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Ethylene signaling may be involved in the regulation of tocopherol biosynthesis
in Arabidopsis thaliana
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Tocopherol biosynthesis was investigated in ein3-1, etr1-1 and eto1-1 mutants of Arabidopsis thali-
ana, which show a defect in ethylene signaling, perception and over-produce ethylene, respectively.
A mutation in the EIN3 gene delayed the water-stress related increase in a-tocopherol and caused a
reduction in the levels of this antioxidant by ca. 30% compared to the wild type. In contrast to the
wild type and ein3-1 mutants, both etr1-1 and eto1-1 mutants showed a sharp (up to 5-fold) increase
in a-tocopherol levels during leaf aging. It is concluded that ethylene perception and signaling may
be involved in the regulation of tocopherol biosynthesis during water stress and leaf aging.
� 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Under water deficit, active oxygen species are produced as a
consequence of stomatal closure and over-reduction of the photo-
synthetic electron transport chain leading to the production of
superoxide anion, hydrogen peroxide and hydroxyl radicals, which
in turn may cause lipid peroxidation and photo-inhibitory damage
to the photosynthetic apparatus. Protection against oxidative dam-
age in chloroplasts is provided by a number of both enzymatic and
non-enzymatic antioxidants [1]. From the non-enzymatic com-
pounds, the lipid-soluble antioxidant a-tocopherol has been pro-
ven to be especially important to maintain the integrity of
thylakoids and chloroplast membranes [2]. Conditions favouring
oxidative damage have been shown to induce an enhanced accu-
mulation of endogenous a-tocopherol in order to cope with oxida-
tive stress [3]. Moreover, tocopherol levels could be shown to
increase with leaf age and during leaf senescence [4–7].

In the past decade all genes necessary for the biosynthesis of toc-
opherols in plants have been identified, characterized, and used for
biotechnological approaches generating plants with altered
tocopherol composition or levels [8,9]. However, not much is
known about the regulatory mechanisms controlling the biosyn-
thesis of tocopherols during development and under stress condi-
chemical Societies. Published by E
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tions in plants. So far, exogenous treatment with jasmonate and
ethylene in barley and the use of jasmonic acid-deficient Arabidop-
sis plants showed that these phytohormones may induce the accu-
mulation of transcripts of at least one gene coding for an enzyme
involved in the biosynthesis of tocopherols [10,11]. Furthermore,
it could be shown that endogenous levels of salicylic acid, an impor-
tant phytohormone involved in oxidative stress signaling, strongly
correlates with tocopherol levels in water-stressed Phyllirea angust-
ifolia plants and senescing Salvia lanigera leaves [12,13], but that in
other species, such as Cistus creticus, abscisic acid correlates much
better than salicylic acid or jasmonic acid with a-tocopherol in
water-stressed plants [14]. Ethylene has long been known as a ma-
jor signal molecule in the adaptation of plants to environmental
stresses [15–17]. When holm oak (Quercus ilex) is exposed to heat
stress or drought stress a significant increase in a-tocopherol can
be observed. However, when such plants are additionally fumigated
with ethylene in concentrations found in polluted areas, symptoms
of enhanced oxidative stress accompanied with a significant de-
crease in a-tocopherol levels in the leaves were observed [18].

To get further insight into the mechanisms underlining the reg-
ulation of a-tocopherol levels in plants we used in the present
study the ethylene-response mutants ein3-1 (At3g20770) [19]
and etr1-1 (At1g66340) [20] as well as the ethylene over-producer
eto1-1 (At3g51770) [21] from Arabidopsis thaliana. The accumula-
tion of a-tocopherol in response to water stress and leaf aging
was compared to the transcript level of selected tocopherol path-
way-related genes.
lsevier B.V. All rights reserved.
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2. Materials and methods

2.1. Plant material, growth conditions and treatments

Seedlings of the A. thaliana Columbia ecotype (Col-0) and the
ein3-1 mutant, which shows reduced responsiveness to ethylene
(At3g20770, N8052 [19]) were used in the present study. Plants
were grown in pots containing a mixture of peat/perlite/vermicu-
lite (1:1:1, v/v/v) in a constant environment chamber (8-h photo-
period, 90–110 lmol quanta m�2 s�1, air temperature 21–23 �C)
and were watered with Hoagland’s solution every 3 days during
8 weeks until the experiment started. Then, plants were either ex-
posed to water deficit (water-stressed plants) by withholding
water, or were watered with Hoagland’s solution every 3 days (irri-
gated plants) during 10 days. To confirm the role of ethylene in the
regulation of tocopherol biosynthesis, the ethylene-response mu-
tant etr1-1 (At1g66340, N237 [20]) as well as the ethylene over-
producer mutant eto1-1 (At3g51770, N3072 [21]) were compared
to the wild type in terms of tocopherol accumulation. Upper
(young, not fully expanded) and lower (older, fully expanded but
not senescing) leaves of the rosette were collected and used for
the experiments.

Leaf water status and PSII efficiency (as stress indicators), as
well as a-tocopherol contents, together with expression of major
tocopherol biosynthetic genes were measured in leaves collected
at the middle of the photoperiod. For measurements of a-toco-
pherol and relative transcript levels leaves were collected, frozen
in liquid nitrogen, and stored at �80 �C until analysis. Experiments
were fully replicated twice giving very similar results.

2.2. Stress indicators

Leaves were weighed, re-hydrated for 24 h at 4 �C in darkness
and subsequently oven-dried for 24 h at 80 �C. The relative leaf
water content (RWC) was determined as 100 � (FW � DW)/
(TW � DW), where FW is the fresh weight, TW is the turgid weight
after re-hydrating the leaves at 4 �C in darkness, and DW is the dry
weight after oven-drying the leaves at 80 �C to constant weight.
The relative and maximum efficiencies of photosystem II photo-
chemistry (uPSII and Fv/Fm, respectively) were determined by using
a pulse-modulated fluorimeter mini-PAM (Walz, Effeltrich, Ger-
many) in the light and after 1 h of dark adaptation, respectively,
as described [22].

2.3. Analyses of a-tocopherol

To measure a-tocopherol, leaf samples (100 mg) were extracted
two times with ice-cold methanol using sonication and determined
by HPLC as described [23]. In short, tocopherols were separated on
a Partisil 10 ODS-3 column (250 � 4.6 mm, Scharlau, Barcelona,
Spain) at a flow rate of 1 mL min�1. The solvents consisted of (A)
methanol/water (95:5, v/v) and (B) methanol. The gradient used
was: 0–10 min 100% A, 10–20 min decreasing to 0% A, 20–25 min
0% A, 25–28 min increasing to 100% A, and 28–33 min 100% A. a-
Tocopherol was quantified by its absorbance at 295 nm (Diode ar-
ray detector 1000S, Applied Biosystems) and identified by its char-
acteristic spectrum and by co-elution with an authentic standard
provided by Sigma (Steinheim, Germany).

2.4. Gene expression analyses

RNA was isolated from leaf material by a modified hot borate
method [24]. Leaf samples (100 mg) were ground to a fine power
in liquid nitrogen with a modified Retsch mill (Haan, Germany),
the powder transferred into a 2 ml reaction cap containing
750 ll of pre-heated borate extraction buffer (0.2 M sodium bo-
rate, 1% (w/v) SDS, 30 mM EGTA) and 750 ll phenol, and then
mixed and incubated for 30 min at 30 �C. The samples were cen-
trifuged for 20 min at 25000�g, the upper phase mixed with 1 ml
phenol/chloroform and centrifuged again. This procedure was re-
peated twice, before the RNA was precipitated with LiCl at a final
concentration of 3 M on ice for 4 h and centrifuged for 15 min at
4 �C. The pellet was washed with 70% (v/v) ethanol, air-dried, re-
suspended in 20 ll water, and the RNA concentrations deter-
mined at 260 nm.

For semi-quantitative RT-PCR, equal amounts of RNA (1 lg)
from each sample were used for reverse transcription and 1/80
of the cDNA for the following PCR reaction. The amounts of cDNAs
of all samples were calibrated using the Quantum RNATM 18S Inter-
nal Standard (Ambion). The ratio of 18S to 18S competimer primer
pair was 1:9 or 2:8. For the PCR amplification gene specific primers
listed in Supplementary Table 1 were used. Conditions were estab-
lished such that the PCR reactions would remain in the linear range
for all primer pairs used as follows: 94 �C (1 min), 30–38 cycles of
94 �C (45 s), 60 �C (45 s), 72 �C (1–2 min). PCR products were elec-
trophoretically separated on a 1% (w/v) agarose gel containing
ethidium bromide and the intensity of the PCR products measured
with an AlphaImager gel documentation system using Alpha-
EaseFC Software (Alpha Innotech Corporation, San Leandro, USA).
First the relative transcript level of each transcript was calculated
as the ratio of the band intensities of gene specific to 18S product.
To compare changes in transcript levels over time the relative tran-
script level observed for each gene in experiment 1 of irrigated
wild type leaves (control) was set as 1. Each time point is based
on at least three quantifications (n P 3).

2.5. Statistical analyses

Statistical variations between measurements of different treat-
ments at different times were analyzed with an analysis of vari-
ance ANOVA or the Student’s t-test using SPSS software (Chicago,
IL, USA). Differences were considered significant at a probability
level of P < 0.05.
3. Results

Wild type and ein3-1 mutant plants were morphologically
indistinguishable after 8 weeks of growth and showed similar
symptoms of wilting after 10 days of water deficit. The relative
water content (RWC) showed a similar trend in both plant groups
in response to water deficit. The RWC kept nearly constant during
the first 7 days of water deficit treatment but then decreased shar-
ply from ca. 80% at day 7 to values below 40% at day 10 in both
plant groups (Fig. 1). The relative efficiency of PSII photochemistry
(/PSII) followed a similar trend in response to water deficit in both
plant groups, showing a strong depletion in this parameter to val-
ues around 0.3 at day 10. In contrast, the maximum efficiency of
PSII photochemistry (Fv/Fm ratio), which is an indicator of damage
to the photosynthetic apparatus, decreased more in wild type than
in ein3-1 mutants. In other words, while PSII efficiency partly
recovered by exposure of plants to darkness in the mutants, dam-
age to photosynthetic electron transport appeared to be irrevers-
ible in wild type plants (Fig. 2).

a-Tocopherol levels were similar in leaves of wild type and
ein3-1 mutants under control conditions, but they increased pro-
gressively, and particularly after 7 days of water deficit, in wild
type plants (Fig. 3). By contrast, increases in this antioxidant were
not observed until day 10 of water deficit in the ein3-1 mutant. The
defect in ethylene signaling also caused a reduction in the extent of
a-tocopherol accumulation in leaves, with levels of this antioxi-



Fig. 1. Changes in relative water contents (RWC) in leaves of irrigated and water-
stressed wild type and ein3-1 mutants of Arabidopsis thaliana. Results of two
independent experiments are shown. Data represent the mean ± SE of five
individuals. No significant differences were observed between plant groups in
any of the days of measurements (Student’s t-test, P 6 0.05).
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dant being ca. 30% lower in the mutant compared to the wild type
after 10 days of stress. It is noteworthy that the increase in a-
tocopherol levels in the wild type was observed before the RWC
decreased sharply. In order to better understand the regulatory
mechanisms underlying the water-stress-induced accumulation
of a-tocopherol, the transcript levels of tocopherol biosynthesis
genes were analyzed by semi-quantitative RT-PCR. The relative
transcript levels of the genes encoding for the 4-hydroxyphenylpy-
ruvate dioxygenase (HPD), tocopherol cyclase (VTE1), homogentis-
ate prenyltransferase (VTE2) and c-tocopherol methyltransferase
(VTE4) were not significantly different between both plant groups.
Moreover, water deficit did not induce an increase in transcript
levels of these genes (Supplementary Fig. 1). Therefore, the in-
crease in a-tocopherol observed under water stress conditions
was not accompanied by an increase of transcript levels of central
genes encoding for enzymes of the tocopherol biosynthetic
pathway.

In order to confirm the influence of ethylene on the accumula-
tion of a-tocopherol in leaves, young and older leaves of two
other mutants were analyzed. A second ethylene-response mu-
tant, etr1-1, showed 2-fold higher a-tocopherol levels in young
leaves compared to wild type and ein3-1 mutants (Table 1). In
contrast to the ein3-1 mutant, tocopherol levels were about 10-
fold higher in the older leaves of the etr1-1 mutant compared to
those of the wild type. On the other hand, when young and old
leaves of the ethylene over-producer eto1 were analyzed a dra-
matic higher tocopherol level was also observed in older leaves
(Table 1), while transcript levels were not increased (Supplemen-
tary Table 2).
Table 1
Relative leaf water content (RWC), relative and maximum PSII efficiency (/PSII and Fv/Fm, re
etr1�1, and ein3�1 mutants of Arabidopsis thaliana. Data represent the mean ± SE of five
indicated by an asterisk (Student’s t-test, P 6 0.05).

Wild type ein3-1

Young Old Young

RWC (%) 78.10 ± 2.24 83.71 ± 1.20 81.11 ± 0.90
/PSII 0.71 ± 0.03 0.70 ± 0.03 0.75 ± 0.01
Fv/Fm 0.82 ± 0.01 0.83 ± 0.02 0.80 ± 0.02
a-Tocopherol (lmol [g DW]�1) 0.81 ± 0.16 1.05 ± 0.02 0.80 ± 0.10
4. Discussion

Tocopherol contents are known to change during leaf develop-
ment and appear to be strongly influenced by different stress con-
ditions. Drought stress is known to increase a-tocopherol levels in
several species, including A. thaliana [25,26], and it has been re-
cently shown that enhanced production of a-tocopherol may im-
prove drought tolerance in tobacco [27]. On the other hand,
ethylene, the simplest unsaturated hydrocarbon, regulates many
diverse metabolic and developmental processes in plants, ranging
from seed germination to organ senescence, and it is considered
to play a major role as a signal molecule at low concentrations in
the tolerance of several species to environmental stresses (for re-
view, see [15,28,29]). In previous studies, it was shown that exog-
enous treatment with ethylene can induce transcription of the hpd
gene, which encodes for 4-hydroxyphenylpyruvate dioxygenase, a
key enzyme in tocopherol biosynthesis [10]. Also, it was shown
that sustained accumulation of ethylene, at concentrations similar
to those found in polluted areas, can give rise to enhanced oxida-
tive stress and lowered tocopherol levels in holm oak plants ex-
posed to heat stress or a combination of heat and drought stress
[18]. We were therefore interested in unraveling the possible
involvement of ethylene in the regulation of tocopherol biosynthe-
sis in plants, and with this purpose we compared the water-stress
response of the ein3-1 mutant, which shows a defect in ethylene
signaling, to that of wild type plants. Tocopherol levels increased
progressively during water stress in wild type plants, but this
water-stress-induced increase was delayed and reduced in ein3-1
mutants, thus suggesting that ethylene signaling may be involved
in tocopherol biosynthesis. EIN3 is a transcription factor involved
in ethylene signaling and loss-of-function mutations in ein3 gene
cause partial ethylene insensitivity. This insensitivity can be res-
cued by expression of EIL1 or EIL2 indicating that, along with
EIN3, at least these two EIN3-like (EIL) proteins can mediate an
ethylene-response [19]. It is therefore likely that EIL proteins
may account for the partial increase in a-tocopherol levels ob-
served in the ein3-1 mutants. Further insight into the signaling
components involved in the regulation of tocopherol biosynthesis
was obtained by comparing the water-stress response of ein2-1
and eil1-1 mutants to that of ein3-1 mutants (Table 2). EIN2, which
has similarity to the Nramp family of metal ion transporters [30],
acts downstream of ETR1 and upstream of EIN3 and EIL proteins
[31]. When exposed to water deficit for 7 days, ein3-1 and ein2-1
mutants showed 33% and 43% reductions, respectively, in a-
tocopherol accumulation in leaves compared to wild type, while
tocopherol levels in eil1-1 mutants were reduced by 15% compared
to wild type. This suggests that the regulation of tocopherol bio-
synthesis is specifically regulated by EIN2, EIN3 and EIL1 proteins.
It appears that EIN2 proteins have a major role in the control of
tocopherol biosynthesis, since ein2-1 mutants could only increase
tocopherol levels by 33% under water deficit (relative to irrigated
plants), while wild type plants increased the levels of this antioxi-
dant 2.5 fold under the same conditions (water-stressed plants rel-
ative to irrigated ones, Table 2). Loss-of-function mutations in EIN3
spectively), and a-tocopherol levels in young and old leaves of wild type and eto1�1,
randomly chosen plants. Significant differences between young and old leaves are

etr1-1 eto1-1

Old Young Old Young Old

81.86 ± 1.92 80.18 ± 5.61 77.63 ± 1.75 81.34 ± 3.61 84.39 ± 2.47
0.75 ± 0.01 0.73 ± 0.02 0.75 ± 0.01 0..73 ± 0.03 0.72 ± 0.01
0.85 ± 0.02 0.77 ± 0.02 0.81 ± 0.01 0.78 ± 0.01 0.77 ± 0.02
1.16 ± 0.20 2.19 ± 0.66 10.97 ± 0.64* 1.01 ± 0.12 6.60 ± 0.36*



Table 2
Relative leaf water content (RWC), relative and maximum PSII efficiencies (/PSII and Fv/Fm, respectively), and a-tocopherol levels in leaves of wild type, and ein3-1, ein2-1 and eil1-
1 mutants of Arabidopsis thaliana either grown under irrigated conditions (irrigated plants) or exposed to water deficit for 7 days (water-stressed plants). Data represent the
mean ± SE of five randomly chosen plants. Significant differences between irrigated and water-stressed plants are indicated by an asterisk.

Wild type ein3-1 ein2-1 eil1-1

Irrigated Water-stressed Irrigated Water-stressed Irrigated Water-stressed Irrigated Water-stressed

RWC (%) 89.47 ± 0.75 85.54 ± 1.48* 90.40 ± 2,44 84.07 ± 1.36* 90.46 ± 0.22 85.08 ± 2.02* 89.88 ± 0.73 84.48 ± 1.66*

/PSII 0.78 ± 0.04 0.74 ± 0.02 0.78 ± 0.02 0.76 ± 0.02 0.77 ± 0.03 0.75 ± 0.02 0.81 ± 0.03 0.82 ± 0.01a

Fv/Fm 0.84 ± 0.04 0.78 ± 0.01 0.85 ± 0.02 0.82 ± 0.01a 0.84 ± 0.02 0.81 ± 0.01a 0.84 ± 0.03 0.85 ± 0.01a

a-Tocopherol (lmol [g DW]�1) 0.82 ± 0.09 2.12 ± 0.08* 0.81 ± 0.05 1.44 ± 0.14*,a 0.90 ± 0.10 1.20 ± 0.02*,a 0.78 ± 0.06 1.81 ± 0.10*,a

a Indicates significant differences between mutants and the wild type for each of these treatments (Student’s t-test, P 6 0.05).

Fig. 2. Changes in relative and maximum efficiency of PSII photochemistry (/PSII

and Fv/Fm, respectively) in leaves of irrigated and water-stressed wild type and ein3-
1 mutants of Arabidopsis thaliana. Results of two independent experiments are
shown. Data represent the mean ± SE of five individuals. Significant differences
between plant groups are indicated by an asterisk (Student’s t-test, P 6 0.05).

Fig. 3. Changes in a-tocopherol levels in leaves of irrigated and water-stressed wild
type and ein3-1 mutants of Arabidopsis thaliana. Results of two independent
experiments are shown. Data represent the mean ± SE of four individuals. Signif-
icant differences between plant groups are indicated by an asterisk (Student’s t-test,
P 6 0.05).
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and EIL1 genes also reduced tocopherol biosynthesis, although to a
lower extent, thus suggesting that EIN3 and EIL can compensate
each other to some extent. It is also noteworthy that, while ethyl-
ene-response mutants altered tocopherol accumulation under
water stress, clearly other factors additionally regulate tocopherol
accumulation since these mutants still show accumulation of this
compound under water stress.

The involvement of ethylene in the regulation of tocopherol
accumulation in Arabidopsis plants was confirmed by using etr1-
1 and eto1-1 mutants. Ethylene is perceived by a family of five
membrane-bound receptors (ETR1, ETR2, ERS1, ERS2, EIN4) that
have similarity to two-component regulators from bacteria [32].
Interestingly, mutation of the etr1 gene led to drastic changes in
a-tocopherol levels during leaf development, the oldest leaves
showing up to 5-fold higher tocopherol levels than young leaves
in the etr1-1 mutant. By contrast, tocopherol levels were lower in
wild type plants, and increased only slightly during leaf develop-
ment. Although mutations in any single gene encoding an ethylene
receptor have little or no effect upon seedling growth, consistent
with functional overlap within the receptor family, it appears that
ETR1 may play a central, specific role in the regulation of tocoph-
erol biosynthesis. Since ethylene receptors are negative regulators
of ethylene signaling [33], the tocopherol increase observed in
etr1-1 mutants confirms the involvement of ethylene signaling in
the regulation of tocopherol biosynthesis. Furthermore, tocopherol
biosynthesis was also enhanced in the ethylene over-producer
eto1�1 mutant, thus indicating that ethylene promotes tocopherol
biosynthesis in A. thaliana. An experiment conducted to unravel
the effects of the interaction between water deficit and leaf aging
on tocopherol biosynthesis showed that old leaves accumulate a-
tocopherol to a similar extent during the first 4 days of water def-
icit, despite relative leaf water contents decreased to ca. 60% in
eto1�1 mutants (Supplementary Fig. 2). Even, tocopherol levels de-
creased significantly in old leaves of water-stressed etr1-1 mu-
tants, while transcript levels kept similar (Supplementary Fig. 3),
thus suggesting degradation of tocopherol under stress. Indeed,
etr1-1 and eto1-1 mutants showed symptoms of photo-oxidative
damage in old leaves after one week of stress, which were accom-
panied by visible death of photosynthetic tissues in the ethylene
over-producer eto1�1 mutant (data not shown).

Tocopherol biosynthesis was most likely not regulated at the
transcriptional level in the present study, while it has been previ-
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ously shown that some tocopherol biosynthetic genes, and partic-
ularly VTE2, which encodes for homogentisate prenyltransferase
and plays a rate limiting step in tocopherol biosynthesis, increase
in response to water deficit in field-grown C. creticus plants [14]
and in response to a combination of high light and nutrient stress
in A. thaliana [34]. In the present study, however, stress-induced
increases in tocopherol were moderate (up to 2-fold), much lower
than in the those previous studies, which might explain why we
failed to detect by semi-quantitative RT-PCR any significant in-
crease in transcript levels of tocopherol biosynthetic genes in wild
type plants. Up to 5-fold increases in a-tocopherol levels were
however observed in the leaf aging experiment, while transcript
levels were not increased, thus confirming that the ethylene-med-
iated effects on tocopherol biosynthesis appear not to be regulated
at the transcriptional level. Since most components of ethylene sig-
naling, including transcription factors, influence tocopherol accu-
mulation and this is not reflected at the transcript level of the
tocopherol biosynthetic genes examined, further research is
needed to unravel ethylene-regulated genes involved either di-
rectly or indirectly in the regulation of tocopherol biosynthesis.
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