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SUMMARY

The mechanisms through which cell-cycle control
and cell-fate decisions are coordinated in prolifer-
ating stem cell populations are largely unknown.
Here, we show that E2f3 isoforms, which control
cell-cycle progression in cooperation with the
retinoblastoma protein (pRb), have critical effects
during developmental and adult neurogenesis.
Loss of either E2f3 isoform disrupts Sox2 gene
regulation and the balance between precursor
maintenance and differentiation in the developing
cortex. Both isoforms target the Sox2 locus to
maintain baseline levels of Sox2 expression but
antagonistically regulate Sox2 levels to instruct
fate choices. E2f3-mediated regulation of Sox2
and precursor cell fate extends to the adult brain,
where E2f3a loss results in defects in hippocampal
neurogenesis and memory formation. Our results
demonstrate a mechanism by which E2f3a and
E2f3b differentially regulate Sox2 dosage in neural
precursors, a finding that may have broad
implications for the regulation of diverse stem cell
populations.

INTRODUCTION

Stem cell-fate decisions, such as self-renewal, precursor cell

maintenance, and commitment to differentiation have critical

outcomes for embryonic development, tissue maintenance,

tumor suppression, and regeneration. Cortical development

depends on a precisely regulated balance of self-renewal within

stem cell-like apical precursors (APs), production of rapidly

proliferating basal progenitors (BPs), and differentiation of post-

mitotic neurons (Englund et al., 2005; Farkas and Huttner, 2008;

Hutton and Pevny, 2011) (Figure 1A). Identifying mechanisms

that control this balance can inform our understanding of devel-

opmental neurogenesis and, more broadly, reveal stem cell

biological principles extending to embryonic stem cell differenti-

ation, tumor formation, and tissue regeneration.
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The pluripotency factor Sox2 is an established regulator of

neural precursor proliferation, self-renewal, and differentiation

during development and is also required for maintenance of

adult stem cell populations in many different tissues (reviewed

in Sarkar and Hochedlinger, 2013). Overexpression of Sox2 in

both mouse and chick embryonic neural precursor cells (NPCs)

results in maintenance of the Sox2+ population and defective

neurogenesis (Bani-Yaghoub et al., 2006; Graham et al., 2003).

Conversely, loss of function of Sox2 in neural precursors leads

to precursor loss and reduced or aberrant differentiation, de-

pending on the tissue type and degree of Sox2 loss (Cavallaro

et al., 2008; Favaro et al., 2009; Ferri et al., 2004; Graham

et al., 2003; Miyagi et al., 2008; Taranova et al., 2006). Taken

together, these studies reveal that the function of Sox2 is

strongly influenced by dosage; thus, fine-tuning of transcription

from the Sox2 locus is crucial for the generation of the correct

proportion of precursors versus differentiated cell types. Inter-

estingly, a recent study finds that the Cyclin-dependent kinase

inhibitor 1A (p21) binds a Sox2 enhancer region to regulate

Sox2 expression and adult neurogenesis, linking cell-cycle regu-

lation with Sox2-mediated control of neural stem cell (NSC)

expansion (Marqués-Torrejón et al., 2013).

Previous evidence suggests that the cell cycle machinery

plays a key role in regulating the proliferative expansion and

self-renewal capacity of NPCs (Nishino et al., 2008; Ruzhynsky

et al., 2007; Vanderluit et al., 2004). However, how specific

cell-cycle regulatory proteins function in this context remains

poorly defined. The retinoblastoma pocket protein (pRb) family

controls cell-cycle progression by binding and inhibiting the

E2f family of transcription factors. E2fs are classified into the

‘‘activator’’ subclass, which drives proliferation and transcrip-

tion, and the ‘‘repressor’’ subclass, the members of which are

thought to repress gene transcription by modifying chromatin

structure through association with pocket proteins (Asp et al.,

2009). Earlier work has reported that E2f3 is the most highly ex-

pressed E2f family member in wild-type and pRb-deficient

neural precursors (Callaghan et al., 1999), suggesting that it

may be an important regulator of NPC functions. Understanding

how the E2f3 gene functions to regulate the cell cycle is not

entirely straightforward, because the two isoforms (E2f3a and

E2f3b) expressed from its locus have identical domains impor-

tant for DNA binding, transactivation, and pocket-protein

binding, and only their N termini are unique. Mice lacking both
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Figure 1. E2f3 Isoforms Are Differentially

Required for Neuronal Commitment

(A) Cortical development depends on a finely

controlled balance of AP cell proliferation, self-

renewal, and differentiation. APs can divide

symmetrically to expand their population or

asymmetrically to generate one AP and a neuron,

glial cell, or BP. BPs generate neurons through

asymmetric divisions. CP, cortical plate.

(B) Immunoblot for E2f3 in cultured neurospheres

induced to differentiate over 5 days. Both E2f3a

and E2f3b are expressed in proliferating neuro-

spheres (day 0), but expression is decreased as

differentiation progresses (days 1, 3, and 5).

GAPDH was included as a protein loading

control.

(C and D) BrdU staining in E14.5 coronal sections

following a 24 hr BrdU pulse to identify cells that

have exited the cell cycle. Fewer BrdU+ cells are

observed in the E2f3a�/� SVZ and IZ, whereas

more BrdU+ cells are apparent in E2f3b�/�.
(E and F) Sections described in (C) and (D) were

immunostained for BrdU and Tuj1. The number of

cells expressing both BrdU and Tuj1 was quanti-

fied within a defined area in the SVZ and IZ (arrows

identify examples of quantified cells). Results are

expressed as a percentage of E2f3a+/+ average

values ± SEM (n = 4).

(G and H) Neurospheres were expanded in vitro

and, upon first passage, were cultured in differ-

entiation media on poly-L-ornithine-coated dishes

for 3 days, PFA fixed, and immunostained for Tuj1

and DAPI. E2f3a�/� possesses fewer Tuj1+ cells;

E2f3b�/� has more Tuj1+ cells. Results are pre-

sented as the percentage of DAPI+ cells ex-

pressing Tuj1 ± SEM (n = 4).

For (E)–(H): *p < 0.05, **p < 0.01. Scale bars

represent 50 mm. See also Figure S1.
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isoforms die perinatally due to cardiac defects (King et al., 2008),

whereas those deficient in either isoform are fully viable

(Danielian et al., 2008; Tsai et al., 2008), suggesting functional

overlap. Tissue- and cell-type-specific analysis of pRb and E2f

knockout mice suggests that E2f3a is generally a potent acti-

vator of transcription and proliferation, whereas E2f3b induces

proliferation weakly and promotes differentiation (Asp et al.,

2009; Chong et al., 2009; Danielian et al., 2008), but whether indi-

vidual E2f3 isoforms make a distinct contribution to develop-

mental and adult neurogenesis is currently unknown.

Here, we use mouse models deficient for either E2f3 isoform

to reveal that E2f3a and E2f3b antagonistically regulate Sox2

expression in NSCs. In E2f3b-null animals, where E2f3a is the

dominant isoform, we find that E2f3a represses Sox2 in coop-

eration with the pRb family member p107, reduces precursor

self-renewal, and promotes differentiation. Conversely, in

E2f3a-null animals, where E2f3b is the dominant isoform, we

find that E2f3b activates Sox2 expression by recruiting RNA

Polymerase II to its promoter, which leads to increased self-

renewal and precursor expansion at the expense of differentia-

tion. Knockdown of Sox2 in E2f3a-deficient NPCs restored

basal levels of self-renewal. Importantly, we find that adult

E2f3a-null mice have impaired neurogenesis and a reduced

capacity for hippocampal-dependent contextual learning,
underscoring how the antagonism between E2f3 isoforms is

conserved to regulate adult neurogenesis and affect memory

formation.

RESULTS

E2f3 Isoforms Are Expressed in NPCs
E2f3 is a potent cell-cycle regulator and a highly expressed E2f

family member in NPCs (Callaghan et al., 1999; McClellan et al.,

2007), suggesting a potential role for E2f3 in this cell type. Inter-

estingly, we observed that expression of both E2f3 isoforms is

enriched in NPCs but reaches negligible levels by day 5 of

differentiation in vitro (Figure 1B; Figures S1A and S1B avail-

able online), pointing to a regulatory role for both isoforms

within the proliferating precursor pool. We asked whether

E2f3 isoforms play an important role in regulating neural stem

and progenitor cell-fate decisions by examining mouse lines

deficient for E2f3a and E2f3b (Chen et al., 2007; Tsai et al.,

2008).

E2f3a and E2f3b Deficiency Impacts NPC-Fate
Decisions in an Opposing Manner
We first asked whether loss of E2f3 isoforms impacts NPC-fate

decisions by performing a neuronal commitment assay. Mice
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Figure 2. E2f3 Isoforms are Differentially Required for Regulation of NPC Numbers and Self-Renewal

(A and B) PH-H3 staining in E17.5 coronal sections to label mitotic cells. PH-H3+ cells were quantified along the dorsal surface of the lateral ventricle in either the

VZ or SVZ, and numbers were normalized to a defined ventricular length (500 mm). Quantification demonstrates an expansion in E2f3a�/� and a decrease in

E2f3b�/�, specifically in the VZ (n = 4).

(C and D) Quantification of Sox2+ and Tbr2+ cells within the dorsal cortex at E17.5 demonstrates an increased number of Sox2+ cells in E2f3a�/� and fewer Sox2+

cells in E2f3b�/� (n = 4).

(legend continued on next page)
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were given a single bromodeoxyuridine (BrdU) injection and

were sacrificed 24 hr later for the purpose of visualizing BrdU+

cells that had exited the cell cycle and initiated differentiation.

There were visibly fewer BrdU+ cells migrating into the subven-

tricular zone (SVZ) and intermediate zone (IZ) of E2f3a�/� mice,

but more BrdU+ cells in these regions in E2f3b knockouts

(Figures 1C and 1D), suggesting a differential commitment to

neurogenesis. Newly committed cells that have undergone

terminal mitosis can be identified by double labeling with BrdU

and differentiation markers, including bIII-tubulin (TuJ1) and

Doublecortin (DCX). These BrdU-positive cells are also negative

for theproliferationmarker Ki67.E2f3a�/�miceexhibited a signif-

icant reduction in newly committed cells that colabeled for BrdU

and Tuj1 (Figure 1E) or BrdU and DCX (Figure S1C) and cells that

were negative for Ki67 (BrdU+/Ki67�) (Figure S1D). In contrast,

these same experiments revealed that E2f3b-deficient brains

contain significantly more committed cells (Figure 1F; Figures

S1E and S1F). These results were further supported in vitro by

quantification of newly committed cells in neurosphere cultures

induced to differentiate. Here again, E2f3a-deficient NPCs ex-

hibited a reduction in differentiation, whereas E2f3b-deficient

precursors had an increase in differentiating cells (Figures 1G

and 1H). Deficiency of either E2f3 isoform does not lead to

compensatory expression changes of other pRb and E2f family

members (Figures S1G–S1J), demonstrating the specificity of

E2f3-isoform-dependent phenotypes. Thus, deficiency of E2f3

isoforms impacts NPC-fate decisions in distinct ways: E2f3a

loss reduces, whereas E2f3b deficiency increases, commitment

to a neuronal fate.

Second, to determine whether E2f3 isoforms are similarly

required to regulate the size of the neural precursor pool in an

opposing manner, we quantified the number of proliferating

NPCs during forebrain development by performing a 2 hr BrdU

incorporation (S phase) and phosphohistone H3 (PH-H3) immu-

nostaining (M phase). E2f3a loss resulted in an expanded neural

precursor pool (Figures S2A and S2C), specifically affecting the

Sox2+ stem-like APs in the ventricular zone (VZ) (Figures 2A and

2C; Figure S2E) and culminating in a 38% increase in the size of

this population by embryonic day 17.5 (E17.5) (Figure 2A). Loss

of E2f3b resulted in an average 25% decrease in precursor

numbers throughout development (Figures S2B and S2D), again

specifically affecting Sox2-expressing stem-like APs (Figures 2B

and 2D; Figure S2F). Concomitant with the expanded precursor

population in E2f3a�/� brains, the neuronal output at birth was

significantly reduced (e.g., a 24% decrease in later-born

neurons, layers I–III) (Figure S3A). In contrast, neuronal output

was increased in E2f3b knockouts (Figure S3B). Thus, E2f3a

and E2f3b are differentially required for the regulation of both

the expansion of the AP population and the commitment of AP

cells to a neuronal fate.
(E) Colocalization of E2f3a (green) with Sox2 (red) in the dorsal cortex (E14.5).

(F) Lack of colocalization between E2f3a (red) and the BP marker Tbr2 (green) in

(G) Quantification of the percentage of all E2f3a+ cells per section in the dorsal c

(H) Quantification of the percentage of Pax6-, Sox2-, or Tbr2-expressing cells pe

(I and J) Increased number of primary and secondary neurospheres in E2f3a�/�

generate the same number of neurospheres as wild-types (J). Included in the right

(n = 5–7).

For (A)–(J), results are presented as the mean ± SEM (*p < 0.05, **p < 0.01, ***p
E2f3 Is Expressed in Stem-like Sox2+ APs
The impact of E2f3 isoforms on cell-fate decisions within the

AP population suggests that E2f3 is expressed in Sox2+

precursors. Using an N-terminal E2f3a-specific antibody, we

detected E2f3a protein within NPCs in the ganglionic eminence

(GE), a ventrally located tissue that gives rise to inhibitory inter-

neurons (Wonders and Anderson, 2006), as well as the VZ and

SVZ surrounding the lateral ventricle (Figures S4A and S4B).

Importantly, E2f3a colocalizes with a subset of Sox2-express-

ing cells in the GE (Figure S4C) and the dorsal cortex (Figures

2E, 2G, and 2H) (also marked by Pax6 [Figure S4D]).

Conversely, little E2f3a colocalization was found in committed

BPs, which express Tbr2 (Figures 2F–2H), or in Tuj1+ neurons

(Figure 2H). Quantification of cells colabeled with E2f3a and

cell-cycle phase markers revealed that E2f3a is highly enriched

in S phase, during which 83% of E2f3a+ cells coexpressed

BrdU following a 2 hr pulse (Figures S4E–S4G). E2f3a expres-

sion in S phase precursors supports a role in NPC-fate

decisions, given that a recent study suggests that fate deci-

sions in the developing brain are controlled by gene expres-

sion patterns during S phase (Arai et al., 2011). Thus,

E2f3a is expressed predominantly in Sox2+ self-renewing

precursors.

E2f3a Is Required for Regulation of NSC Self-Renewal
We asked next whether E2f3 isoforms modulate the self-

renewal capacity of the stem cell-like AP population. Loss of

E2f3a increased the number of primary and secondary neuro-

spheres generated by both cortical and GE-derived NPC pop-

ulations by 1.4- to 2-fold at E14.5 (Figure 2I) and E17.5 (Fig-

ure S4H). Loss of E2f3b, however, showed no effect

(Figure 2J; Figure S4I). To ask whether E2f3a deficiency affects

the mode of AP cell division, we measured the orientation of

mitotic spindle poles in control and E2f3a-deficient brains.

APs undergo mitosis at the apical surface of the lateral

ventricle, and the orientation of the mitotic spindle pole and

cleavage furrow during cytokinesis has been linked with the re-

sulting fate of daughter cells (Das and Storey, 2012; Farkas

and Huttner, 2008; Godin et al., 2010) (see Supplemental Infor-

mation for detailed methods). In E2f3a knockouts, we

observed 1.5-fold more APs with a cleavage angle within the

vertical 75�–90� range, associated with symmetric (self-renew-

ing) cell divisions (Figures S4J and S4K). In contrast, there was

a corresponding 2.7-fold decrease in the number of divisions

within the 0�–15� range, suggesting a reduction in asymmetric,

differentiative cell divisions. These results suggest that E2f3a-

deficient brains exhibit an increased proportion of AP cells

undergoing symmetric cell divisions, consistent with our

in vitro studies showing enhanced neural precursor self-

renewal.
the dorsal cortex (E14.5).

ortex (E14.5) coexpressing Sox2, Pax6, Tbr2, or Tuj1 (n = 3).

r section in the dorsal cortex (E14.5) that also express E2f3a (n = 3).

precursors derived from both GE and dorsal cortex (CTX) (I); E2f3b knockouts

side are phase-contrast images of neurospheres from the indicated genotypes

< 0.001). The scale bar represents 100 mm. See also Figures S2–S24.
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Opposing Regulation of the Sox2 Gene by E2f3 Isoforms
To identify target genes through which E2f3 isoforms regulate

NPC properties, we performed a genomic chromatin immuno-

precipitation (ChIP)-on-chip screen to identify E2f3 binding sites

and associated target genes in NPCs (L.M.J., Y. Liu, D.S.P.,

R.S.S., and A.B., unpublished data). From three independent

samples of wild-type, E2f3a�/�, and E2f3b�/� E14.5 GE neuro-

spheres, we identified the gene encoding the pluripotency factor

Sox2 as a potential target of E2f3 (Figure 3A). Enrichment levels

for E2f3 at the Sox2 promoter were comparable in wild-type and

E2f3a- and E2f3b-deficient cells, indicating that both isoforms

bind this locus. Previous studies have shown that changes in

Sox2 expression can have dramatic effects on the maintenance

and differentiation capacity of neural precursor populations,

wherein elevated Sox2 leads to expansion of the precursor

pool and impaired neurogenesis, and decreased Sox2 results

in loss of NPCs and dose-dependent defects on neurogenesis

(Bani-Yaghoub et al., 2006; Graham et al., 2003; Pevny and

Nicolis, 2010; Taranova et al., 2006). As precursor numbers

and neurogenesis are disrupted in E2f3a- and E2f3b-deficient

brains, Sox2was a strong candidate to account for these biolog-

ical effects. We first validated by conventional ChIP that E2f3

binds to the Sox2 promoter, at an enrichment level comparable

to that of previously established E2f3 target genes (Figure 3B).

An E2f consensus motif (CTTCCCGC) was identified within the

center of the E2f3 binding peak, 371 bp upstream of the tran-

scriptional start site (TSS) (Figure 3A), and is conserved in the

murine and human genomes. This E2f3-bound region is tran-

scriptionally responsive to E2f3 activity, as indicated by

a 2-fold increase in luciferase activity from a Sox2 promoter frag-

ment (800 bp upstream to 285 bp downstream of the Sox2 TSS)

following cotransfection of a full-length E2f3 construct (Figures

3C and 3D). Furthermore, point mutations within the E2f

consensus motif reduced luciferase activity by 50% (Figures

3C and 3D), demonstrating a functional E2f consensus site at

371 bp upstream of the Sox2 TSS.

To determine whether E2f3 isoforms regulate Sox2 levels

in vivo and in vitro, we measured Sox2 protein levels in

GE-derived tissue and cultured neurospheres, because NPCs

from this region are predominantly Sox2+ (Figures S5A and

S5B). We show that E2f3a and E2f3b regulate Sox2 expression

in a reciprocal manner. Specifically, E2f3a�/� neurospheres

and GE tissue exhibited a 2.3- and 6-fold increase, respectively,

in Sox2 levels (Figures 3E and 3F). In contrast, E2f3b�/� neuro-

spheres and GE tissue express Sox2 at 40% and 30% of

wild-type levels (Figures 3G and 3H). These results suggest

an opposing role for E2f3 isoforms in the regulation of the

Sox2 gene.

E2f3a Represses NSC Self-Renewal through Sox2

Regulation
To directly determine whether E2f3a represses self-renewal by

regulating Sox2, we asked whether Sox2 knockdown could

rescue the enhanced self-renewal phenotype observed in

E2f3a-deficient cultures. E2f3a+/+ or E2f3a�/� neurospheres

were infected with a bicistronic lentivirus expressing GFP and

one of two short hairpin Sox2 (shSox2) or scrambled control

sequences. Importantly, each shSox2 construct reduced Sox2

expression in E2f3a�/� cells to a level comparable to that of
444 Cell Stem Cell 12, 440–452, April 4, 2013 ª2013 Elsevier Inc.
GFP-infected wild-type cells (Figures 4A and 4B). shSox2-medi-

ated knockdown of Sox2 in E2f3a�/� cultures restored neuro-

sphere numbers (Figures 4C and 4D) and self-renewal capacity

(Figure 4E) back to basal levels. To determine whether elevated

Sox2 can account for the increased self-renewal in E2f3a�/�

precursors, we overexpressed Sox2 in wild-type cultures

(Figure 4F). Sox2 overexpression in E2f3a+/+ precursors

increased self-renewal (Figure 4G) and correspondingly

decreased neurogenesis (Figure 4H) to levels observed in

E2f3a-deficient cells. Furthermore, overexpression of Sox2 in

E2f3a�/� precursors, which already express elevated Sox2, did

not increase neurosphere numbers further. Thus, E2f3a func-

tions to maintain Sox2 levels below a specific threshold, beyond

which precursor self-renewal and cell-fate decisions are mark-

edly disrupted.

E2f3 Isoforms Recruit Distinct Transcriptional
Cofactors to the Sox2 Promoter
To determine the mechanism by which E2f3a and E2f3b antag-

onistically regulate Sox2 expression, we identified the regulatory

factors recruited to the Sox2 locus by each isoform. We

confirmed that both isoforms bind the Sox2 promoter within

a 200 bp region surrounding the conserved E2f motif (upstream

binding site [US]) and at the TSS, given that E2f3 enrichment is

similar in wild-type, E2f3a�/�, and E2f3b�/� neural precursors

(Figure 5A). Consistent with E2f3b as an activator of Sox2

expression, in E2f3a�/� cells, in which only the E2f3b isoform

is present, we observed enrichment of RNA polymerase II (Pol

II) at and beyond the TSS (Figure 5B) and the trimethyl-H3K4

(H3K4me3) chromatin modification (Figure 5C), as well as

a decrease in H3K27me3 (Figure 5C). Each of these changes

are associated with transcriptional activation, demonstrating

that in the absence of E2f3a, Sox2 expression is elevated due

to an increased ratio of bound E2f3b-Pol II complexes.

Conversely, binding of the repressive pocket protein p107 was

significantly enriched in the absence of E2f3b, where only

E2f3a is present, and was decreased in E2f3a�/� cells

(Figure 5D). These findings show that E2f3a functions as

a repressor at the Sox2 promoter by recruiting p107. Supporting

this conclusion, GE tissue from p107-deficient animals exhibited

a 2.2-fold increase in Sox2 levels compared towild-type controls

(Figure 5E).

The percentage of precursor cells in each cell-cycle phase

was not altered by E2f3a or E2f3b deficiency (Figures S6A and

S6B); thus, the changes in binding enrichments we observed in

E2f3 isoform-deficient cells could not be explained by disrupted

cell-cycle dynamics, but rather by altered enrichment of these

factors. We show that E2f3 isoforms regulate Sox2 expression

in an opposing manner, whereby E2f3a recruits the transcrip-

tional repressor p107 and E2f3b recruits activator complexes

to the promoter. This reveals a novel mechanism for regulation

of the pluripotency factor Sox2, through the cell cycle effectors

E2f3a and E2F3b.

A Common Mechanism of E2f3a-Mediated Sox2

Regulation in Embryonic and Adult NSCs
The requirement for controlled Sox2 expression in NSCs

extends from development to adulthood (Cavallaro et al.,

2008; Favaro et al., 2009; Ferri et al., 2004; Pevny and Nicolis,



Figure 3. E2f3 Isoforms Regulate Sox2 Expression in an Opposing Manner

(A) Binding-peak profiles for E2f3 from E2f3a+/+, E2f3a�/�, and E2f3b�/�ChIP-on-chip experiments, generated with the UCSC Genome Browser (http://genome.

ucsc.edu/). E2f3 binding peaks extend throughout the proximal promoter region and the TSS. An E2f consensus motif was identified at 371 bp upstream of the

TSS. WT, wild-type.

(B) RT-PCR analysis of E2f3 ChIP experiments shows E2f3 binding at the Sox2 promoter with an enrichment value similar to that for other known E2f targets.

Plotted is the mean from at least three independent experiments ± SEM (n = 4).

(C)Model for luciferase experiments. E2f3-dependent activity was tested from a Sox2 promoter fragment covering�800 bp to +285 bp relative to the TSS. For E2f

consensus site mutation, five core nucleotides were replaced with adenine.

(D) E2f3a drives Sox2-luciferase activity. Mutation of the E2f consensus motif reduced E2f3-mediated transcription by 50% (n = 4–6).

(E andG) Immunoblot for Sox2 fromculturedE2f3a (E) or E2f3b (G) neural precursors orGE tissue.GAPDHandmtHsp70were included asprotein-loading controls.

(F and H) Quantification by densitometry of immunoblots shows that E2f3a knockouts express significantly more Sox2 (F), whereas E2f3b knockouts have lower

Sox2 levels (H).

For all quantifications, data are plotted as the mean ± SEM (*p < 0.05, **p < 0.01, ***p < 0.001). See also Figure S5.

Cell Stem Cell

Opposing Regulation of Sox2 by E2f3 Isoforms
2010); thus, we hypothesized that E2f3-dependent Sox2 regula-

tion is also important in adult NSCs. To evaluate the role of

E2f3a in the adult we generated animals containing two modi-
fied E2f3 alleles: one floxed allele and a second E2f3a-deficient

allele (E2f3-flox/3a�). To acutely remove E2f3a, we infected

cultured SVZ precursors from adult E2f3-flox/3a� animals with
Cell Stem Cell 12, 440–452, April 4, 2013 ª2013 Elsevier Inc. 445
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Figure 4. Regulation of NSC Self-Renewal by E2f3a Is Sox2-Dependent

(A and B) Immunoblot analysis (A) and densitometry quantification (B) of Sox2 expression in cultured GE neurospheres (E14.5) 5 days post infection (p.i.) with

scrambled (Scr) control or shSox2 lentiviruses (n = 3). mtHsp70 was included as a measure of protein loading.

(C) Representative images of GFP-positive neurospheres 7 days p.i. Scale bar represents 200 mm.

(D and E) Infected cultures were plated immediately for primary neurosphere assays (D) and one week later were used in secondary neurosphere assays (E).

Neurosphere numbers are restored in E2f3a knockouts following Sox2 knockdown (n = 4).

(F) Immunoblot demonstrating increased Sox2 expression in neurospheres infected with a Sox2-expressing lentivirus compared to GFP-infected cells, 4 days p.i.

(G) Cells were plated 7 days p.i. for secondary neurosphere assays. Sox2 overexpression in wild-type cells increases self-renewal (n = 3).

(H) E2f3a+/+ and E2f3a�/� neurospheres were cultured in differentiation media on poly-L-ornithine plates 7 days p.i. and were fixed and stained for Tuj1 and DAPI

after 6 days. The percentage of DAPI+ cells that express Tuj1 was quantified. Sox2 overexpression inhibits neuronal differentiation in vitro. Scale bar represents

50 mm (n = 3).

Significancewas determined for all samples compared toE2f3a�/� (B, D, and E) orE2f3a+/+ (G andH) cells infectedwith control virus. All data are presented as the

mean ± SEM (*p < 0.05, **p < 0.01).
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Figure 5. E2f3 Isoforms Recruit Distinct Transcriptional Cofactors to the Sox2 Promoter

(A–D) ChIP was performed in E2f3a�/�, E2f3b�/�, and wild-type (both E2f3a+/+ and E2f3b+/+) GE-derived neurospheres using antibodies for E2f3 (A), Pol II (B),

H3K4me3 and H3K27me3 (C), and p107 (D). Chromatin enrichment was quantified by RT-PCR using primers designed to amplify 200 bp regions centered on

either the upstream (US) E2f bindingmotif or the TSS of the Sox2 promoter. For all panels, we have plotted values for the specific antibody IP with immunoglobulin

G (IgG) values subtracted (n = 3–5).

(E) Immunoblot analysis and densitometry quantification of p107+/+ and p107�/� GE tissue shows a significant increase in Sox2 levels in the absence of p107

(n = 3). See also Figure S6.

Data for (A)–(E) are plotted as the mean ± SEM (*p < 0.05, **p < 0.01).
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a Cre-expressing lentivirus, which removes E2f3a but leaves

E2f3b intact (Figure 6A). As with embryonic E2f3a�/� precur-

sors, Cre-infected cells exhibited increased neurosphere self-

renewal (Figure 6B) and were impaired in their ability to generate

neurons (Figure 6C). Importantly, these self-renewal and neuro-

genic changes were accompanied by increased Sox2 expres-

sion (Figure 6D). Furthermore, the absence of E2f3a reduced

enrichment of E2f3 (Figure 6E) and p107 (Figure 6F) and signif-

icantly increased recruitment of Pol II (Figure 6G) at the Sox2
promoter. Thus, NSCs maintain a common mechanism of

E2f3a-dependent Sox2 regulation from development to

adulthood.

Loss of E2f3a Disrupts Neurogenesis and Cognitive
Function in the Adult Brain
Given that E2f3a regulates Sox2 in both embryonic and adult

NSCs, we asked whether absence of E2f3a had a functional

consequence in the adult brain. We evaluated the levels of
Cell Stem Cell 12, 440–452, April 4, 2013 ª2013 Elsevier Inc. 447



Figure 6. E2f3a Regulates Sox2, Neurogenesis, and Cognitive Function in the Adult Brain

(A) Immunoblot showing loss of E2f3a, but not E2f3b, in E2f3-flox/E2f3a� adult SVZ precursors 4 days after Cre infection. Results were quantified by densi-

tometry, using mtHsp70 as a loading control (n = 4).

(B) Infected cells were plated for neurosphere assays 7 days p.i., and regenerated neurospheres were counted 6 days later. Cre-infected cells generated more

neurospheres than did controls. The image to the right showsGFP-expressing neurospheres infectedwith either control (GFP) or GFP-CRE virus 7 days p.i. (n = 7).

(C) Neurospheres were plated in differentiationmedia on poly-L-ornithine-coated dishes 7 days p.i. andwere fixed and stained for Tuj1 and DAPI after 6 days. The

percentage of DAPI+ cells expressing Tuj1 was quantified. Cre-infected cells have a reduced capacity to generate neurons (n = 5).

(D) Elevated Sox2 in Cre- versus GFP-infected E2f3-flox/E2f3a� adult precursors (5 days p.i.), quantified by densitometry using mtHsp70 as a loading control

(n = 3).

(E–G) RT-PCR analysis of ChIP assays for E2f3 (E), p107 (F), and Pol II (G) in GFP- or Cre-infected E2f3-flox/E2f3a�/� precursors (n = 4).

(legend continued on next page)
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neurogenesis in E2f3a+/+ and E2f3a�/� adult brains in two

distinct neurogenic regions, the SVZ and the dentate gyrus

(DG) of the hippocampus, wherein neurogenesis is required for

olfactory function and hippocampal memory formation, respec-

tively. As determined by NeuroD1 and DCX staining, the number

of committed neurons was significantly decreased, by 35% in

the SVZ (Figure 6H) and 31% in the DG (Figures 6I and 6J),

revealing an impairment in adult neurogenesis that had pro-

gressed since the late stages of development. We also found

that E2f3a�/� mice are significantly impaired in their ability to

learn and remember the association between an aversive expe-

rience and environment in the classical fear-conditioning para-

digm (Wehner and Radcliffe, 2004). In this test, animals are

trained to acquire a learned response to an aversive stimulus

(foot shock) that is associated with a specific environment

(context) and a tone (cue). Following training, animals are tested

for their ability to have learned that the context or cue is associ-

ated with the aversive stimulus through measuring their freezing

behavior during exposure to each condition. E2f3a�/� mice ex-

hibited a significant 45% decrease in freezing behavior associ-

ated with amygdala- and hippocampus-dependent contextual

learning (Marı́n-Burgin and Schinder, 2012) and a more subtle

21% decrease in freezing associated with amygdala-dependent

cue learning (Figure 6K) (Wehner and Radcliffe, 2004). The

reduced freezing in E2f3a�/� versus control mice was not due

to differences in the unconditioned freezing behavior, as as-

sessed during training and before tone presentation in the cue

trial (Figures S7A and S7B), nor to differences in the foot-shock

threshold (Figure S7C). These results suggest that E2f3a influ-

ences the formation of associative memories and that its loss

reveals defects in at least two telencephalic structures, with

the most severely affected function (contextual learning) being

that which is influenced by adult neurogenesis (Marı́n-Burgin

and Schinder, 2012). Thus, E2f3a is required for regulation of

neural precursor maintenance and neurogenesis in both the

embryonic and adult brain, and this role significantly impacts

cognitive function.

DISCUSSION

This study presents two key discoveries. First, we show that E2f3

isoforms play opposing roles in regulating the balance between

neural precursor self-renewal and differentiation during develop-

mental neurogenesis. Loss of E2f3a leads to neurogenic defects

in adulthood, underscoring the importance of E2f3 in mediating

fate choices in both embryonic and adult NSCs. Second, we

report a transcriptional mechanism by which E2f3 isoforms

antagonistically regulate levels of Sox2 expression. Alteration

of Sox2 expression by loss of either E2f3 isoform shifts the equi-

librium between precursor expansion and differentiation,

thereby affecting downstream generation of cortical neurons

and ultimately cognitive function.
(H–J) Neurogenesis was measured in the adult brain by quantifying the total area

cells in the DG of the hippocampus (n = 3) (I and J).

(K) E2f3a�/�mice spent 45% and 21% less time freezing in the context (p = 0.015

training (n = 18 for E2f3a+/+; n = 13 for E2f3a�/�).
For (A)–(K), data are presented as the mean ± SEM. Scale bar represents 100 mm f

Figure S7.
Based on our findings and previous reports of E2f3 isoform

expression patterns (Adams et al., 2000), we predict that E2f3a

is predominant during S phase, whereas E2f3b is expressed

throughout the cell cycle. Thus, at different phases of the cell

cycle, E2f3a and E2f3b isoforms dynamically fine-tune Sox2

expression levels. We present a model of E2f3-dependent

Sox2 regulation in which both E2f3 isoforms, in a see-saw-like

fashion, regulate levels of Sox2 in proliferating NSCs to ensure

the proper balance of precursor expansion and differentiation

(Figure 7A). When E2f3b is lost, E2f3a-p107-mediated repres-

sion is not balanced by E2f3b-mediated activation, leading to

lower Sox2 levels and increased neurogenesis at the expense

of precursor expansion (Figure 7B). Conversely, E2f3a deficiency

leads to activation by E2f3b that is not balanced by E2f3a-medi-

ated repression, resulting in elevated Sox2 levels and, conse-

quently, increased precursor self-renewal at the expense of

neurogenesis (Figure 7C). This functional model illustrates the

requirement for a balance between E2f3a and E2f3b transcrip-

tional activities to maintain the correct dosage of Sox2 in stem

and progenitor cells.

Although E2f3a, E2f3b, and p107 are highly expressed in

NPCs, these proteins become rapidly downregulated as cells

undergo differentiation. Uncovering other mechanisms by which

long-term repression of Sox2 is maintained as cells differentiate

will therefore be important. Notably, a recent study has shown

that the Cyclin-dependent kinase inhibitor (CKI) p27 is required

for repression of Sox2 during the differentiation of pluripotent

stem cells (Li et al., 2012). p27 is recruited to the Sox2 SRR2

enhancer and functions in a complex together with p130 and

E2f4 to silence Sox2 expression during differentiation. As the

pocket protein p130 is highly expressed in differentiated cells

and plays a key role in long-term silencing of cell-cycle genes,

it may well play a crucial role in silencing Sox2 in postmitotic

neurons. Another recent study demonstrated that the CKI p21

represses Sox2 expression in adult NSCs (Marqués-Torrejón

et al., 2013). In adult NSCs it has been shown that p21 represses

Sox2 through the SRR2 enhancer and that its loss results in

excessive Sox2 expression and precursor exhaustion. This

exhaustion, however, is preceded by an initial expansion of the

precursor pool (Kippin et al., 2005; Marqués-Torrejón et al.,

2013). In E2f3a-deficient embryonic and adult NSCs, we found

that elevated levels of Sox2 overexpression lead to increased

self-renewal; however, it is also possible that E2f3a-deficient

NSCs may exhaust with time, following extended passaging

in vitro or with advanced animal age. It is also conceivable that

E2f3 may participate in the recruitment of p21 to its SRR2-

enhancer binding site. However, given that the E2f3 and p21

binding sites have been identified in distinct regulatory domains

of the Sox2 gene and that E2f-independent mechanisms of p21

recruitment to Sox2 have been suggested (Marqués-Torrejón

et al., 2013), it is probable that they regulate Sox2 expression

by distinct mechanisms. Examining these questions will be an
of DCX staining along the SVZ (n = 4) (H) and the number of NeuroD1+ or DCX+

) and after the auditory cue (p = 0.047), respectively, following fear-conditioning

or (B), (H), and (J) and 25 mm for (C) (*p < 0.05, **p < 0.01, ***p < 0.001). See also
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Figure 7. Model of E2f3 Function: E2f3 Iso-

forms Regulate Sox2 Transcription in an

Opposing Manner to Direct NSC Fate

Choice

(A) In wild-type conditions, E2f3b activates and

E2f3a represses Sox2 transcription, allowing for

dynamic fine-tuning of Sox2 levels. This fine-

tuning maintains the proper balance between

neurogenesis and expansion of the NPC pool.

(B) In the absence of E2f3b, E2f3a-p107-mediated

repression dominates and reduces Sox2 levels,

thereby increasing neurogenesis at the expense of

precursor expansion.

(C) In the absence of E2f3a, E2f3a repression

unbalances E2f3b-mediated activation, thus

increasing Sox2 levels and promoting NPC

expansion at the expense of neurogenesis.
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important focus for future studies and will contribute to our

understanding of molecular events underlying Sox2 gene

silencing in differentiating cells.

Through our identification of Sox2 as a functional target gene

of the pRb/E2f pathway in neural precursors, we have linked the

cell-cycle machinery with pluripotent gene regulation in a biolog-

ically relevant context. E2f-dependent regulation of Sox2 has

clear functional consequences in the developing brain; however,

we suggest that this may be a common feature of stem cell regu-

lation and the pluripotent state, given that both Sox2, pRb, and

E2f proteins are expressed in diverse tissue-specific, pluripo-

tent, and cancer stem cell populations (Arnold et al., 2011;

Galderisi et al., 2006; Pevny and Nicolis, 2010). In addition, the

pRb binding proteins RBBP4 and RBBP9 have recently been

implicated in regulation of the pluripotent state in human stem

cells, and E2f motifs have been identified in the promoters of

key pluripotency factors, including NANOG, POU5F1, FOXD3,

and SOX2 (O’Connor et al., 2011). ChIP-based experiments

have further demonstrated that E2fs are found at the promoters

of a large number of pluripotency-related genes (Chen et al.,

2008; O’Connor et al., 2011), although direct functional conse-

quences for these interactions have not previously been

described. In conclusion, these studies point to the possibility

that E2fs may regulate other pluripotency factors in addition to

Sox2 and support the idea that E2f3-dependent Sox2 regulation
450 Cell Stem Cell 12, 440–452, April 4, 2013 ª2013 Elsevier Inc.
is a fundamental mechanism in tissue-

specific, tumorigenic, and pluripotent

stem cell populations.

EXPERIMENTAL PROCEDURES

Mouse Models

Germline E2f3a- and E2f3b-null mice were origi-

nally generated by G. Leone and were maintained

on an FVB/N background (Chen et al., 2007; Tsai

et al., 2008). Animal experiments were approved

by the University of Ottawa’s Animal Care

Committee, which abides by the guidelines of

the Canadian Council on Animal Care. E2f3-flox/

E2f3a� mice were generated by crossing

E2f3a�/� mice with E2f3-flox/flox animals main-

tained on an FVB/N background. p107-deficient

mice were generated as previously described
(LeCouter et al., 1998). All adult mice analyzed were 2 months of age or

older.

Neural Precursor Cultures

Neural precursors were obtained by dissection of the ventral (GE) or dorsal

(cortex) telencephalic tissue of developing embryos; neurosphere and

in vitro differentiation assayswere performed as previously described (Vander-

luit et al., 2004), with the exception of the lentivirus experiments, in which

neural precursors were plated at a density of 5 cells/ml 7 days post infection

and the number of regenerated neurospheres were counted after 6 days in

culture. All neurosphere assays were performed with brain samples from

four to seven independent animals, from at least two separate experiments.

Western Blotting, Immunohistochemistry, Cell Counts, Primers, and

Antibodies

Details are described in Supplemental Experimental Procedures.

Statistical Analysis

All statistical comparisons in this studywere performed using an unpaired two-

tailed t test. Differences were considered significant with a p value of <0.05 (*),

**p < 0.01, ***p < 0.001.

Lentiviral Infections

shRNA lentiviral expression constructs were obtained from Open Biosystems

and included scrambled control (catalog no. RHS4346), shSox2-1 (clone ID

153337), and shSox2-2 (clone ID 153339) plasmids. Neurosphere cultures

were infected with lentiviral particles at a multiplicity of infection (moi) of 30.

For Sox2 overexpression, the Sox2 coding sequence was subcloned into

the multiple cloning site (MCS) of an internal ribosome entry site-GFP
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backbone, viruses were produced, and neurospheres were infected at an moi

of 5. For Cre-expression experiments, GFP- or Cre-coding sequences were

subcloned into the MCS of a pWPXLD plasmid, and cells were infected at

an moi of 10.

Luciferase Reporter Assays

Reporter assays were performed in HEK293T cells as previously described

(Andrusiak et al., 2011). E2f consensus site mutagenesis was performed using

the QuikChange Site-Directed Mutagenesis Kit and primer-design software

from Stratagene.

ChIP

ChIP analysis was performed as previously described (Andrusiak et al., 2011)

in proliferating neurospheres, except that immunocomplexes were captured

using Dynabeads Protein A. RT-PCR was used to quantify ChIP enrichment

values. Each experiment was performed on at least three independent

samples. ChIP-on-chip experiments were performed as previously described

(Liu et al., 2010).

Fear-Conditioning Analysis

Details are described in Supplemental Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes seven figures and Supplemental Experi-

mental Procedures and can be found with this article online at http://dx.doi.

org/10.1016/j.stem.2013.02.001.
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