption that two controls are active on the boundary X'; (ie.,
w|r=u,, Aw|,=u,). The problem of controlling the plate equation with
only one control active (say w|, =0, Aw|,-=u) is more delicate and its
solution requires more refined analysis. This consists of removing one
boundary term of higher order in the appropriate original inequality. In the
case of the Kirchoff model, exact controllability with one control has been
obtained in [16] and later, by different methods, in [9]. For the Euler-
Bernoulli model, the corresponding result has been proved in {18]. Later,
[ 6] extended this result to general boundary conditions which account for
moments of inertia and where the techniques of [18], based on a certain
symmetry of the boundary conditions and the associated biharmonic
operator, are not applicable. (See also a more recent unified treatment by
[25] where the problem with a “reduced number of controls™ is treated.)

When it comes to the stabilization problem, the situation is far more com-
plicated. Indeed, the multiplier method used in the context of controllability
does not produce the right estimates even in the case of very simple
geometries (e.g., a disk). To cope with this problem, more sophisticated
techniques, involving some pseudodifferential calculus, are needed even in
the simplest cases. Relevant stabilization results that have been obtained
for these two plates with onfly one control acting through Aw] ., are

(i) uniform stabilization results for (1.1) with u= —(J/dv) w, in the
space H*(2)n H)(Q)x Hi(2) under the assumption that the domain
must be convex (see [16]);

(i) uniform stabilization of model (1.2) with u= —(J/0v) w, in the
space H*(22)x L,(2) under the assumption that £ is a sphere (or a small
deformation of a sphere) [157;

(i) uniform stabilization of model (1.2) with u= —(&/év) 4 ~'w, on
the space of optimal regularity, H}(£2)x H '(Q), without geometric
conditions (see [12] and [7] where boundary conditions accounted for
moments of inertia).

The main goal and contribution of this paper is the construction of a
stabilizing feedback control, =% (w,)e L,(2;), acting as a moment only,
which would

(1) provide exponential decay rates for the Kirchoff model (1.1)
which are independent of the parameter y > 0,
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(2) not require that any geometric assumptions (except for the usual
regularity hypothesis) be imposed on the domain Q.

These results would also allow us to pass with the limit as y | 0 and to
obtain results for the limit equation (1.2) with y =0 on the space H?*(Q2) x
L,(£2). This general type of problem was treated in [ 10], however, different
boundary conditions were considered. Indeed, in [107], feedback control
was acting via two boundary conditions, moments and forces. Moreover,
geometric conditions of “star-shaped” type are assumed in [10]. In that
case, the desired asymptotic estimates followed from multiplier techniques
applied directly to the original equation. In our case, the technical dif-
ficulties are much greater. It suffices to mention that the rather complicated
techniques of [16] (going for beyond multiplier methods and dealing with
stabilization of the Kirchoff plate via moments only), even in the case of
convex domains, are still not adequate because when y | 0 critical constants
in the estimates that are needed to prove uniform stabilization become
infinite. Thus, another approach is necessary. In fact, the crux of the matter
is in proving rather refined estimates (see Lemmas 2.2 and 2.3} involving
microlocal analysis. We shall see that as a result of our analysis, we will
obtain not only the “desirable” limit behavior, but we will also be able
to improve results (i) and (ii) for both model (1.1) and model (1.2) by
entirely deleting (rather severe) geometric conditions on the domain
{particularly ii).

We note that geometric conditions imposed on the domain £ (usually
“star-shaped” type) are typical for most of the results on stabilization and
controllability of plate equations (see [ 10, 19]) with the exception of [21]
and [18] where some controllability resuits are obtained for Euler—
Bernoulli plates by methods of geometric optics.

1.3. The Feedback System and Uniform Stabilization

Because of the regularity and exact controllability results found in [16],
the appropriate space for stabilization of (1.1) is H*(2)x H}(£2), with a
suitable topology. We define the energy corresponding to system (1.1) to be

E(1)=1wlDlZya + 7 IVw (D0 + 14w 0
= 1wy i+ 14913 0 (L5)
where H .(£2) will be our notation for the Hilbert space H(£2) with norm
1815 = 181720y + 7 1VE 20y (1.6)

Note that if we set u=0 in (1.1), the resulting system is conservative.
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As seen in [16], u= —(d/dv)w, is a reasonable candidate for the
uniform stabilization of (1.1). With u so defined we will consider the
following feedback system.

w, —y Aw, + 4*w=0 in 0, =(00)xQ
w(0, -) =wy

w,(0, - —ul}

=0 on X _ =(0,0c)xI’

in Q
(1.7)

Aw:———u, on 2, =(0,xx)x[1.
ov

The following well-posedness and regularity results hold for the Kirchoff
model (1.7).

THEOREM L.1. (i) (Well-posedness on H*(Q) x H| (). Lef (wy, w,)€
H*(Q)x H} (). Then there exists a unique solution (in the sense of distri-
butions), (w(t), w,(1))e C([0, T); HX(Q)x H(Q)), satisfving system (1.7).

(ii) (L,-boundedness of the feedback operator). For (wgy, w,)€
H*(Q)x H{ (Q), the solution, w(t), of (1.7) satisfies

fy

(ii) (Regularity). If, in addition, (w,, w,)e H*(Q2)x H* () and
satisfies the appropriate compatibility conditions at the origin, i.e.,

L

oW,

E dr < E,(0). (1.8)

LaAl)

wolr=w| =0

Awg| = —(3/dv) wy,

(1.9)

then the corresponding solution, w(t), of (1.7} satisfies

we C(0, oc; H*(2)), w,eC(0, oc; HYQ)), w,eC(0, oc; HY(R)).
(1.10)

Parts (i) and (ii) of Theorem 1.1 have been proved in [16]. Part (iii) has
been proved in [81].

By using the regularity result of Theorem 1.1, for every (w,, w )€
H*(Q)x H) () satisfying (1.9) and every >0,

2

dt = E (a). (1.11)

w

iI(F)
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The above equality can be extended by density to all (wy, w,)e H3(Q) x
H(£2).

The corresponding well-posedness results for the Euler-Bernoulli model
associated with (1.7) have been proved in [13] and are stated in the
following theorem.

THEOREM 1.2. (i) (Well-posedness on H*(2)x L,(2)). Let (wy, w,) e
H?(2) x L,(Q). Then there exists a unique solution (in the sense of distribu-
tions) (w(t), w,(£))e C([0, T]; H*(R2) x L,(R)), satisfying system (1.2) with
u= —(a/év)w,.

(i) (L,-boundedness of the feedback operator). For (w,, w,)e
H?(2)x Lo(2), the solution, w(t), of (1.2) with u= —(8/dv) w, satisfies

X

We now state our uniform stabilization result for (1.7).

—é‘_‘;wr‘ dt < | 4woli 7y + 1W1ll7 400 (1.12)
|

Lal)

THEOREM 1.3. The feedback system (1.1), with u= —(3/cv)w,, is
uniformly (exponentially) stable on the space H*(2)x H§ AQ); ie., there
exist constants, C>0, w >0, such that

WO a2+ WA 1 o) < Ce™ " TIwol fgy + IWill 5y 0] (113)

Moreover, the constants C and o are independent of v.

CoroOLLARY 1.1. The feedback system for the Euler—Bernoulli plate
corresponding to the limit problem of (1.7), again with u= —(8/6v)w,, is
uniformly (exponentially) stable on the space H*(82) x L,(Q); i.e., there exist
constants, C >0, w >0, such that

W 3200, + 1WA D17 40, < Ce ™ Llwoll 3oy + W11 2,0, (1.14)

Remark. The results of Theorem 1.3 and Corollary 1.1, as well as the
well-posedness results, can be extended to the case when the boundary
condition (1.1.d) is replaced by

Aw+ (1 —p)Bw=u onl,, (1.15)

where 0 < u < { is Poisson’s ratio and the boundary operator B is defined
by

Bw=———w—k—w=—k —w, (1.16)
T Vv
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where k = k(x) is the geodesic curvature of the boundary I, and the second
equality follows from (1.1.c) (see [8]). In fact, the techniques presented in
this paper, together with estimates for the operator B given in [6], [7],
can be adapted to this more general situation.

Proof of Corollary 1.1.  Let w.(t) denote the solution to (1.7) with y > 0.
Then by Theorem 1.3, w,(7) satisfies

I Wm0+ 19, D 0y S Ce™ “ Tbwolaay + Wil )3 (117)

-

where the constants C and w are independent of y. Hence there exists a
subsequence, also denoted by w_ (1), such that

and

a 2
v

2
dt < CLIwoll 20+ Wil )]
Lo(I) "

w, =5 W in L_(0, T; H¥(£2)), (1.18)
W, W, in L (0, T;L,(2)) (1.19)
0 Y
—w, 2w, in Ly(Z,) (1.20)
v " ov

Proof of 1.20. Since
0

a , .
—Ww,, <C=—w, ,— 1 in L,(X;), (1.21)
oy 7 ov "

LAZ7)
is {=(d/dv) w,? We know, that
W, > w in L,(0, T; H*(Q))

N ) (1.22)
> W, — W, in H-Y0, T; H*(£)).
Let D: H*(I') —» H*(£2) be the “Dirichlet map” defined by
4v=0 in Q
Dg=v©{ v n (1.23)
vl =g

Hence, taking ge H(0, T; H*(I'})=> Dge H}(0, T; H*(RQ)), we find

0
(5 Wy o g) = (4w, 1, Dg) 1,0,
LAEp)

= —(dw,, Dgl)Lz(QTl 5o — (4w, Dg’)Lz(QT)

0
=<— w,, g) Vge HLO, T; H:(I)), (1.24)
ov LaAZp)
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where the convergence of the inner product follows from (1.22). On the
other hand,

é
(5; - g) )i, (125)
' LX)

and, since H}0, T; H*(I')) is dense in L,(X';), we reach our desired con-
clusion,

N
=

w,. 1 (1.26)

v
=

Using (1.18)-(1.20), we may pass to the limit as y - 0 in (1.7) to obtain

w,+42w=0 inQ;

w(0, - )=w
( 0} in

w (0, -)=w, (1.27)

w=0 on 2,

d
Aw = W on 2,

AU
where Q, and X, are as in Eq. (1.1). From (1.18), (1.19), (1.20), (1.27),

and lowersemicontinuity of the norms, with woe H*(Q) and w,e H'(Q),
we obtain

I 37202y + 1WA 7oy Sli}‘n_’i(l)if Lw A Dl 220 + D9, A7 4)]
< li?liglf [lw. (D) iﬂ(m

+7 IV, e+ 1w (D1 24000
< Cefa"[“Wo“imm + .l,i_r.no “wl”ii‘l’”’(m]
= Ce”w[fht'o”imm'f' (lwllliz(m]' (1.28)

Extending by density the above inequality to all w e L,(2) leads to
(1.14). '}

Note that these results have no geometric constraints unlike previous
results, (i), (ii), available in recent literature.

505/114:2-6
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Remark. The stabilization result of Corollary 1.1 is different from the
results on the space of optimal regularity in [15]. Indeed, the feedback
control is different (local versus nonlocal in [15]) and the topology of
energy is also different.

2. PROOF OF THEOREM 1.3

2.1. Preliminary Material

Since we wish to represent the solution to (1.7) in semigroup form, a
technique motivated by [1], we need the following operator definitions.
Let A: L,(82) — L,(£2) be the positive, self-adjoint operator defined by

Ah=Ah,  D(A)={he HY(Q)nHY(Q): 4h|,=0)}. (2.1)
Note that
A'2h= —A4h, D(AV*) = H*(Q2)n H)(Q). (2.2)
In addition, the interpolation resuit of Grisvard [4] tells us that
D(A%)yc H*(Q), (2.3)
and, in particular,
D(A%y~ HY(Q) vl < 1, (2.4)
with equivalent norms. Therefore,

(Al H® o)™ “f” DA = IlAgfll Ly(£2) er D(Aa)- (2.5)

o

Next we define the Green map, G: L,(I")— L,(£2), by

A=0 inQ
Gg=v<<(v=0 on I’ (2.6)
dv=g on I

Using these operators, we find that the abstract first-order system which
models (1.7) is

_cil:w]_[ 0 ! w
dilw, | | =(U+79473) "4 (I+34"7) ' 4GG*4 || w,

s,w}[w], (2.7)
W,
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where G* is the adjoint of G defined by
(G8,0) 1,0y =<8 G*0D 1,y VEEL(I'), veELyR), (2.8)

and by using Green’s theorem we can find (see [6])
é
G*Af=(:—flr Vfe D(A). (2.9)
y

From elliptic regularity [20], we have

Ge L(H(I')— H*>4(Q))

, for seR. (2.10)
G*e L(H Q) H*54I))

It was shown in [16] that o/, with D(s/,)={ze D(A"°)x H| (2):
Azze D(AY?)x H(’,‘?(Q)}, generates a semigroup of contractions on
HX(Q)x H} (2).

Let &(¢) denote the semigroup generated by .7, . To establish the fact
that the system (1.7) is uniformly stable on H?(2)x H (2) (with the
rates independent of ), it is sufficient to prove that 37> 0 such that

ify(T)iy(;;2|g)xﬂ(‘)_7(g))<P<ls (211)
where p is independent of y (see [23]).

2.2. Sufficient Conditions for (2.11} to Hold

The major technical estimate needed for the proof of Theorem 1.3 1s
given in the following lemma.

LEMMA 2.1. Let T be sufficiently large. Assume w(t) is the solution to
(1.7). Then there exists a constant C+> 0 (independent of ) such that

]6
—w,

ov

2

E(T)SCyp(l +7) (2.12)

Ly Z7)

Assuming the validity of the above lemma, the proof of Theorem 1.3 is
now routine. Indeed, by the semigroup property, we have

ET)={L(T)wo. wl 3zayx 11} 1001 (2.13)

Then, our energy identity, (1.11), with =T and a =0, implies that

s a |*
1T Ww, Wy M HA02) x H}”(g. + 5; wz% = {wy, Wy M ;{3(Q)x H (@)

Ly Z7)

(2.14)
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Combining (2.12) and (2.14) yields

1L (T ) (wg, Wx)“ilm)xﬁ(‘,_r(m E(T)< [(wg, wy)ll i]z(g)xHa_"(Q)'

1
+_————.——-
Cr(1+7y)
(2.15)

From (2.13) and (2.15),

“y(T)(M'!O) ”'l)“ilz(f)leéy,’_(Ql < 1 + (1/(CT(1 +,y)) ”(M}()’ u‘l)”?‘IZ(QJXH(I)..;(Q)
=>IY(T)li,(Hzm,xHay(m)<p<1, (2.16)
where p is independent of y, which proves inequality (2.11).

2.3. Proof of Lemma 2.1

Step 1. The first step is fairly standard by now as it uses multiplier
methods (as in [10]). We begin by using the multipliers /- Vw and w with
Egs. (1.1), where we assume 4= x— x,, for some x,€ R%. (Note that in
[16] different, higher order multipliers were used.) Combining the resulting
identities and noting the boundary conditions, we find

2fQ

2
8
drdt+f Aw 2 (h-Vw)dI dr
Zy v

2
(Aw)? d dzscj T,
Zr ov

T

2wy h -V drd:+j dw L dr dr
y c‘?v

Zr av

vy [ Vwid@di—y | dwh-Vw,d2 d
or or

—[w, VW) 18+ 7AW, - VW) 00 T0
- [(w,, W)Lz(g)]or"' y[(dw,, W)Lz(g)]()T~ (2.17)

Two identities that will be needed to simplify (2.17) are the following:

f [Awlldgdzaf (w,(zdgdz—yj (Vw, |2 dQ dt
or or or

=—[(w,+yVw, W)Lz(.())]g—z jL

é
Aw —wdl dt (2.18)
£ OV
and

2

h-vdl dt

0

w,

jQ A, h-Vw, d2 di = |

r Zr

¢ 1
—wh -VYw. dldt — =
avm,h w, dI dt 2J‘1

(2.19)
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With these identities, we find

f uwzzdgdzwj |Vw,|2d9d:+j Iw,|2 d di
or or or
2
gcf w,| drd
Zr v
8 8
+j Aw——(h-Vw)dI“dt-—j 2 (Aw) h-Vw dl di
r 5v )_'rav
2 a 2 (‘j 2
+4{LT P dth+LT o dl“dt}+yCLT L dr dt

3 3
+ 5 08 1Y) 10015 + 5 LW b V) 1010 = [O%s W) 10015

+y[(4w,, W)Lz(m](])r+ (w,+7yVw,, “')Lz({n]or- (2.20)

Note that in the right-hand side of the above inequality, the only two terms
that do not involve the L,-norms of our feedback control on the boundary
or lower order terms are the two boundary integrals in the second line. To
deal with these terms, we need sharp regularity results for these boundary
traces. (Note that standard trace theory does not suffice to bound these
terms by the energy of our system.) Sharp estimates for these traces are
the main technical contribution of this paper, which may also be of
independent interest in partial differential equations.

Step 2: Estimates for the traces on the boundary. At this point, it is
expedient to state the main two estimates for the traces of the solution on
the boundary. Derivation of these estimates is the most technical part of
the proof, requiring both microlocal analysis and special regularity proper-
ties of a pseudodifferential (abstract) Schrodinger equation.

LemMMma 2.2, Let w be the solution to (1.7) and let 0 <a < T/2. Then w
satisfies the following inequality.

é
<{la~

where 0 <e < 3 and C is independent of 7}.

2

2

g

+ “W’“‘;"Zlo) T H};-g(g”}, (221)

Lya, T—a;T7) Ly Z7)

Lemma 2.2 will be proved in the third section of this paper.

LEMMA 2.3.  Let w be the solution to (1.7) and o and ¢ be as above. Then
w satisfies the following inequality.
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2

d
™ (4w)

H~Ya, T-a; La(I))
2

+(1+9) 1wl 0. T;,,zmm,,}, (2.22)

é
SCT{(1'+"J)) E_Wr

LoZT)
where C 1 is independent of y and H ~'(a, T — a; L,(I")) is the dual { pivotal )
to the space H'(a, T —o; Ly(I)).

The proof of Lemma 2.3 is in Section 4.

Remark. Note that the results of (2.21) and (2.22) do not follow from
trace theory.

Step 3. Returning to the integral terms in (2.20), the first boundary
integral may be split directly:

il 0 z
[ Aw—(h-Vw)dra <[ |Aw|2drdz+f 2 (h-Vw)| drar.
zr 6v Zr P 6v
(2.23)
Noting that
0 0° a2 d ]
—(h-Vwy=h v — . 4= = 2.24
6v(h Vw) hvav2w+h t&v@ru+5v(h v)(?v"’ (2.24)
we find
2 ]
_ < —_— W .
6v2w \IAwl-i-'k avu onl (2.25)
since (as w|,=0),
02 é
AW‘F=;?? w“r+k'a—vW(r, (226)
where k is the Gaussian curvature. Therefore,
a 2 2
J‘ 4aw — (h-Vw)drl dt <C{j —w, dfdt+j —w| dladt
Zr av Zr dv Zr
2
+sz W drdz}. (227)
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Step 4. The second boundary integral is estimated as follows.

j 2(Aw)h.vwarrdt gC“‘i(Aw) 2,
£ OV av H-1O0, T Ly(I') N e, s Ly
| @ 2 0 2
<C“-(Aw) +Cy = w,
v H-10, T3 Ly(T)) ov LaEp
+ CZ HW“ iz(O. T HY2  e(y)» (228)

where we have used the duality pairing between H'(0, T') and H (0, T').

Step 5. Consider (2.20) over the time interval (o, 7—«) instead of
(0, 7). Combining the result with (2.21), {2.22), (2.27), and (2.28), and
recalling the energy relation (1.11), we find

(T—20) EW(T)<'qu L, (1AW +7 [V, 2+ w12} d2 di

2
+ (1 +7) wll i,(o_ T Hi/lwm)}

scr{mw T,
La(ZT)

+ CE (0), (2.29)

where C and C; are both independent of y. Let T be sufficiently large so
that 7— 22> 2C. Then

2
;—V-w, + 1+ ) w0 7 H:m(m,}. (2.30)
L ZT)
Step 6: Compactness/uniqueness argument. QOur final step is to use a
compactness/uniqueness argument (in the style of [19]) to remove the
fower order terms in the above expression.

EW(T)<CT{(1 +7)

LEMMA 2.4, Assume w(t) is the solution to (1.7). Then the following
inequality holds.

, (2.31)

LaZy)

—w,

dv

Wl o, 7. 220 < Cr

where Cy is independent of y > 0.

Note that estimate (2.31), with C, depending on 7, can be obtained by
rather routine procedures (see Proposition 2.1). What is more interesting
here is the fact that the constant C, does not depend on y > 0.

Proof of Lemma 2.4. We shall start with a preliminary estimate which
follows essentially from [16]. To make this paper self-contained, we
provide a brief proof.
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PROPOSITION 2.1.  Assume w(t) is the solution to (1.7). Then the following
inequality holds for all 0 <g< 4.

(2.32)

u— W,

av

Wil o, 7y 2o S Cry

L&)

Proof. Assume (2.32) does not hold. Then there exists a sequence,
{w, (1)}, with

n=1

wv, n(O) = W«)u n, 03 W/ (0) = wy, nls (233)

¥ 0

where w’ denotes differentiation with respect to time, such that

a ’

=W -0 as n— o,

o (2.34)
1w, nll cio. 7 2wy = 1 vn.

Then each w, , satisfies (2.30). Therefore,
{W, 0> Wy a1} is uniformly bounded in H?*(2)x H; (). (2.35)
Therefore, there exists a subsequence, also denoted by {w, (1)} _,, with
W,y omo=> W, o weakly in H*(Q), {2.36)
and
Wy n 1= Wy weakly in Hg (£2).
Since we have assumed w, (1) satisfies (1.7) for all n, we can write w, (1)

and w’ (1) implicitly as

w, (D) =Ctyw, oo+ S W, o — J’O S(t—1) AG (g; w,) dr,

W, ()= —AS(t)w, .o+ CI) W, (237)

x: ]
*fo 5 {S(t—r) oG (5 w)} dr,

where of = (I+7y4"?)"' 4 and S(¢) and C(r) respectively denote the sine
and cosine operators corresponding to 7.
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Consider the solution to the following problem:

Wy — AW, + 4% =0

w0, - )=, (238)
w,(0, ) =W,
Wl =4Ww|=0.
We can write w(t) as
W)= C(r) wo + S(2) w,. (2.39)

Then, using the Lebesque dominated convergence theorem and the proper-
ties of sine and cosine operators, we find

Wy W 325 (0w} in L0, T; HA(Q)x HY (). (240)

Y.ond

Therefore, {w, ,,w, ,} are upiformly bounded in L, (0, T; H*(2) x H, (2)).
Since H?7%(Q) H?(Q), a result of Simon [24] gives us

compact
w, (1) = w(1) strongly in C(0, T; H?>~°(2)). (2.41)
Thus, by (2.34) and (2.41), we obtain
IWl oo, 7: 2=y = 1- (2.42)
We now introduce the change of variable
=W, (2.43)
Then i satisfies the equation
Yo —7 Ay, + 4% =0

Vir=4y| =0 (2.44)

¢
6_\) lﬂr =0.

From [11, page 150], we now know that  =0. Thus, # =0, which con-
tradicts (2.34). Hence, (2.32) holds. |

Proof of Lemma?24 (continued). By Proposition 2.1, we know w(r)
satisfies (2.32) with the constant C, , possibly dependent on . Assume
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(2.31) does not hold. Then there exists a sequence, {w(t)}, y— 0%, such
that w.(¢) satisfies (1.7) and

0

— W, -0 as y—07*,

L PR (2.45)
1wyl cco. 72 m2-agy) = 1 for each y.

Then each w, satisfies (2.30). Therefore, from (1.11) and (2.30), as y -0+,

{w,, w}} remains in a bounded set of C(0, T;H*(2) x L,(2)). (2.46)

Hence, there exists a subsequence, also denoted by {w,(¢)}, with
w, 25w in L_(0, T; H¥())

e i (247)

w,— w' in L_(0, T; L,(2)).

Passing the limit on equation (1.7), we find that w(z) satisfies (see [10]):

W, +4°w=0
Wi, = Aw], =0 (2.48)
5; W,’[*:O.

Since HZ*“(.Q)CDH%WHZ(Q), a result of Simon [24] gives us
w, (1) = w(1) strongly in C(0, T; H? ¢(Q)). (2.49)
Thus, by (2.45) and (2.49), we obtain
Wl o, 1120y = 1. (2.50)

Introducing the change of variable

y=w, (2.51)
we find that i satisfies the equation
l//u+A2'//=0
l/’lr:d‘//frzo (2.52)
G,
5‘”1"—0-

However, from a result of Lions (see [19, Corollary 3.2, p. 256]), we know
that y =0, which in turn implies w= 0. Since this contradicts (2.45), (2.31)
holds. ]
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Step 7. Combining the results from our compactness/uniqueness
argument with (2.30), we find

2

: (2.53)

LAZT)

ET)<Co{l +7) “%w

as desired for (2.12).

3. PROOF OF LEMMA 2.2

3.1. Microlocal Analysis
We consider the following, more general, problem related to our system.
Pw=f in Qr
w=g, on L, (3.1)
Bw=g, on X',

where the operator P (modulo lower order terms) is defined by

P(xsy; Dana D})= _a(xsy) D?
+ya(x, y) Df(al(x’ J/) Di+za2(xa J’)Dva*‘Di)
+ (al(x’y)Di+2a2(x7 y)D_)D\*+D%)23 (32)

and the boundary operator B (modulo lower order terms) is defined by
B(x,y;D,, D,, D,)=a,(x,y) D} +2a,(x, y) D, D, + D3, (3.3)

where a(x, y) >0, a,(x, y) depends smoothly on (x, y) for j=1, 2, a;(x, y)
satisfy the appropriate ellipticity conditions, i.c.,

a(x, y)>p>0 Vx, ye 2
X yj=p Y (3.4)

al(xa)’)-ag(x’)’)>9>0,

hence B is a regular boundary operator consistent with a Dirichlet system.
In the definitions of P and B, we have adopted the notation

19 1o . 12

o plo p Ll 35
iox Ydady "ot (3.5)

X

We shall prove the following.
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PROPOSITION 3.1. Let we H*(Q,) be the solution to (3.1). Then w
satisfies the following estimate.
N o 0

————w“Z SC{”%W,

il A ) H
\l it dv g, 7— 21y

2

2
+ g “Hl((), T; Lyl))
LA Zy)

+ g, iz(o‘ romnry T 1&g iz(zﬂ

Ny sz + (L 7) D0 T;,,wg,,},
(3.6}

where 0 <& < § and the constant C does not depend on y > 0.

It is well known that, via a partition of unity and a flattening of the
boundary procedure, it is enough to establish the estimate of Lemma 2.2
for P with Q= {x,y; x>0}, I'={x=0}, and a(x, ¥), a,(x, y) constant
outside a compact set.

Remark. In [17], a somewhat similar result as that of Proposition 3.1
was stated and proved. The main difference, however, is that [17] treats
different (higher order) boundary conditions and, moreover, the analysis of
[17] does not provide estimates which are independent of y > 0.

Proof of Proposition 3.1. Step 1. Let /(t)e C;7(R) be a cutoff function
defined such that 0<y(¢)<1 V¢ and

vio= {(1) gluizd:(—a;;) T—%/2). (3.7)
Define w (1, -)=¢(r) w(t, -). Then w (¢, ) satisfies
Pw. =[P yIw+yf in Q. =02x(—0o0,0)
w, =g, on I,=Ix(—o,x) (3.8)

BM"(’ = ’/’gz on ‘2‘30 ’

where [ A, B] denotes the commutator of two operators 4 and B and, in
our case,

[P, y]w=2¢ya(D2+ D?) D, w) + lower order terms. (3.9)
Step 2. If P is defined as in (3.2), then the symbol of P is

p(x, y; s, Do,n)= —as® +yas*(a,n* + 2a,nD,+ D?)
+(ayn®+2a,nD  + DY) (3.10)
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In this equation, we denote the dual variables corresponding to time, 7, and
the tangential direction, y, by s and #, respectively; i.e.,

1
=D, »s=x+io
i

(3.11)
D,—n.
For convenience, we now make the following definitions. Let
E=D +a.n (3.12)
with corresponding operator
D.,=D,+a,D,, (3.13)
and let 72 be the symbol of the operator 5)‘ defined by
ﬁf,z(al—ag)D:‘,. (3.14)

2

The fact that a; — a3 > p >0 justifies the notation D} which has a positive
symbol, (¢, —a3)n*> pn*. Thus, P can be written as

P=—aD+yaD(D>+ D)+ (D + D%y, (3.15)
with corresponding symbol
p=—as’+3as* (82 + 7)) + (E2 + 7). (3.16)

Our next step is to “microlocalize” problem (3.8). It suffices to consider
only the quarter space R*(+) where ¢>0 and #>0 (analysis in the
remaining quarters is the same). We define mutually disjoint regions
(cones) as follows:

A= {(xy,0,MeRxR 5<cqlnl}
A= {(x, 3, 0,MeQXR" ¢ | <o <2 nl} (3.17)
Rr={(x,y,6,1)eQxR":2¢o || <o}

Consider Fig. 3.1. In #, U #,,, provided ¢, is sufficiently small, from (3.14)

and (3.16) it can be readily seen that the symbol p(x, y; s, &, #) is elliptic of
order four in %, U #,,; ie.,

plx,vis, En) =0+ 1n*+6Y in R, UAR, =& for some 6> 0.
(3.18)
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a = 2¢co|7|

Rir a = coln}

Ra

n

Fig. 3.1. Elliptic and non-elliptic regions.

Therefore the problem consisting of the operator p and boundary tondi-
tions w| -, Bw| -, is microelliptic in #,. To take advantage of this, we define
a new function (pseudodifferential operator), 4, which would localize the
problem to the elliptic region.

Step 3. Let A(x, y;0,7)€ C™ be a cutoff function defined such that
0<i(x, y;0,n)< 1, 4 is homogeneous of order zero in ¢ and #, and

1 in #,

19
0 in #,, (3.19)

Mx, y; 0, n)={

ie, supp Aic B UR, =& Ax)e FLOR2) is a zero-order pseudodifferential
operator in the variables ¢, y for a fixed x € Q. This is to say that the corre-
sponding pseudodifferential operator (still, denoted by A) Ae C*(R™*;
OPS°(R%)). If we write w_=Aiw_+ (1 —21)w,, then we can see that Aw,
satisfies

Pliw )=[P, A]w . +A[P.Yylw+iyf inQ.,
Aw,. = Apg, on 2 (3.20)
B(Aw, y=Apg,—[B, Al w, on 2 .

Since p is elliptic of order four on supp 4, this problem satisfies elliptic
estimates in all variables and, in particular, Aw, satisfies the following
inequality (see [3]):

| A

22 (Aw
ﬁvar( we)

Tiw.| 1300, s #3522 T \

LAz

SCUNAWll gae,, + 1BAWI e+ ITP AT Wl yposniag,y
FIALP, I Wl yszeag,, + 1AUF 1 4y 32000, ) (321)
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Step4. In the non-elliptic region, %, U #,,, we can estimate more
directly. From Fig. 3.1, it is clear that

([ C‘) 2 e X 5 ) 2
_(I—A') W, < l | ’('(09 s X '.\':— do di
e ) !_Jw n 1, X —o "
2
f T 2)W.(0, 1, %) o do i
1 [6 2
=—|—[(1-A)w.], , (3.22)
C(z) {ﬁx[ La(5 )

where w, is the Fourier-Laplace transform of w,, ie., the Fourier trans-
form in the tangential direction and the Laplace transform in time.
By combining (3.21) and (3.22), we arrive at

<l

LleL) I

+UBOAW M o+ ULP AT well gszeag .y
+IALP AT Wy 2o, + NS T p-r2eng,, ) (323)

To obtain the desired estimate in (3.6), we need to estimate all the terms on
the right-hand side of (3.23), in particular the ones involving commutators.

Ayw ]1 + C{ flAw, L0, ) HY(I))

La(Zx)

122,
”E;—C’;H(

Step 5. By using formulas for an asymptotic expansion of the sym-
bols corresponding to the appropriate commutators (see [5, p. 70]) and
noting that supp £ < &,, we obtain

{symb’[P =0+ 0@+ E+ 2 &+ ing (3.24)
supp symb{[P, 1]} < &, '
{symb{i[n W1} =700 E+1n*)  iné (3.25)
supp symb{A[ P, ]} < &, )
- v | ‘E .
{symb{ [B.A]} *f(’(s + |"1|) n & (3.26)
supp symb{[B, A1} = &,.

Hence, in particular for any 0 <& <3,

[P, 2] e L(L—0, 0; HY2 Q) » H 3244 Q. ), (3.27)

AP Y e L(L—oc, 0, HY 2 4Q2)) > H ¥2**(Q,)), (3.28)

[B, i)e LILy(—oc, 0 HY? Q)= H'2* Q) (3.29)

(Do, 1=l o€ L(LAE )= Lo(Z ) (3.30)
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Step 6. From (3.27) and (3.28),

NP, AT Wl yosrioy SCULH YW o, 7, 32 v 02y

(3.31)
”A[P l//] w ”H W24rQ,) < C(1+7) vl L2(0, T; H¥2+6(82))
hence the last three terms in {3.23) are bounded by
CL+ ) Wl Lo, 7 2 vean T W 3200 (3.32)

The second term on the right-hand side of (3.23) is plainly estimated by

flAw. | La(0, oo: HY(F ) S Cllgl 1260, T: HYT))» (3.33)

where we have used the fact that 4 is a local operator in the normal direc-
tion, x, and Ae C*(R™; OPS°(R?)).

To estimate the first term on the right-hand side of (3.23), we first note
that

D.D(1—Aw,=D(1—A)Dw.+D[D,, 1—i]w,

¢
=(1-A)D.Dw. +[D,1-A]Dw, +i — 1 —Alw.
x| 0t

(3.34)
By (3.30) and homogeneity properties of 4,
1= DDl e, <C 12wy (3.35)
) ; ov ‘ LaZy)
D L=A1 D will xS C Wl ey (3.36)
| ¢ I
0x [E;’ - ,{] " PLUZ ) <¢ “WH L0, T; H¥1+¢(52))» (337)

where in (3.37) we have used the fact that [8/01,1—4A]eC™(R™;
OPS°(R? )) and trace theory.
Collecting (3.35)-(3.37) yields

i a
—[(1=A)w ],j}
i 0X LA Z)
e !
S [‘ 23— wll + ”W’IH Lo Z7) + HW’H L2(0, T H}2+r‘9”]. (338)
iov LaAZy)

Step 7: Estimates for the third term on the right-hand side of (3.23).
By using the boundary conditions in (3.20), we find
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IBOAWI Lyos, ) < 1A¥& N Ly FIEB AT Wl 1y,
< C &l tyzn+ W L0, 7 1322y (3.39)

by (3.29), trace theory, and the property iy e C*(R*; OPS®(R} ).

Step 8. Combining all of the above inequalities, (3.23), (3.32), (3.33),
(3.38), and (3.39), we arrive at our desired estimate,

‘ é 0 2 ¢ @é 2
| —=—w |l =w.
10vér || g, HOVaT LaZa)
a 2
, 2
<C{i5"”1 +“gl”H1[0.T:L2([‘))
v La(E7)

2 2
+ 1&gl o, raiay t gl LZT)

+(1+7) wl 12_2(0. T m¥irgy) T ”f”;r-i’l*f(gn}‘ (3.40)

4. PROOF OF LEMMA 2.3

Step I. We again consider the function w.{¢t, -) which is defined as
w,=w, where i is as in Section 3.1 and w is our original solution to (1.1).
Thus, w, satisfies

Weu—7 AW o+ 47w =[Pylw  inQ.

' (0)=0
wel0) } in Q

w. (0)=0 4.1)
w. =0 on 2
]
Aw, = —f —w, onl,,
av
where Pw=w, —y Aw, + A*w. Rewriting this equation for w, as
Weut (I=74)" APw,=(I—34)""[Pylw  inQ,
w.(0)=0
} in Q
W, (0)=0 (42)

w.=0 on X _

é
Aw, = —t//Ew, on X,

505/114,2-7
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we see that w.(¢,-) can be written implicitly using the variation of
parameters formula. Therefore,

1 — N
WAty =g /A (e e VA ) By dr, (43)
0

where

A,=(+7y4Y%) "' 4
(4.4)

Flo)= (I +74"7)~" {wA"’ZD (5‘% w,m) F [Py w(z)},

and Dg is defined to be the harmonic extension of the function g from the
boundary into the interior; i.e.,

Av=0 in
Dg= 4.5
& UQ{U:g on I (4.5)
Define

Vo [ e« N T _
wz(t)z—z—i\/Ayfli(o(e:wa;.v(r ) e VA DY ([ 4 yaV)

X {l//A 2p (56‘—) w,(r))} dr
W’s(l)E% \//T« l f’ (eI VA0 _iNA D)
l 0

x (I+yA4Y%)" " [P, ] w(z) dr.

(4.6)

Step 2. Expression for w,(#). Since w, is compactly supported on
0, T),

4.7)

“W,-”H"(o,r) = H J;: wt)dt

£2(0,T)
Hence,

)

— Aw, 4.8
= dw, (48)

¢ 1,2 ! s
=4 L (W + w3)(2) dt

H™YO, o Lot l)) i LAZx)
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Thus, integrating w,(¢) from 0 to ¢, we find

6 1/2 1 a 1/2 4 —1 1/2y -1 1/2
= fwz(r)dx_—zavA AT (T+7472) 1 4

x J” (eivﬂ"A_T(rfr)_*_e’*’"\/”’;‘:("T) ) l//(f) D (66 w (T)) T.

(4.9)
Differentiating w,(¢) with respect to ¢ gives us
, 1 NI —iJ A (= 172y -1
wile) =3 [ (e g e A4 a1
27
12 0
xy(t) A+ D é;w,(r) dr. (4.10)
By noting that
AV AT T +9A42) 1 4 =] (4.11)
and
yAV I+ 94V —T= (T +y4") ", (4.12)
we can compare (4.9) and (4.10) and find that
1 é o
> — A fwz(r)dr—— E— 5 f Y(t (——w (r))
a \A(r T) 71\/_1!‘ 1) 1/2 1
—Ea—f (¢ +e JI+7A4'72)
6
xy(tyD| —w/r)}dr (4.13)

Step 3. Expression for w,(1). We proceed exactly as we did for w,(¢),
which allows us to find

¢ i _ o, o' iarm ,
5;/1 L wi(t) dr = —/(—?;w3(t)+avj0A [P, ] wit)dr

10 i A — 1) i/ A - )

3% L (e +e )

X (I +5yA4Y2) P ATV B ] w(t) dr. (4.14)
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Combining (4.8), (4.13) and (4.14) gives us

— A%y,
v

5

PH K0, 00 L))

+ ”%fo’ Y1) D (gv- w,(r)) dr

é
<7y ”— (“,( )r
ov La(Za) Lo Zy)
1é rt . ~ s
= iJA(-1) S Ay (- T) I A!J’Z —1
+2iav_[0(e +e WE+yA47°)

xy(ty D <_Q w,(r)) dr(
ov |

LaZx)

+ “—;—v L’ A-VAB Y] w(t) de

Ly Zy)

+% aijl (e,\/AT(zfn+e~f\,/7,(:71))(1+%41/2)—l
VYo

x A V2P Y] wit) dt (4.15)

Lo Z )

Step 4. To bound the second term on the right-hand side of (4.15),
we note that

r 8 2 , P
jo W(t) D (E w,(t)) de=y(1) D (5 w(t)> —jo VoD (5 w(r)) dr. (4.16)

Thus,
é e 0 ¢ 0
= w(x)D (- w,(r)) dr <M, |—D (-—w) (4.17)
“ dv fo dv LaZ7) i CNCI P
But, we also know, by elliptic regularity, that
0 i)
(525212 )
v \dv LaED A PRCR LIPS
0 0
<C|l=—w SCl——w (4.18)
OV 0. m ) ot ov LA ZT)

Step 5. By writing [P, ¢ 1w explicitly as

[Py dw=2yA"2('w), + Y w—200'w), + 74" 4" w, (4.19)
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the fourth term on the right-hand side of (4.15) can be bounded directly by
trace theory as follows:

ba o
“EL AP Y] wle) de

LaZ,)

=S4

v JH"(O.I‘;Lz(rH

+ “A - Uzl//”W”HA(O‘ T HYE 452y

H=Y0,20; La(1))
‘Lz(ffl}

1000 Lorn T W L0, 7oy @y 7 “a W

< C {H ’aév_ A - I‘XZVA l,r’2(ll/;w)’

"

1A w0 rarnan + l

LZ(ET)}

+ 1wl Ly, T;Lzlﬂ)J} (4.20)

d
<cly iz wm,

e

La(Xr)

To bound the third and the last terms on the right-hand side of (4.15) we
will need the following proposition.

PrROPOSITION 4.1. Consider the following three ‘‘abstract” Schridinger
problems:

z,=iJA,z+f

(4.21)
z(0)=0,
z,=iA, z+ (I +y4")"!
’ / (4.22)
z(0)=0,
z,=iJA,z+(I+y4"*) "' Df
(4.23)
z(0)=0.
Then
(i) if z(¢) satisfies (4.21), then for every 0 <a <},
||A“z(t)HL2(m< ClIf1l Lyo. 7: D04y uniformly in y. (4.24)

(1) If z(1) satisfies (4.22), then
¢

5;2 ST+ 1) AT +y4'*) ! Sl o Laans (4.25)

LaZr)
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which in turn implies both

b,
t pE ST+ DI o101
Vo lleazn
and (4.26)
o C(T+1)
57 S Il a0, 711023y
Vol en

(i) If z(t) satisfies (4.23), then

2

SCrlif N s (4.27)

LaZT)

0
ov z
and the constant C is independent of y > 0.

Remark. The result of part (1) is classical. However, note that the
results of parts (ii) and (iii) are not the standard ones. By using standard
regularity theory, we would only expect at most

—a—z(t)eH"(F). (4.28)
ov

Therefore, these results give us a bonus of “one derivative.”

Remark. Notice that results in the same spirit as those in (4.22) and
(4.23) were proved in [7]. The main differences, however, are that in the
present context,

(i) we deal with an “abstract” Schrodinger equation (4, is a
pseudodifferential operator) rather than a standard Schrodinger operator,
id, as in [7];

(ii) we need to keep track of the dependence on y >0 so that the
final constant C does not depend on y > 0.

Since the proof of Proposition 4.1 is rather technical, the proof is relegated
to Appendix A.

We continue with the proof of Lemma 2.3. To bound the last term on the
right-hand side of (4.15), it is enough to estimate

e rr . D
= [eNE Iy a4 2P Y] w(r) de
av 0

(4.29)

LyZy)
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{The argument with the e~ V4 term is the same.) Recalling (4.19) and

applying part (ii}) of Proposition4.1 to the second and fourth terms in
(4.19) with =4~ "?wy” and f=wy”, respectively, we find

' —_— ) o~
l__j. eV AT ([ 494V " 47V P ] w(t) de

LX)

ST ‘ 2 J
_J‘ el\xA.,.llfx),},Al‘Q(I_*_,VAl,/-)—lA41‘,2“1//“,)'d,L_

<2
ov 0

LyZy)

e " ‘ :
y2 )5 [ eNT O 44127 Ay, de
l ov 0

LX)
+ C(T+ 1) 7wl 0, 7.0

=p,+p+C(T+ I)YHWIILQ(O.T;H‘(Q)V (4.30)
We will be frequently using the estimate
Iy AT+ pAY) x|, < Clixll uniformly in y>0, (4.31)
and the result by Grisvard [4, (2.4)].
Bound for p,. We integrate by parts
[ VB =)y AT+ 3412 A W), de
0
= (I+74"2) " 3w
— NIy A1) A4y A ) (Y w)(0) de
0
=Pt P2 (4.32)
We can bound p,, by trace theory, (2.4), and (4.31):

o,
avpll

38 +s
<ClA***pyl 1o,
LyZy)

Cl A (T 4+ 9472 ' w)] LyQ )

i

SClyA" T +74") W W) 0, S Clwlliiyorn.  (4.33)
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As for p,,, we shall use part (ii) of Proposition 4.1 with /' = \/7 y¢'w. Then

¢

aplz

Li(Zy)

SCT+ DA+ 74" " [ 100,20 L30000)

=C(T+ DAY I +74") " A P(T+yA4'?) 1w

L2(0, T; L2(£2))

<C(T+1)14Yw| 1200, 71202y S CIT+ DWW Ly0, 75 0002))- (4.34)
Collecting (4.32)-(4.34), we obtain
P21 < C(T+ DI ry0.7: 1000y (4.35)

Bound for p,: We integrate by parts

!
[ VA 44" AV Y ), de

0
= +7A4Y) " ATHYW)()
[ eIy AV T4 A7) ) (0)
0
=put P (4.36)

As in the case of p,;, to bound p,, we apply trace theory and {(2.4) in a
straightforward manner.

0

== P < Wl oy (4.37)
v La(Ex)
For p,,, we apply part (ii) of Proposition 4.1 with f=(/+ ATV,
Since

[FAl 1200, 50 HI(2)) S Cliw)l L0, T: HY(Q))> (4.38)

we obtain

0

TP

By S C(T+ D)Wl Ly, 7 1002y (4.39)

La(Zw)

Combining (4.38) and (4.39), we find

P> S C(TH Dwll o0, 70002y (4.40)
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Therefore, from (4.30), (4.35), and (4.40), we obtain

o~ C T } .
_a_‘_f (e’\""‘?“‘”_l_e*’v A"'(’AI))(I-F"/AI‘Q)_I A—l,r2[P’ W] W'(T)d‘[
a1 0

LX)
S C(TH+ D+ )Wl Lao, 75 ) (4.41)

Step 6. Our last step is to bound the third term on the right-hand side
of (4.15). We apply part (iii) of Proposition 4.1 with f=y/(d/dv)w, to find

2

ve o~ T ;
__J‘ (ex\, Ay(r—r)+e—:V'A-,(I~r|)([+,})Al‘,‘Z)—l D (l//(f)iW,(T)> dT
ﬁv ) 5\2

2

LX)

<CriTw, (4.42)

La(xy)

Therefore, by combining all of the above estimates, (4.15), (4.18), (4.20),
(4.41), (4.42), and using trace theory, we find

0
4w

H=Y0,T:LyIN))
2 2
" c{

Ly(Z7)

R
‘8v6rw

é
SCT(1+)’)\5—‘)W,

LyX7)
H(T+ DA+ )Wl L0 T;,,m(,,,,}. (443)

By taking the above estimate from o to T—« and noting Lemma 2.2, we
arrive at our desired result,

d
Ha (4w)

H~Ya, T — % La(1))

2

4 C(T+ DU+ 7w 2o rpavngy  (444)

La(ZT)

0
<Cr(l+7y) Hb—v w,

APPENDIX A: PrOOF OF PROPOSITION 4.1

A.1. Proof of Part (i)
Let z satisfy

z,=i\/A_.,.z+f

z(0)=0.

(A.1)
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Multiplying the equation by 4?2 and integrating by parts, we find

' —
Yy~ . 2y - —
L (z,, 4 3‘Z)Lz(m = l(\/AVZ, A7) 0. 100 (/s Azzz)Lz(O.T:Lz(Qn

= [ A%z(1)|| iz(mS A4%f] L0, T L2(£2)) “AGEZ”LX(O.T;LQ(QH’

(A.2)

since 4 and A, are both self-adjoint with respect to L,(£2) and z(0)=0.

Because the above inequality holds for all 1€ [0, T], we find

4%z L (0.T:L(82) S “AquLNO‘ T:Ly(2))» (A.3)
which in turn implies our desired result,
”Azz(f)”Lz(g) AN 0. 720020 Vte [0, T]. (Ad4)
A.2. Proof of Part (ii)
Let z satisfy
z=iJA,z+ (T+94%) ' f
=iV (A.5)
z(0)=0.
Define
f=U+y4"2) 121 (A.6)
Then we can rewrite the equation for z as
(T+y4"7) 2z, =id"2z 4 f. (A7)

Step 1. Multiplying the left-hand side of (A.7) by & -VZ and integrat-

ing by parts, we find (recalling 4"%z = — Az)

23m((I+yA")' 2z, h-V2) 0= T+ 74 Y2z, h Vi) Lale

—((I+ VAUZ)Uzza h 'VEI)LleT]

—(I+yA"*)' 22, h-Vz), 0, (A8)
Let
F=hz,(I+y4'?)"2z. (A.9)
Then
div F=h -Vz,(I+7yA") 22+ h - V((I+74'7%)2)z,
+div h(Z, (14 y42)"22). (A.10)
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Noting that
(I+7A)2 —T=yAV2 [T+ (I+94"7)72]7, (A.11)
we find
divF=h-Vz,(I+7y4Y*) 2z + hz Vz

+h - VAP I+ (T+yA4'7)2]712)

+div A(Z,z) +div H(Z,y AP [T+ (T +74V3)72] 7). (A12)
Thus we find,

23m((I+7yA4'%) %z, h-V2) 0

T
:((1+,})A l,’Z)l,‘zz, h -VE)LZ(Q)'OT_J.O JQ le Fd.Q dt

+(Z, b VEAPT+T+747)21712) o

+(z,, zdivh) 0,

(2, AP+ (T 9 AV 2] 2 divh), 0,

— (AT +T+74")PY 2, h-V2) 0n (A.13)
If we assume h=x — x, for some x,€ R? then div &= 2. Substituting the

expression for z, from (A.7) into the above identity, then combining it with
the results of the same multiplier with the right-hand side of (A.7), we find

|

2

¢

Ly(Z7)
SCUT+DIVz] o7 100n + ”f‘le.uo‘ Fizaen}

+2/(AV (T +7y4" )P A T+ (T+7A4%)' 217 '2) on]

2T+ 742 f AT+ (T4 217 2) L on

FI(T+yA"?) 22 b VAV T+ (T4 2] 721 o))

FIT+742) VAT + (T+7A) 2] 2] opl (A14)
Since

[p(A' AT+ yA )" 22 AV T+ (T+3A4) 2] 2) )]
SCYAVHI+ A 2202 0 (A.15)

and from (2.4) we have

AT+ 74P 2l o) S Clizl e uniformly in y, (A.16)



430 HORN AND LASIECKA

combining the above two inequalities with (A.14) gives the result

¢

-z

v’

2
SCUT+ DIVzZ, 0.7 00y T 1A T +74"2Y 7 S 0.7 00000)

La(Xr)

I +3A4") "2 fll L0, 1y can - (A.17)

Step 2. Estimates for the particular solution. Using the variations of
parameters formula, we can write z(¢) as

z(r)=j VAT 40412 f(7) dr. (A.18)
(0]
Using this formulation for z(¢), we find
v l !, !
AV iy <[ 1AV +747) SOl o

<NAYT+94") 7 fll Lo 1aiey) Vie (0, T). (A.19)

Therefore,

2

é
—z

= SCUT+ DAY I+9A") 7 112 0 1o

LaALT)

I +94") 72 AL 0. s (A.20)

Step 3. Completion of proof. Finally, by noting that
A=Y+ 74" 2 £ oy S CI N s (A.21)

where C is independent of 0 <y < M, we arrive at our desired result

where C; is independent of y > 0.

2

0

_—

FiY

ST+ DA +7A) 7 ]l 0 rnsons (A22)

La(Zy)

A.3. Proof of Part (i)

Step 1. We begin as in the proof of part (ii), but we replace f by Df
in our equation. Therefore, by using the same techniques as in the first step
of the proof of part (ii), we find

2

d

_

v SCUT+ I)HVZ“L(O. gy T I+ 74 Y2)~ 12 Df| il(o. TLa(2))"

LyZr)

(A.23)
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Step 2. Estimates for the particular solution. Using the variations of
parameters formula, we can write z(¢) as

z(t) = J: N[ 4y 412 L DF(1) dr. (A.24)
Define the closed, densely defined operator L: L,(2 ;) — L.(Q ) by
(L) = A 0 T (F 1 4121 Df(7) . (A.25)
Then we can show that (see [6])

T —
(L*g)(t)ED*A"Zf e AT Ly g(t) dr

t

0

v

T ~
[Fem Ao pa2) gy a, (A.26)

where the adjoints are taken with respect to the L,-topology.
Let n(r) be defined to be the integral in the above expression. Then
satisfies

n=—iJA,n+{I+y4") " 'g
nr)=0.

(A.27)

Therefore, from our previous calculations, » satisfies:

|

o |2
é;'?

LyZT)

< C{(T+ 1) [Vn] %,1(0, riaont W+ 74 1/2)7 12 gl i‘(o,T;Lz(g))}

SCUT+ DIVl rigen T ”gHZL.(o, TiLa@ §- (A.28)
By using the equation for n directly, we find
; T ! /2 1
1A < | 1A +74"2) ) 2O 0y 0

<CEAY gl 10,7 a2y (A.29)
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Therefore,
| a 2 5
] P < C(T+ gL o, m a1y
Vo leazn
= L*e L(L)(0, T:H(R)) > Ly(Z 1))
=Le ¥ (L,(Z;)— L..(0, T;H 1(2))
> K=A""2Le P(L(X;)— L (0, T;H)(Q)). (A.30)
Thus,

“Z“ L0, T HY2Y < CTuf“ LAET) (A31 )

Step 3. Completion of proof. Combining (A.14) and (A.31), we

arrive at our desired result,

a 2
=z <O (A.32)
Vo ez
where C; is independent of y > 0.
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