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Abstract. We present a hydrodynamic model for semiconductors, where the energy equation 

is replaced by a pressure-density relationship. We prove existence of smooth solutions and a 

uniqueness result in the subsonic case, which is characterized by a smallness assumption on the 
current flowing through the device. 

1. THE MODEL 

The hydrodynamic model for semiconductors [1,2] has recently attracted a lot of attention 
because of its capability of modelling hot electron effects which are not accounted for in the 
classical drift-diffusion model [3,4]. A mathematical analysis of the hydrodynamic model 
has not been presented yet; only preliminary results exist by now [5]. In this paper, we 
investigate a simplified hydrodynamic model in which the energy equation is replaced by 
the assumption that the pressure is a given function of the density only. This assumption 
is commonly used in gas dynamics for isentropic or isothermal flows and gives Bernoulli’s 
law [6]. 

After appropriate scaling the one-dimensional time-dependent system in the case of one 
carrier type (e.g. electrons) reads: 

Pt + (P>z = 0 (1.1) 

(1.2) 

a tz = P - C(z), (I-3) 

where p(z,t), u(z,t), +(z,t) d enote the electron density, velocity, and the electrostatistic 
potential respectively. p = p(p) is the pressure-density relation which satisfies: 

p*p’(p) is strictly monotonically increasing from [0, co[ onto [0, co[. (1.4) 

A commonly used hypothesis is p(p) = lcpy were y 1 1 and K > 0. r = r(p,pr~) is the 
momentum relaxation time of which we assume: 

The device domain is the z-interval (0,l); C = C(z) E Lb”(O, 1) is the doping profile (given 
background density), which satisfies C(z) > 0. 

The system (1.1) to (1.3) is supplemented by the following boundary conditions: 

P(Oot) = PO 1 P(l,q = p1 (1.6) 
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(9(0,1) = 0, @(l,t) = 01 (1.7) 

The conditions (1.6) represent Ohmic contacts, and @i stands for the applied bias. 

In this paper, we investigate the steady state case pt = (pu)t = 0. Then, introducing the 

current density j = pu, the system (1.1) to (1.3) reduces to 

j(z) = const. (1.8) 

(1.9) 

i9 2s = P - C(z). (1.10) 

Up to now, the system (1.8) to (1.10) is valid for the cases of discontinuous as well as regular 

solutions. For the case of regular solutions we recast (1.9) by differentiating, dividing by p 
and using (1.8). We obtain 

( $ + h(p) - 0 
> 

+ $ = 0 ! WP) = 
z 

;Pm. (1.11) 

Integrating this equation over (0,l) and using (1.6), (1.7) leads to the following current- 
voltage characteristic: 

(1.12) 

where we denoted 

F(p,j) = $ + h(p). (1.13) 

The relation (1.12) shows that we can prescribe j instead of @i. Then by differentiating 

(1.11) and using the Poisson equation (l.lO), we obtain the following second order boundary 
value problem, parametrized by j E 8?: 

F(p,j)=, +j + -p= 
( > 

-C(z) ) 0 < 2 < 1, (1.14) 
z 

P(0) = PO , P(l) = Pl- (1.15) 

Once p is known from (1.14), (1.15), + can be computed by solving the Poisson equation 

(1.10) using the boundary condition (1.12) and Q(O) = 0. Th us, finding regular steady-state 

solutions of the hydrodynamic model (1.1) to (1.7) amounts to solving (1.14)-(1.15). 
Remark 1. The equation (1.9) can be regarded as a modified steady-state drift-diffusion 
model with a nonlinear current dependent diffusion term. 

2. EXISTENCE IN THE SUBSONIC CASE 

Since we have 

g(p, j) = -f + iPI > 0 e p2p’(p) > j2 (2.1) 

We conclude from (1.4) that there exists a unique pm = p,(j) 2 0 such that $$(p, j) > 0 

for p > pm. A typical plot of p - F(p, j) for fixed 1 jl > 0 is shown in Figure 1. Note that, 
by (2.1), the minimal point P,,, of p + F(p, j) is a strictly increasing function of j, and 

Pm(j = 0) = 0. 
The preceding considerations show that the equation (1.14) is uniformly elliptic for p > 

p* > pm. By (2.1), this condition implies IuI < c where c = (p’(p))‘/’ denotes the speed of 
sound. Thus, the following theory applies to a fully subsonic flow. We prove an existence 
result in this case: 
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Figure 1: Plot of p - F(p, j). 

THEOREM 1. 

Let the assumptions (1.4), (1.5), C E L-(0,1) hold and additionally assume that p’, r 
and Br/dp are continuous with respect to p. Let j be such that 

PO,~, inf,~(0,qC(~) > h(j). (2.2) 

Then, the problem (1.14), (1.15) has a solution which satisfies 

fiWpo,pl,C) 5 p(z) 5 fifax-(po,h,Q, z E [O,ll (2.3) 

where 
C := i&to,qC(t) , C := SUP,E~O,IIC(~). 

Remark 2. By the above discussion of pm, there exists a unique current j,+, such that (2.2) 
is equivalent to ) jl < j, .j, is given by 

pm(jM) = Min(pe,pi,Q. 

Thus, (2.2) represents a smallness assumption on the current flowing through the device, 

and gives a condition for fully subsonic flow. 
Proof: We consider the operator T : Q -+ p defined by solving 

(~(Q,j)pz)z-jC(~.j)r,-p=-C, 0<2:<I, (2.4) 

where we denoted 

P(O) = PO , P(l) = Pl, 

C(p,j) = 
g(p, j)p + r(P, j) 

r(P, j)*p* ’ 

(2.5) 

(2.6) 

Now, suppose that Q satisfies 

PS := Min(pc,pi,C) 5 9 5 pU := Max(po,pl,c). (2.7) 

By the assumption (2.2), the linear equation (2.4) is uniformly elliptic. Thus, the smooth- 
ness assumptions on p and r guarantee the existence of a unique H'(0, 1)-solution p. The 
maximum principle [7] implies that p = T(Q) also satisfies (2.7). Then, by multiplying 
(2.4) by (p - pi) where pB is any function assuming the boundary conditions an H'(0, 1) 
bound on p independent of \k is easily obtained. By the compact imbedding of H'(0, 1) into 
C’([O, l]), and by a standard continuity argument we conclude the existence of a fixed point 
of T from Schauder’s theorem. g 
Remark 3. If ]j] is so large that the condition (2.2) is violated, then the flow may at least 
be partly supersonic and the occurrence of shocks cannot be excluded. 
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3. UNIQUENESS FOR SMALL jjl 

We prove the following uniqueness result for small currents. 

THEOREM 2. 

Let the assumptions of Theorem 1 hold, and additionally assume that r and dr/dp are 
jointly continuous with respect to (p, j). Then, there exists a constant j, > 0 such that 
for any current which satisfies ljl < jo, there exists at most one regular solution p of the 
problem (1.14), (1 .l>) in the set of functions which satisfy p(t) > p’ > p,,,(j) for all t in 
[O, 11. 

Proof: Let pr and p2 be two solutions of the problem (1.14), (1.15) which satisfy pi(z) 1 

p. > pm(j) for i = 1,2. Then by subtracting the equations we obtain: 

(a(+)e),, + j(b(z)e), - e = 0 (3.1) 

where e(c) = (~2 - PI)(Z) and 

a(z) = J ’ k'F 
0 J-$PI(~) + 4~2(3) - pl(t)),jW (3.2) 

b(z) = 
1 

J 

’ abh iI) 

r(pllj)plr(p2,j)p2 0 
ap (Pi(Z) + U(Pz(Z) - PI (e)))du. (3.3) 

Multiplying (3.1) by ae and integration by parts give: 

J 
o1 I(ae),lZdz + j J’ b(t)e(ae),dz + J’ ole12dt = O. 

0 0 
(3.4) 

We estimate, using the positivity of o: 

IJ 
1 

0 
b(z)e(ae),dz sf I J ’ WI &&W12d~ 

0 

1 

J 

’ lb(~)1 + ij o m10~12~~~ (3.5) 

Thus we obtain: 

r,’ (I - I$$$) IWZ12d~ 

+ r,’ (44 - wc4rm) 

Both terms on the left hand side are positive if 

le12dt < 0. 
(3.6) 

(3.7) 

By the assumptions of Theorem 2, there exists a constant jc > 0 such that (3.7) holds for 

any lil 5 j0. 

Remark 4. The condition (3.7) can also be regarded as a condition on T: for a given j, 
uniqueness holds if r is sufficiently large and constant. In particular, for r = co (infinitely 
fast momentum relaxation), we have uniqueness for all j in the subsonic regime. 
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