Appl. Math. Lett. Vol. 3, No. 3, pp. 25-29, 1990 Printed in Great Britain. All rights reserved 0893-9659/90 \$3.00 + 0.00 Copyright© 1990 Pergamon Press plc

## On a One-Dimensional Steady-State Hydrodynamic Model for Semiconductors

<sup>1</sup>P. DEGOND AND <sup>2</sup>P.A. MARKOWICH

<sup>1</sup>Centre de Mathématiques Appliquées, Ecole Polytechnique <sup>2</sup>Fachbereich Mathematik, TU Berlin

(Received August 1989)

Abstract. We present a hydrodynamic model for semiconductors, where the energy equation is replaced by a pressure-density relationship. We prove existence of smooth solutions and a uniqueness result in the subsonic case, which is characterized by a smallness assumption on the current flowing through the device.

# 1. THE MODEL

The hydrodynamic model for semiconductors [1,2] has recently attracted a lot of attention because of its capability of modelling hot electron effects which are not accounted for in the classical drift-diffusion model [3,4]. A mathematical analysis of the hydrodynamic model has not been presented yet; only preliminary results exist by now [5]. In this paper, we investigate a simplified hydrodynamic model in which the energy equation is replaced by the assumption that the pressure is a given function of the density only. This assumption is commonly used in gas dynamics for isentropic or isothermal flows and gives Bernoulli's law [6].

After appropriate scaling the one-dimensional time-dependent system in the case of one carrier type (e.g. electrons) reads:

$$\rho_t + (\rho u)_x = 0 \tag{1.1}$$

$$(\rho u)_t + (\rho u^2 + p(\rho))_x - \rho \Phi_x = -\frac{\rho u}{r}$$
(1.2)

$$\Phi_{xx} = \rho - C(x), \tag{1.3}$$

where  $\rho(x,t)$ , u(x,t),  $\Phi(x,t)$  denote the electron density, velocity, and the electrostatistic potential respectively.  $p = p(\rho)$  is the pressure-density relation which satisfies:

$$\rho^2 p'(\rho)$$
 is strictly monotonically increasing from  $[0, \infty[$  onto  $[0, \infty[$ . (1.4)

A commonly used hypothesis is  $p(\rho) = \kappa \rho^{\gamma}$  were  $\gamma \ge 1$  and  $\kappa > 0$ .  $\tau = \tau(\rho, \rho u)$  is the momentum relaxation time of which we assume:

$$\tau(\rho,\rho u) \ge \tau_0 > 0 \quad \forall (\rho,\rho u) \in [0,\infty[\times\Re.$$
(1.5)

The device domain is the x-interval (0,1);  $C = C(x) \in L^{\infty}(0,1)$  is the doping profile (given background density), which satisfies C(x) > 0.

The system (1.1) to (1.3) is supplemented by the following boundary conditions:

$$\rho(0,t) = \rho_0 , \ \rho(1,t) = \rho_1 \tag{1.6}$$

P. DEGOND, P.A. MARKOWICH

$$\Phi(0,t) = 0 , \ \Phi(1,t) = \Phi_1 \tag{1.7}$$

The conditions (1.6) represent Ohmic contacts, and  $\Phi_1$  stands for the applied bias.

In this paper, we investigate the steady state case  $\rho_t = (\rho u)_t = 0$ . Then, introducing the current density  $j = \rho u$ , the system (1.1) to (1.3) reduces to

$$j(x) = \text{const.} \tag{1.8}$$

$$\left(\frac{j^2}{\rho} + p(\rho)\right)_x - \rho \Phi_x = -\frac{j}{\tau}$$
(1.9)

$$\Phi_{xx} = \rho - C(x). \tag{1.10}$$

Up to now, the system (1.8) to (1.10) is valid for the cases of discontinuous as well as regular solutions. For the case of regular solutions we recast (1.9) by differentiating, dividing by  $\rho$  and using (1.8). We obtain

$$\left(\frac{j^2}{2\rho^2} + h(\rho) - \Phi\right)_x + \frac{j}{\tau\rho} = 0 , \ h'(\rho) = \frac{1}{\rho}p'(\rho).$$
(1.11)

Integrating this equation over (0, 1) and using (1.6), (1.7) leads to the following current-voltage characteristic:

$$\Phi_1 = F(\rho_1, j) - F(\rho_0, j) + j \int_0^1 \frac{dx}{\tau(\rho(x), j)\rho(x)}$$
(1.12)

where we denoted

$$F(\rho, j) = \frac{j^2}{2\rho^2} + h(\rho).$$
(1.13)

The relation (1.12) shows that we can prescribe j instead of  $\Phi_1$ . Then by differentiating (1.11) and using the Poisson equation (1.10), we obtain the following second order boundary value problem, parametrized by  $j \in \Re$ :

$$F(\rho, j)_{xx} + j\left(\frac{1}{\tau\rho}\right)_{x} - \rho = -C(x) , \ 0 < x < 1,$$
 (1.14)

$$\rho(0) = \rho_0 , \ \rho(1) = \rho_1. \tag{1.15}$$

Once  $\rho$  is known from (1.14), (1.15),  $\Phi$  can be computed by solving the Poisson equation (1.10) using the boundary condition (1.12) and  $\Phi(0) = 0$ . Thus, finding regular steady-state solutions of the hydrodynamic model (1.1) to (1.7) amounts to solving (1.14)-(1.15).

**Remark 1.** The equation (1.9) can be regarded as a modified steady-state drift-diffusion model with a nonlinear current dependent diffusion term.

2. EXISTENCE IN THE SUBSONIC CASE

Since we have

$$\frac{\partial F}{\partial \rho}(\rho, j) = -\frac{j^2}{\rho^3} + \frac{1}{\rho}p'(\rho) > 0 \Leftrightarrow \rho^2 p'(\rho) > j^2$$
(2.1)

We conclude from (1.4) that there exists a unique  $\rho_m = \rho_m(j) \ge 0$  such that  $\frac{\partial F}{\partial \rho}(\rho, j) > 0$  for  $\rho > \rho_m$ . A typical plot of  $\rho \to F(\rho, j)$  for fixed |j| > 0 is shown in Figure 1. Note that, by (2.1), the minimal point  $\rho_m$  of  $\rho \to F(\rho, j)$  is a strictly increasing function of j, and  $\rho_m(j=0) = 0$ .

The preceding considerations show that the equation (1.14) is uniformly elliptic for  $\rho \ge \rho * > \rho_m$ . By (2.1), this condition implies |u| < c where  $c = (p'(\rho))^{1/2}$  denotes the speed of sound. Thus, the following theory applies to a fully subsonic flow. We prove an existence result in this case:



Figure 1: Plot of  $\rho \to F(\rho, j)$ .

THEOREM 1.

Let the assumptions (1.4), (1.5),  $C \in L^{\infty}(0,1)$  hold and additionally assume that p',  $\tau$  and  $\partial \tau / \partial \rho$  are continuous with respect to  $\rho$ . Let j be such that

$$\rho_0, \rho_1, \inf_{x \in (0,1)} C(x) > \rho_m(j).$$
(2.2)

Then, the problem (1.14), (1.15) has a solution which satisfies

$$Min(\rho_0, \rho_1, \underline{C}) \le \rho(x) \le Max(\rho_0, \rho_1, \overline{C}), \ x \in [0, 1]$$

$$(2.3)$$

where

$$\underline{C} := \inf_{x \in [0,1]} C(x) , \ \overline{C} := \sup_{x \in [0,1]} C(x).$$

**Remark 2.** By the above discussion of  $\rho_m$ , there exists a unique current  $j_M$  such that (2.2) is equivalent to  $|j| < j_M . j_M$  is given by

$$\rho_m(j_M) = \operatorname{Min}(\rho_0, \rho_1, \underline{C}).$$

Thus, (2.2) represents a smallness assumption on the current flowing through the device, and gives a condition for fully subsonic flow.

*Proof:* We consider the operator  $T: \Psi \rightarrow \rho$  defined by solving

$$\left(\frac{\partial F}{\partial \rho}(\Psi, j)\rho_x\right)_x - jG(\Psi, j)\rho_x - \rho = -C, \ 0 < x < 1,$$
(2.4)

$$\rho(0) = \rho_0 , \ \rho(1) = \rho_1,$$
(2.5)

where we denoted

$$G(\rho, j) = \frac{\frac{\sigma\tau}{\partial\rho}(\rho, j)\rho + \tau(\rho, j)}{\tau(\rho, j)^2 \rho^2}.$$
(2.6)

Now, suppose that  $\Psi$  satisfies

$$\rho_{s} := \operatorname{Min}(\rho_{0}, \rho_{1}, \underline{C}) \leq \Psi \leq \rho_{u} := \operatorname{Max}(\rho_{0}, \rho_{1}, \overline{C}).$$

$$(2.7)$$

By the assumption (2.2), the linear equation (2.4) is uniformly elliptic. Thus, the smoothness assumptions on p and  $\tau$  guarantee the existence of a unique  $H^1(0, 1)$ -solution  $\rho$ . The maximum principle [7] implies that  $\rho = T(\Psi)$  also satisfies (2.7). Then, by multiplying (2.4) by  $(\rho - \rho_B)$  where  $\rho_B$  is any function assuming the boundary conditions an  $H^1(0, 1)$ bound on  $\rho$  independent of  $\Psi$  is easily obtained. By the compact imbedding of  $H^1(0, 1)$  into  $C^0([0, 1])$ , and by a standard continuity argument we conclude the existence of a fixed point of T from Schauder's theorem.

**Remark 3.** If |j| is so large that the condition (2.2) is violated, then the flow may at least be partly supersonic and the occurrence of shocks cannot be excluded.

## P. DEGOND, P.A. MARKOWICH

### 3. UNIQUENESS FOR SMALL |j|

We prove the following uniqueness result for small currents.

THEOREM 2.

Let the assumptions of Theorem 1 hold, and additionally assume that  $\tau$  and  $\partial \tau / \partial \rho$  are jointly continuous with respect to  $(\rho, j)$ . Then, there exists a constant  $j_0 > 0$  such that for any current which satisfies  $|j| < j_0$ , there exists at most one regular solution  $\rho$  of the problem (1.14), (1.15) in the set of functions which satisfy  $\rho(x) \ge \rho^r > \rho_m(j)$  for all x in [0, 1].

**Proof:** Let  $\rho_1$  and  $\rho_2$  be two solutions of the problem (1.14), (1.15) which satisfy  $\rho_i(x) \ge \rho_* > \rho_m(j)$  for i = 1, 2. Then by subtracting the equations we obtain:

$$(a(x)e)_{xx} + j(b(x)e)_x - e = 0$$
(3.1)

where  $e(x) = (\rho_2 - \rho_1)(x)$  and

$$a(x) = \int_0^1 \frac{\partial F}{\partial \rho}(\rho_1(x) + v(\rho_2(x) - \rho_1(x)), j) dv$$
 (3.2)

$$b(x) = \frac{1}{\tau(\rho_1, j)\rho_1\tau(\rho_2, j)\rho_2} \int_0^1 \frac{\partial(\rho\tau(\rho, j))}{\partial\rho} (\rho_1(x) + v(\rho_2(x) - \rho_1(x))) dv.$$
(3.3)

Multiplying (3.1) by ae and integration by parts give:

$$\int_0^1 |(ae)_x|^2 dx + j \int_0^1 b(x)e(ae)_x dx + \int_0^1 a|e|^2 dx = 0.$$
(3.4)

We estimate, using the positivity of a:

$$\left| \int_{0}^{1} b(x)e(ae)_{x} dx \right| \leq \frac{1}{2} \int_{0}^{1} |b(x)| \sqrt{a(x)} |e(x)|^{2} dx + \frac{1}{2} \int_{0}^{1} \frac{|b(x)|}{\sqrt{a(x)}} |(ae)_{x}|^{2} dx.$$
(3.5)

Thus we obtain:

$$\int_{0}^{1} \left( 1 - \frac{|j|}{2} \frac{|b(x)|}{\sqrt{a(x)}} \right) |(ae)_{x}|^{2} dx$$

$$+ \int_{0}^{1} \left( a(x) - \frac{|j|}{2} |b(x)| \sqrt{a(x)} \right) |e|^{2} dx \le 0.$$
(3.6)

Both terms on the left hand side are positive if

$$|j||b(x)| \le \sqrt{a(x)}.\tag{3.7}$$

By the assumptions of Theorem 2, there exists a constant  $j_0 > 0$  such that (3.7) holds for any  $|j| \leq j_0$ .

**Remark 4.** The condition (3.7) can also be regarded as a condition on  $\tau$ : for a given j, uniqueness holds if  $\tau$  is sufficiently large and constant. In particular, for  $\tau = \infty$  (infinitely fast momentum relaxation), we have uniqueness for all j in the subsonic regime.

28

### References

- 1. K. Blotekjer, Transport equations for electrons in two-valley semiconductors, *IEEE Trans. Electron Devices* ED-17, 38-47 (1970).
- 2. P.A. Markowich, C. Ringhofer, and C. Schmeiser, Semiconductor Equations, Springer, Wien, New York, (1989).
- 3. S. Selberherr, Analysis and Simulation of Semiconductor Devices, Springer, Wien, New York, (1984).
- 4. P.A. Markowich, The Steady-State Semiconductor Device Equations, Springer, Wien, New York, (1986).
- 5. C.L. Gardner, J.M. Jerome, and D.J. Rose, Numerical Methods for the Hydrodynamic Device Model: Subsonic Flow, manuscript.
- 6. R. Courant and K.O. Friedrichs, Supersonic Flow and Shock Waves, Interscience, J. Wiley and Sons, New-York, (1967).
- 7. M.H. Protter and H.F. Weinberger, Maximum Principles in Differential Equations, 2nd edition Springer, Berlin, New York, (1984).

<sup>1</sup>Centre de Mathématiques Appliquées, Ecole Polytechnique, 91128 Palaiseau Cedex, France <sup>2</sup>Fachbereich Mathematik, TU Berlin, D-1000 Berlin 12, FRG