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The archives of imagery and modeled data products derived from remote sensing programs with high
temporal resolution provide powerful resources for characterizing inter- and intra-annual environmental
dynamics. The impressive depth of available time-series from such missions (e.g., MODIS and AVHRR)
affords new opportunities for improving data usability by leveraging spatial and temporal information
inherent to longitudinal geospatial datasets. In this research we develop an approach for filling gaps in
imagery time-series that result primarily from cloud cover, which is particularly problematic in forested

g?; V_Vglrl‘lj;g equatorial regions. Our approach consists of two, complementary gap-filling algorithms and a variety of
MODIS run-time options that allow users to balance competing demands of model accuracy and processing time.
EVI We applied the gap-filling methodology to MODIS Enhanced Vegetation Index (EVI) and daytime and
LST nighttime Land Surface Temperature (LST) datasets for the African continent for 2000-2012, with a
Africa 1 km spatial resolution, and an 8-day temporal resolution. We validated the method by introducing

and filling artificial gaps, and then comparing the original data with model predictions. Our approach
achieved R? values above 0.87 even for pixels within 500 km wide introduced gaps. Furthermore, the
structure of our approach allows estimation of the error associated with each gap-filled pixel based on
the distance to the non-gap pixels used to model its fill value, thus providing a mechanism for including
uncertainty associated with the gap-filling process in downstream applications of the resulting datasets.
© 2014 The Authors. Published by Elsevier B.V. on behalf of International Society for Photogrammetry and
Remote Sensing, Inc. (ISPRS). This is an open access article under the CC BY license (http://creativecom-
mons.org/licenses/by/3.0/).

1. Introduction

Past and current data collection efforts have produced
numerous remotely sensed imagery time-series, often exceeding a
decade in length, with tremendous utility (both realized and poten-
tial) for a wide range of research applications (Hay et al., 2006;
Scharlemann et al., 2008). However, gaps within such time-series
reduce the utility of these data sources for modeling and monitoring
environmental phenomena, and gaps are particularly problematic
within imagery of tropical and sub-tropical areas where persistent
cloud-cover can obscure portions of the landscape seasonally or
throughout the year. Gaps within fine temporal resolution time-
series such as those derived from NASA’s Moderate Resolution
Imaging Spectrometer (MODIS) imagery have been partially
filled through the creation of products that summarize daily data
into multi-day composites (e.g., 8- or 16-day). However, in the
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cloudiest of areas even composite products often contain problem-
atic gaps, and these gaps take on added significance as they tend to
occur in areas (e.g., equatorial Africa or the Amazon basin) for
which few alternative geospatial datasets exist for characterizing
dynamic landscape processes.

Our goals in this research were to develop a data-driven gap-
filling methodology that (1) balances the need for accuracy with
the computational efficiency necessary for feasible application to
continental-scale time-series, (2) uses both spatial and temporal
information within the data time-series to fill the gap pixels, (3)
requires no ancillary datasets such as land cover products or digital
elevation models to model missing pixel values, and (4) provides a
standardized yet flexible approach that is applicable to a wide
range of datasets. Among these goals, the first was most relevant
to the wider remote sensing community as the large data volume
associated with continental-scale time-series limits the utility of
mathematically complex (e.g., geostatistical) algorithms for rapid
gap-filling. Expected ancillary benefits of a conceptually simple
approach include increased accessibility to a wider audience of
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potential image time-series users, as well as ease of adaptation of
the developed methods for use with new datasets.

The gap-filling approach ultimately developed in this research
is predicated on using both neighboring (non-gap) data and data
from other time periods (i.e., calendar date or multi-year summary
datasets) to fill gaps within image time-series. Our underlying
hypothesis was that spatial and temporal autocorrelation inherent
within longitudinal imagery archives can be leveraged to gap-fill
remotely sensed data products. We developed and tested the
gap-filling methodology using the MODIS Enhanced Vegetation
Index (EVI) and Land Surface Temperature (LST) 1 km products,
acquired for the African continent, from 2000-2012, with an 8-
day temporal resolution. These data products were selected for
eventual use in modeling malaria risk in Africa, but they are poten-
tially useful for many research endeavors given their widespread
utility. In particular, LST is correlated with air temperature
(Mildrexler et al., 2011) and EVI is useful as a proxy (albeit lagged
in time) for moisture in Africa (Jamali et al., 2011). Africa was
selected as our study area because substantial portions of the con-
tinent experience widespread seasonal cloud cover, making this
both an ideal region to test the methodology and an area in need
of gap-filled products. Furthermore, processing time-series data
for the whole of Africa presents a rigorous computational test for
the presented gap-filling method.

2. Background

Numerous gap-filling approaches have been developed for
modeling erroneous or missing data caused by clouds, shadows,
or sensor malfunctions. These approaches can be roughly divided
into the following categories: (1) methods that rely on spatial
information, (2) methods based on temporal information available
within an image time-series, and (3) methods that include both
spatial and temporal information in the gap-filling process. Exam-
ples exist within each of these categories that include ancillary
information, such as imagery from another sensor, a digital eleva-
tion model, or a classified land cover dataset, within the modeling
process.

2.1. Spatial gap-filling approaches

Geostatistical approaches such as kriging have long been
utilized for gap-filling imagery using the information present
within surrounding (non-gap) pixels to interpolate missing data
(e.g., Addink, 1999; Rossi et al., 1994). Introducing a second, gap-
free dataset (e.g., an image from the same sensor acquired for
the area of interest on a different date) enables gap-filling using
cokriging techniques (Zhang et al., 2007, 2009) as well as gap-
filling approaches predicated on image segmentation (Bédard
et al., 2008; Maxwell, 2004; Maxwell et al., 2007). Using data from
an alternative date is also the technique underlying the novel Neigh-
borhood Similar Pixel Interpolator method for filling gaps in Landsat
ETM+ imagery developed by Chen et al. (2011), which was later
augmented to include geostatistical theory by Zhu et al. (2012).

2.2. Temporal gap-filling approaches

The second category of gap-filling approaches relies on model-
ing missing pixel values using values associated with the missing
pixel from different points in time, and a comparison of temporal
approaches is provided in an informative review by Kandasamy
et al. (2012). Jonsson and Eklundh (2004) made an important con-
tribution to temporal approaches by developing the TIMESAT soft-
ware package, which contains built-in asymmetric Gaussian and
Savitzky-Golay filters for smoothing time-series data as a means

of estimating missing data. Notable examples of temporal gap-
filling applications include approaches for gap-filling MODIS Leaf
Area Index (LAI) data (Gao et al., 2008) and NDVI derived from
AVHRR data (Roerink et al., 2000). More recently Verger et al.
(2013) developed the Consistent Adjustment of the Climatology
to Actual Observations approach for increasing the accuracy of
temporal interpolations of missing LAI data derived from AVHRR
imagery by including climatological data within the model.

2.3. Spatio-temporal gap-filling approaches

Several spatio-temporal gap-filling approaches have been
developed that utilize multi-step modeling approaches whereby
the algorithm fills missing values using an alternating sequence
of purely spatial or temporal steps. Kang et al. (2005) developed
such an approach for gap-filling ecosystem metrics (i.e., fPAR,
LAI, and net photosynthesis) modeled from MODIS data using sim-
ple spatial interpolation within land cover classes. If no cloud-free
pixels were found within a 5 by 5 pixel window, the algorithm
used temporal interpolation to fill the pixel using data from earlier
and later dates. Borak and Jasinski (2009) later used a modified
version of the Kang et al. (2005) approach when gap-filling MODIS
LAI for a large portion of North America. Gafurov and Bardossy
(2009) also developed a stepped approach for gap-filling the
MODIS snow cover product, but unlike the Kang et al. (2005)
approach the algorithm developed by these authors prioritizes
temporal gap-filling models and also includes a step that incorpo-
rates pixel elevation. More recently Poggio et al. (2012) developed
an innovative method for gap-filling MODIS EVI data that utilizes a
hybrid Generalized Additive Model (GAM) - geostatistical space-
time model to model missing pixel values using spatial (latitude,
longitude and elevation) and temporal (date of year) information
as model covariates.

3. Materials and methods

From our review of existing gap-filling methodologies we iden-
tified the Chen et al. (2011) approach as the most promising start-
ing point for gap-filling the MODIS time-series of Africa due to its
relative simplicity and computational efficiency. The immediate
challenge in adapting this approach was to develop a fully
operational algorithm capable of processing time-series data at a
continental scale within a several-month time frame. Given these
time constraints and the data volume of the project (i.e., nearly a
terabyte in size) we ultimately developed two complementary
algorithms that fill gaps by utilizing ratios from neighboring
(non-gap) pixels derived at two points in time, similar to
Chen et al. (2011), but modified for use with single-banded
MODIS time-series to increase processing speed. The approach
(Fig. 1 - explained in detail below) we develop (1) ingests raw
images, (2) finds gap pixels that may first be identified using a
despeckling algorithm, (3) fills some pixels using an algorithm that
relies on calendar data imagery, and (4) fills the remaining gap pix-
els using a second algorithm that runs much faster by leveraging
processing already used to fill adjacent gaps. Our gap-filling
approach produces three output datasets for each image within a
time-series: (1) a gap-filled image, (2) a flag image identifying
the algorithm (if any) that was used for each pixel, and (3) a
distance image quantifying the spatial lag between the filled pixel
and the neighboring pixels used in the gap-filling model. We
validated the approach by introducing and then filling artificial
gaps within individual images, and we developed a technique for
using the distance image to derive an estimated error associated
with each filled pixel.
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Fig. 1. Overview of the generalized gap-filling model.

3.1. Datasets, pre-processing, and gap identification

The input datasets selected for this analysis were MODIS (1)
MOD11A2 Land Surface Temperature (LST) 8-day composite data
(Wan et al., 2002), and (2) MCD43B4 Bidirectional Reflectance Dis-
tribution Function (BRDF) - corrected 16-day composite data
(Schaaf et al., 2002), from which Enhanced Vegetation Index
(EVI) was derived using the equation defined in Huete et al.
(1999). The MODIS LST dataset consists of both daytime and night-
time average temperatures aggregated, respectively, from the
descending and ascending paths of the NASA Terra Satellite. The
BRDF dataset contains 16-day products, with overlapping temporal
windows that result in an 8-day temporal resolution, which were
derived from data collected by the MODIS sensors on both the
Aqua or Terra satellites.

The MODIS data were collected on a per-tile basis and then
merged using the MODIS reprojection tool (Dwyer and Schmidt,
2006) to create seamless mosaics for all of Africa. A total of 42 tiles
were required to cover the continent for each image date (i.e., the
day of the year corresponding to the center of the composite tem-
poral window). The BRDF mosaics each consisted of seven spectral
bands, three of which were needed to derive the EVI, and mosaics
were created for each of these bands prior to deriving the EVI for
each image date. The resulting data archives consisted of 594 EVI
mosaics (from day 049, 2000 to 361, 2012), and 590 LST-day and
LST-night mosaics (from day 065, 2000 to 361, 2012). Temporal
mean and standard deviation images were derived on a per-pixel
basis from the full mosaic archives for each of the three variables

for subsequent use in the gap filling algorithms. Producing images
of summary statistics was also useful for identifying pixels that
never contain usable data (e.g., ocean pixels) that could be ignored
in the gap-filling procedures, thus reducing run-time.

The initial step in the gap filling process was to identify gap pix-
els in need of filling through the use of a despeckling algorithm,
which is a processing step that need only be used if corresponding
datasets describing pixel-level data quality do not exist. While
MODIS products have associated quality assurance datasets useful
for identify potential gaps, we developed a generic gap-finding
approach to demonstrate the potential utility of our gap filling
approach for a wide range of remotely sensed products. Gaps were
identified by finding all pixels that contained a no-data or other-
wise unacceptable value within the input mosaic that corre-
sponded to usable pixels within the mean image, thus indicating
that the pixel in question contained usable data on other dates.
Unacceptable pixel values were identified by calculating a z-score
for each pixel based on the mean and standard deviation images,
and then searching for any pixel with an absolute z-score exceed-
ing a user-defined threshold (we used 2.58, which corresponds to
the 0.99 confidence interval, see supplemental information for
more details). When such a pixel was found we examined neigh-
boring pixels (we used a neighborhood size of 40 to 80 pixels) to
determine if they were similarly unusual with respect to the mean
value of the pixel. If the original z-score was beyond a second
user-defined threshold (we used +0.2) from the median neighbor-
hood z-score, or if too few neighboring pixels were found within a
user-defined search radius (we used 10 km), the original pixel was
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reclassified as a gap. In practice, pixels removed by the despeckling
algorithm typically represent approximately 5% of gap pixels or
0.5% of all usable pixels present in the final output images.

Based on the results of the gap identification process the flag
image was modified to indicate whether pixels were (1) a no-data
pixel that should be ignored in subsequent processing, (2) a usable
raw value that could be passed directly through to the final output
(and is suitable for use in the gap-filling models), or (3) a gap to be
filled. A preliminary analysis of the raw imagery mosaics indicated
that, on average, approximately 5-15% of the pixels within an
image were gaps in need of filling (Table 1).

3.2. Filling algorithm 1

The first gap-filling algorithm (Fig. 2) was conceptually similar
to the approach used by Chen et al. (2011) for filling stripes within
Landsat ETM+ imagery caused by the sensor malfunction that
occurred in 2003. This approach first identifies neighboring pixels
with similar spectral properties to a gap pixel, based on an image
from another point in time, and then creates ratios (per-band)
using values from the neighboring pixels to characterize the differ-
ence between the alternative time and the time of the gap image.
Missing pixels can then be filled using the associated pixel value
from the alternative time image, modified slightly based on the
mean distance-weighted ratios from multiple neighboring pixels.
The most significant modifications necessary for adapting the
Chen et al. (2011) approach to our MODIS time-series relate to fill-
ing large gaps caused by clouds rather than the comparatively nar-
row, linear gaps produced by the Landsat ETM+ sensor
malfunction. To fill gaps of larger sizes effectively we implemented
an outward searching approach for finding neighboring pixels
capable of searching much farther than the 17 by 17 pixel maxi-
mum window used by Chen et al. (2011). To increase the likelihood
of finding usable neighboring pixels we did not restrict the search
to only spectrally similar pixels for use as neighbor ratios. Instead,
we utilized the temporal information available in the time-series
and used only calendar dates (i.e., the same date on a different
year) to preserve the underlying seasonal landscape patterns. This
was considered a reasonable modification to the Chen et al. (2011)
model because, unlike Landsat ETM+ pixels, most 1 km MODIS pix-
els contain a mixture of land cover types, thereby reducing the
importance of spectral similarity within this modeling structure.

The first step in algorithm 1 (hereafter referred to as A1) for an
unfilled image was to assemble a temporary image stack of all cal-
endar dates from the image time-series. The algorithm then
searched through the flag array for the unfilled image (referred
to using the subscript t0 to signify the initial time period) to find
pixels identified as gaps. When a gap-pixel was found, A1 searched
the calendar date stack for any image that contained a usable value
for the gap pixel (i.e., one with matching coordinates from a calen-
dar date), starting with the preceding year (year —1) before pro-
ceeding to calendar dates from more distant years, searching
both forwards and backwards in time (e.g., year +1, year —2, year
+2, and so on). If a usable value for the gap pixel in the unfilled
image (Gy) was found in an alternative year (G,,) the algorithm
then searched outward from the gap pixel for neighboring pixels

Table 1

The mean and standard deviation percentages of gap pixels within the full Africa
mosaics as calculated from the full imagery time-series (e.g., approximately 15% of a
typical EVI mosaic consists of gap pixels).

Dataset Proportion of missing pixels per image (%)
Mean Standard deviation

EVI 14.77 5.93

LST day 5.25 2.28

LST night 8.51 3.28

with usable values that were present in both the unfilled image
(Nyo) and the calendar date image (N,,). When an acceptable neigh-
boring pair was found, the G4, Ny, and N values, along with the
spatial distance between G and N and the temporal distance
between t0 and ta were used to calculate an weighted fill value
(F;) (Eq. (1)), which was stored in a list along with the ratio of
Ny, to Ny and the weight associated with the fill value (Eq. (2)).
A simple inverse distance weighting (i.e., 1/distance x 1/time)
approach was applied at this stage to increase the contribution
to the final fill value of the neighboring pixels that were closest
in space and time. A full list of abbreviations used in equations
within this paper can be found in Table 2.

N 1 1

F,_Gme—mxﬁxm (1)
1 1

Wi=5> =0 @)

The spatial search procedure spiraled outward from the gap
pixel in a circular pattern based on a sorted distance table until
either the threshold maximum number of neighbor pairs was
found, or the maximum search radius was reached. If the
maximum search radius was reached without the maximum
threshold condition being met the algorithm then attempted to
find a new G, (i.e., a usable value for the gap pixel from a
different calendar date) and, if one was found, the spatial search
procedure was repeated on the associated calendar image. This
process continued until the maximum threshold was reached or
all calendar dates had been exhausted. If no calendar dates
remained, but the maximum threshold had not been reached, a
second threshold (the minimum number of ratio pairs acceptable
for calculating a fill value using the A1 model) was compared to
the number of usable neighbor pairs in the list. This minimum
threshold allowed the algorithm to produce a fill value even
when there were fewer usable neighbors than would be
preferred. The maximum threshold, minimum threshold, and
maximum search radius parameters were user-defined and
provided a means of balancing model accuracy and processing
time. In practice, we used values of 40 and 80 for the minimum
and maximum thresholds, respectively, along with a maximum
search radius of 3.6 km. The threshold values were selected based
on a sensitivity analysis (see supplemental information) that
demonstrated that using fewer ratio pairs produced unrealistic
levels of spatial heterogeneity in the modeled output while
searching for more ratio pairs and/or searching farther from the
gap pixel increased run-times unnecessarily. However, these
threshold values were calibrated only for use with the datasets
and geographic location of this study and may require fine-tuning
for other applications.

When the list of weighted fill values was complete a final,
optional mechanism could be employed to reduce the impact of
any anomalous pixels not identified by the error-detection (i.e.,
despeckling) procedure applied during pre-processing. In this pro-
cedure a user-defined proportion of the weighted fill list was
removed based on the sorted N,o-N,, ratios so that the fill values
associated with the most extreme (high and low) ratios were omit-
ted from the final modeled estimate. The final step in A1 was to
calculate the weighted mean value from all partial fill values
remaining in the list (Eq. (3)). If the gap pixel was filled success-
fully the flag image was updated to reflect that the pixel was filled
using Al and the associated pixel value in the distance image was
set to the mean spatial distance between each partial fill value
pixel and the original gap pixel.

Zl...nF
Gro = &1 3
0 Zl...nw ( )
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3.3. Filling algorithm 2

During initial testing A1 was demonstrated to be adequate for
filling small gaps within imagery, but this approach became
computationally expensive for larger gaps due to the outward-
searching algorithm. This issue was exacerbated by persistently
cloudy areas that had few calendar dates with usable data or, in
the most extreme case, pixels with no usable data for a given
calendar date in any year within the time-series. As such it was
necessary to develop an alternative algorithm (hereafter referred
to as A2) to gap-fill continental scale time-series more quickly
and without leaving any residual gaps. Conceptually, the
gap-filling algorithms differ in three key ways. First, rather than
relying on finding a usable neighboring pixel within both the
unfilled image (Ny) and a calendar date image (Ny) the second
approach used the value from the mean image (Npeqn) as the
denominator in the ratio equation. Second, rather than looking
outward (spatially and temporally) from a gap pixel (G;) to find
acceptable neighboring pairs, this A2 approach retained the ratio
information from preceding pixels as it iterated through all pixels
in the image, thereby carrying-forward information derived from
the edge of a gap to subsequent gap pixels. Third, the alternative
algorithm was run from eight directions (i.e., from each of the four
corners of the image twice, once by row-column and again by
column-row) (Fig. 3) and the median fill value from the eight
passes was used as the final output. This directional approach
ensures that pixels fill values from by A2 are informed by usable
values from all edges of a multi-pixel gap. The “carry-forward”
approach was accomplished by allowing modeled values from
neighboring pixels to be used in the prediction of the current
gap-filling value, including any neighboring pixels that preceded
the current gap in the looping code architecture.

A2 began by finding pixels in the flag array that were coded as a
gap following the A1 algorithm, which indicated that A1 (if run)
was unable to fill such pixels successfully. When a gap pixel (Gyo)
was encountered, per-pixel ratios were derived between any of

Too few usable
pairs found

Enough useable |
pairs found

v

value

Retain original
(gap) value

Modified flagraster
identifying
remaining gaps

Calculate weighted
fill value
(Equation2)

agram for the A1 algorithm.

the immediately surrounding pixels (N) containing usable data
and the corresponding pixels in the mean image (Npeqn). Unlike
A1, which relied on only pixels with usable raw data values, A2 uti-
lized pixels containing (1) data usable in their raw form (i.e., non-
gap pixels in the original imagery), (2) filled values computed using
A1, and (3) values already filled from the current directional pass of
A2 (i.e., pixels that were processed earlier in the looping structure
of A2) (Fig. 4). All usable pixels (1...n) constitute the available data
for filling the pixel using A2. The mean ratio from all available
neighboring pixels was then multiplied by the value from the
mean image for the original gap pixel (Gpeqn) to produce a fill value
for the gap (Eq. (4)). This derived fill value was then available for
filling any neighboring gap pixel that had yet to be reached in this
directional pass of A2.

Nio
S

n

(4)

Fy

Gio = Medl‘an(Flmg) (5)

Algorithm A2 was applied from multiple directions to account
for landscape heterogeneity, which was an important consider-
ation given that the data spanned large areas. In the case of Africa,
applying this algorithm using a single direction allowed, for exam-
ple, gaps in savanna areas to be filled based solely on information
gleaned from distant forests or vice versa. As such, we approached
each gap pixel from multiple directions to “drag” the average con-
ditions (i.e., the mean per-pixel ratio for that pixel) present from
the nearest usable pixels from one direction. By taking multiple
passes from different directions we approximated the outward-
searching approach from A1 while greatly reducing the overall
computation expense required to fill the gap.

As with A1, the flag image was modified to indicate which pix-
els were replaced by A2. Likewise, the distance image was
amended to reflect the average distance from the newly filled pixel
to the nearest pixels (in each of the eight directions) with usable
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Table 2
List of abbreviations used in equations one through ten.

Abbreviations  Description

F; The weighted fill value produced using A1l

Gro The final, modeled pixel value that replaces the gap at the
initial time

Gta The value of the gap pixel at the calendar (alternate) date

Nio The value of the neighboring pixel at the initial time

Nia The value of the neighboring pixel at the calendar (alternate)
date

W; The distance weight associated with the weighted fill value

D The Euclidian distance between the gap pixel and the non-
gap neighbor

t0 The signifier for the initial time period

ta The signifier for the alternate time period (i.e., a calendar
date)

n The count of usable neighboring pixels

F, The fill value associated with a single directional pass (p) of
A2

Grmean The mean value for the gap pixel from the full 13-year
imagery time series

Nimean The mean value for the neighboring pixel from the full 13-
year imagery time series

Dp The distance associated with a directional pass (p) of the A2

D, The residual distance “carried forward” for the neighboring
pixel if that cell is a filled value

Daz The distance value associated with the A2 gap fill

Biasp The bias of the modeling error at distance (D)

mg The slope (i.e., b1 coefficient) of the linear relationships
between distance and modeling error bias

bg The intercept (i.e., b0 coefficient) of the linear relationships

between distance and modeling error bias

StDevp The standard deviation of the modeling error at distance (D)

mg The slope of the linear relationships between distance and
modeling error standard deviation

b The intercept of the linear relationships between distance
and modeling error standard deviation

EEq The estimated error for a modeled pixel within the defined

confidence interval (CI)

values prior to running A2. Where the usable pixel was obtained
from A1, the distance attributed to that fill was included in the
A2 distance tabulation. Finally, where neither algorithm was able
to fill a gap the resulting pixel was left as no-data. This was an
exceedingly rare occurrence and tended to be restricted to pixels
comprising small islands off the coast (i.e., pixels surrounded by
large areas of no-data values in the ocean) that lacked any usable
neighbors. These unfilled areas typically represented less than
0.01% of all gap pixels present within the resulting gap-filled data-
sets. The mathematical approach underlying the distance calcula-
tion in A2 is defined in Eqs. (6) and (7).

DP — E]n(D + DT)

DAZ — EléSDP (7)

The variable D, denoted the distance associated with the cur-
rent directional pass (1-8), D was the distance to the neighboring
pixel (either 1.0 or 1.414) containing raw or previously modeled
data, D, was the residual distance associated with the neighboring
pixel that was 0.0 for raw data or the distance calculated in the fill-
ing process (using either A1 or A2) for that pixel, and n was the
count of viable neighboring pixels on this pass. The final distance
Da> was then calculated as the mean of the eight directional passes.
Note that because the distance values associated with A2 were cal-
culated using information from multiple directions (i.e., from both
the near and far sides of the gap that a pixel falls within) this met-
ric reflected the effective size of the gap that the missing pixel fell
within.

3.4. Calculating model uncertainty

Uncertainty associated with modeled pixel values has potential
implications for downstream users of gap-filled imagery as a source
of error and/or for incorporating the uncertainty within subsequent
models. The uncertainty associated with gap-filled results for both
algorithms was calculated by introducing artificial gaps into raw
imagery and then comparing model outputs to known values. The
introduced gaps were (1) distributed regularly to span a wide range
of land cover types and (2) of varying sizes to assess the relationship
between fill distance and model accuracy. After running the gap-
filling algorithms on the input layer containing introduced gaps,
we derived a table with the following information for all introduced
gap pixels: the measured (i.e., original) pixel value, the filled value,
the error (modeled minus measured), the distance value, and the flag
value indicating the applied filling algorithm. We then divided the
pixels based on the flag, subdivided the resulting groups into classes
based on distance, and conducted the following analysis for both A1
and A2. Within each distance class the error mean and standard
error were estimated as indicators of bias and error variability,
respectively. To estimate these metrics we derived simple statistical
models to predict both error bias and standard deviation as a linear
function of fill distance (Egs. (8) and (9)) using the empirically
derived (1)slope (mg)and intercept (bg) for the relationship between
distance (D) and bias, and (2) slope (ms) and intercept (bs) for the
relationship between distance (D) and error standard deviation.
Using these parameters we calculated a final Estimated Error (EE),
which represented the modeled uncertainty for a given confidence
interval (Eq.(10)). To assess the maximum potential error associated
with a gap fill we also included a constant term in the EE equation (in

n (6) this case 1.96) that provided an estimate of uncertainty for the pre-
diction. That is, by using the constant term 1.96 we can say that the
A B C D
1(5]9]13 13|]9|5|1 418 |12]|16 16|112| 8 | 4
2|6 (10|14 14110 6 | 2 3|7 ]|11|15 15|11 7 | 3
3(7[11]15 15111 7 | 3 2|16|10|14 14|10| 6 | 2
418 ]12]16 16(12| 8 | 4 1151913 (|13]9|5]|1
E F G H
11234 4(3|2]1 13/14115(16| |16]15(14| 13
516|178 8[7]6]|5 9 (10)11)12| [12])11]|10]| 9
9110|1112 12(11(10| 9 516|178 8|7|6]|5
13114(15]| 16 16|15)|14| 13 2|13 |4 413|121

Fig. 3. The processing order for pixels within a hypothetical four by four pixel gap for the eight passes of A2. Each of the either panels (A-H) represents a “directional pass”

while the numbers indicate the order in which the pixels are processed.
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The pixel being filled at this step
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Valid original data not used directly in estimating the fill value of X

Valid original data used in estimating the fill value of X
Estimated fill value for a neighboring pixel used in estimating the fill value of X

Already filled on this directional pass of A2, but not used directly in estimating the fill value of X

Fig. 4. A hypothetical gap-filling example for a single pass (labeled “A” in Fig. 3) of A2.

fill value predicted for a given pixel will be within +EE with 95% con-
fidence. Also note that this approach for quantifying uncertainty has
the added benefit of producing estimates in units of the variable
being modeled.

BiasD =mpxD+ bB (8)
StDevp = ms x D + b; (9)

EEqsy, = |Biasp| + 1.96 x StDevp (10)

3.5. Model validation

To assess the accuracy of the model results thoroughly we intro-
duced stripes within the image (Fig. 5) at widths of 25 km and
500 km to match, respectively, the average and maximum gap sizes

Degrees C
P

N o
| |pataGap
I introduced Gap

found in typical images. The striping approach ensured that we
tested the accuracy of the models over all major land cover types
and the different introduced gap widths provided estimates of
expected accuracy in both the normal and worst case scenarios
(i.e., all gaps being approximately equal to the maximum gap size
found in a standard image). Note that a striping approach was uti-
lized in lieu of alternatively shaped introduced gaps (e.g., irregular
gaps representative of clouds) as this technique maximized the dis-
tances associated with the filling procedure because there were no
usable pixels along the major axis of the stripe or stray usable pixels
within gaps. We then employed a 4-test validation process (Fig. 6) to
compare and contrast the accuracy of the A1 and A2 model results.
The purpose of tests one and two was to compare A1 and A2 directly
on the same set of pixels as a means of assessing the relative accu-
racy of each when gap filling all cells located close to usable neigh-
bors using each algorithm exclusively. Test three extends test two to

0 500 1000 2000
Kilometers

Fig. 5. Example of 500 km validation stripes introduced within an LST image mosaic.
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Fig. 6. The 4-test validation process for assessing the accuracy of the gap filling procedure and comparing results from A1 and A2 models.

Table 3

A processing time test for comparing the A1, A2, and hybrid gap filling approaches. The comparison dataset was a single EVI mosaic, gap filling for all three tests was conducted
using a single core on a desktop workstation, and all runtimes are in minutes. Note that the A1 approach was capped at a 100 km search radius and thus still utilized A2 to fill

some gap pixels.

Gap filling model A1 runtime A2 runtime Total runtime % Gaps filled by A1 % Gaps filled by A2
A1 “only” 3587.0 15.4 3602.4 93.25 7.72

A2 only 0.0 29.6 29.6 0.0 99.96

Composite (Al & A2) 158.5 22.8 181.3 41.36 58.6

include all gap pixels, thereby allowing the decline in accuracy of
the A2 model as a consequence of increasing distance to be assessed
directly. Test four then assessed the hybrid model that uses both
algorithms which, when compared to the test three results, provides
a means of assessing whether the Al algorithm is worth the addi-
tional computational cost associated with running it. Furthermore,
the fourth test is useful for ensuring that potential error propagation
resulting from using A1 results as inputs for A2 did not negatively
impact the resulting fill values. Lastly, to test the processing times
associated with Al, A2, and the optimized composite model
(gleaned from the sensitivity analysis) a preliminary analysis was
conducted, the results of which (Table 3) illustrate the advantage
of utilizing A2 or the composite approach for gap filling the 1 km
resolution images of Africa.

4. Results

The core datasets resulting from this research are 8-day day-
time LST, nighttime LST, and EVI products that were gap-filled to
create spatially and temporally complete datasets for all of Africa
from 2000 to 2012. Gap-filled results were produced for all dates
within each of the three datasets (i.e., 1774 individual layers)
except seven dates for which the raw mosaics were deemed too
poor (i.e., incomplete) to gap-fill reliably. To illustrate the results
we provided animations of the results (averaged to a monthly
time-step) for each variable as additional files (EVI.m4v,
LST_day.m4v, and LST_night.m4v).

4.1. Example results for a single image

Given the volume of results (i.e., the output consists of multi-
ple images for each of the 1767 image layers) we present only the
input and output images associated with a single variable on a
single date (nighttime LST from day 241, 2012) (Fig. 7). To derive
the estimated maximum error image for this example LST
image we first introduced artificial gaps of varying sizes
throughout the image (Fig. 8). After extracting details (i.e., the
original value, filled value, algorithm used, and distance) for a
sample of 120,000 introduced gap pixels, we binned the pixels
by distance classes to explore the intra-class model bias and
standard deviation of the differences between the modeled and
measured values (Fig. 9). Using these relationships we defined
the bias and standard deviation (see Eqs. (9) and (10), respec-
tively) as a function of distance. Overall model bias was quite
low (in the case of nighttime LST, only ~0.25°C with gap dis-
tances of 500 km), but this aspect of uncertainty was modeled
separately so that a simple linear correction factor could be
applied to output results if needed. Because the model errors
have an approximately normal distribution (Fig. 10) we applied
a coefficient associated with the 95% confidence interval (i.e.,
1.96, see Eq. (10)) to produce our final estimate of maximum
error for each filled pixel. Lastly, we applied this function back
to the original gap filling output (e.g., the image shown in
Fig. 7C) to produce the final uncertainty map (Fig. 11) that
incorporates both aspects of uncertainty in a single image.
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Fig. 7. The input and output image layers associated with a single gap-filled result for the nighttime LST image from day 241, 2012. Map A shows the raw image mosaic, with
green areas indicating missing data. The remaining maps show results from the modeling process, with Map B showing which model (A1 or A2) was used to fill each gap pixel
(i.e., the flag image), Map C showing the distance associated with the gap filling procedure, and Map D showing the resulting gap-filled output.

4.2. Validation results for all datasets

To assess model accuracy for each dataset we applied the four-
test validation procedure (see Fig. 6) based on introducing gap
stripes at the average and maximum distances typically seen in
the input mosaics. For each of the datasets, five or six images were
selected randomly for validation, and the results are shown in
Table 4. Overall model accuracy was very high, with mean R? val-
ues above 0.87 for all variables, even for the 500 km stripes (i.e.,
the worst case scenario where all introduced gaps in the image
are as large as the maximum gap size found in typical images).
The RMSE results are equally robust, with RMSE values for LST of
2.49 C or better, and the largest RMSE value for EVI being 0.037.
As these largest RMSE values are associated with introduced
stripes of 500 km, they represent an accuracy floor that all gap-
filled images are very likely to exceed in this study (i.e., for the
three variables for Africa).

5. Discussion

The original objective of this research was to adapt the model
developed by Chen et al. (2011) and apply that adapted method
to single-banded MODIS product time-series for Africa. We opted
for this approach rather than a more mathematically sophisti-

cated method to keep run-times low and retain a conceptually
simple model that can easily be adapted for use with many
time-series datasets. Furthermore, expending the additional cod-
ing effort and processing time required of such methods was
challenging to justify as previous research has shown that more
sophisticated techniques such as a geostatistical approaches are
not necessarily superior to simpler methods for interpolating
missing data within imagery (Lloyd and Atkinson, 2002). The
A1 model represents the implementation of the modified version
of the Chen et al. (2011) approach and the validation results illus-
trate the high accuracy this algorithm is capable of producing. In
practice, however, the run-times associated with the A1 model
were too long to feasibly process more than 1700 continental
scale images at 1km spatial resolution. Efforts to increase the
efficiency of the Al model resulted in some performance
improvements (i.e., increases in processing speed), but ultimately
the algorithm could not be made efficient enough to allow prac-
tical computation, as the outward searching algorithm did not
lend itself well to a parallel computing architecture. As such,
while A1 would be the preferred approach for processing smaller
datasets (i.e., shallower time-series, smaller spatial extents, or
coarser spatial resolutions), we chose to develop an alternative
algorithm (A2) to create a more generally applicable framework
for continental-scale processing.
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Fig. 8. Introduced gaps of varying sizes used to model uncertainty in the gap filling process.
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Fig. 9. Bias and standard deviation of the gap-filled errors (i.e., modeled minus measured) for the introduced gap pixels. The equations shown on these plots were applied
subsequently to the original filled data (according to the fill algorithm used) to produce the final estimated maximum error.

The goal in developing A2 was to approximate the A1 approach
of searching outward for neighboring ratio pairs, while continuing
to produce highly accurate results, but in a much more computa-
tionally efficient manner. Conceptually, A1 and A2 differ in that
A1 searches outward from a gap pixel for a usable neighbor while
A2 “drags” values from the edge of the gap to each gap pixel. Using
modeled values of neighboring pixels rather than relying on only

usable raw values produces the leap in computational efficiency
associated with A2 (see Table 3). This modification effectively
recycles the computational cost already spent filling neighboring
gaps, and it is particularly effective at reducing processing times
for pixels within large gaps.

Two important and potentially problematic aspects of A2 are
(1) the propagation of error from the A1 model when the A2 model
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Fig. 10. The distribution of model error (i.e., modeled minus measured) for a sample of 120,000 artificially created gap pixels from gaps of varying sizes.

incorporated A1 results as model input, and (2) the introduction of
seasonal bias related to the use of the mean dataset as the source of
the denominator values in the ratio pairs. Error propagation was
taken into account by adding the residual distance (i.e., the dis-
tance associated with the A1 modeled output) to the A2 distance
image and, more importantly, by modeling uncertainty indepen-
dently for A1 and A2. The use of the mean dataset could have intro-
duced seasonal bias if, for example, the annual occurrence of the
rainy season coincided with spatial patterns in EVI or LST that were
underrepresented in the mean images. Ultimately, however, the
results stand for themselves as the A1 and A2 models produced
very similar accuracies (i.e., the R? values for tests one and two
are +0.01 for all variables). These findings indicate that, at least
for the variables examined in this analysis, possible effects within
the mean image related to land cover patterns and seasonally
persistent cloud-cover did not reduce the accuracy of the A2
algorithm.

Est. Max Error (+/- °C)

P
I Non-Gap

Our validation results show that A2 is nearly as accurate as Al
(see Table 4), but A2 runs much faster (typically in about 1/100th
of the time) when gap-filling a typical EVI or LST mosaic for Africa.
Ultimately, we opted to use both Al and A2 in a composite
approach (i.e., test four in Fig. 6) as (1) the algorithms were
designed to be complementary since results from Al were used
as input data for the A2 model, and (2) we wanted to retain the
favorable properties related to A1 when it was computationally
reasonable to do so (e.g., when the gaps were small). Specifically,
we were reluctant to abandon A1 as it is better equipped to incor-
porate intra-annual variability due to its use of calendar date imag-
ery. Furthermore, by preferentially selecting calendar dates from
years closer in time, A1l is at least theoretically able to account
for some land cover changes, albeit only in serendipitous instances
when both the gap and the calendar date image(s) from which the
ratios are being drawn are from before or after the land cover
change event. For example, if a land cover change occurred for a

Fig. 11. The map of estimated maximum error for the gap-filled output. Based on this product we can say with 95% confidence that filled gap pixels within the selected LST

nighttime image are within () the number of degrees Celsius indicated on the map.
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Table 4

The validation results for the three gap-filled datasets (indicated by the type column). Random dates were selected for each of the datasets (indicated by year, day, and date
columns), with mean values for each section shown in bold. Validation was conducted by introducing 25 km and 500 km stripes (indicated by the stripe width column), and four

tests were run on each validation image following Fig. 6 (indicated by the test columns).

Year Day Date Type Stripe width Test 1 Test 2 Test 3 Test 4

R? RMSE R? RMSE R? RMSE R? RMSE
2001 145 May 25th LST night 25 0.987 0.546 0.986 0.576 0.973 0.795 0.976 0.750
2004 65 Mar 5th LST night 25 0.982 0.714 0.987 0.610 0.974 0.863 0.974 0.865
2006 177 Jun 26th LST night 25 0.993 0.539 0.989 0.673 0.975 0.994 0.980 0.890
2011 321 Nov 17th LST night 25 0.989 0.629 0.989 0.626 0.978 0.895 0.978 0.895
2012 241 Aug 28th LST night 25 0.986 0.553 0.981 0.644 0.963 0.920 0.969 0.838
Mean LST night 25 0.987 0.596 0.986 0.626 0.973 0.893 0.975 0.848
2001 145 May 25th LST night 500 0.988 0.541 0.980 0.713 0.890 1.390 0.896 1.335
2004 65 Mar 5th LST night 500 0.985 0.684 0.984 0.745 0.917 1.389 0.919 1.376
2006 177 Jun 26th LST night 500 0.994 0.516 0.981 0.903 0.907 1.712 0.910 1.647
2011 321 Nov 17th LST night 500 0.989 0.666 0.981 0.906 0.915 1.526 0.969 1.511
2012 241 Aug 28th LST night 500 0.989 0.524 0.975 0.796 0.880 1.519 0.877 1.516
Mean LST night 500 0.989 0.586 0.980 0.813 0.902 1.507 0.914 1.477
2001 129 May 9th LST day 25 0.989 0.965 0.991 0.884 0.983 1.181 0.983 1.179
2005 257 Sep 14th LST day 25 0.985 0.928 0.987 0.860 0.977 1.162 0.978 1.142
2005 9 Jan 9th LST day 25 0.983 1.105 0.985 1.020 0.972 1.416 0.973 1.392
2006 73 Apr 14th LST day 25 0.973 1.087 0.980 0.948 0.965 1.271 0.967 1.273
2007 145 May 25th LST Day 25 0.988 1.016 0.990 0.925 0.983 1.214 0.983 1.204
Mean LST day 25 0.983 1.020 0.987 0.927 0.976 1.249 0.977 1.238
2001 129 May 9th LST day 500 0.990 0.934 0.988 1.045 0.943 1.953 0.944 1.942
2005 257 Sep 14th LST day 500 0.986 0.892 0.978 1.117 0.898 2.189 0.900 2.167
2005 9 Jan 9th LST day 500 0.986 1.049 0.980 1313 0.894 2.455 0.895 2.429
2006 73 Apr 14th LST day 500 0.979 1.023 0.978 1.051 0.888 2.024 0.890 2.003
2007 145 May 25th LST day 500 0.989 0.946 0.988 1.012 0.942 1.983 0.942 1.976
Mean LST day 500 0.986 0.969 0.983 1.108 0.913 2.121 0914 2.103
2000 97 Apr 6th EVI 25 0.987 0.016 0.986 0.017 0.978 0.022 0.979 0.022
2000 129 May 8th EVI 25 0.984 0.017 0.985 0.016 0.976 0.021 0.977 0.021
2000 201 Jul 19th EVI 25 0.983 0.013 0.978 0.015 0.967 0.019 0.969 0.018
2003 17 Jan 17th EVI 25 0.983 0.017 0.984 0.016 0.975 0.022 0.976 0.022
2007 281 Oct 8th EVI 25 0.984 0.017 0.983 0.018 0.975 0.024 0.976 0.023
2008 345 Dec 12th EVI 25 0.979 0.017 0.978 0.017 0.969 0.022 0.970 0.022
Mean EVI 25 0.983 0.016 0.982 0.017 0.973 0.022 0.975 0.021
2000 97 Apr 6th EVI 500 0.988 0.016 0.984 0.018 0.919 0.033 0.918 0.033
2000 129 May 8th EVI 500 0.986 0.016 0.982 0.019 0.925 0.033 0.925 0.033
2000 201 Jul 19th EVI 500 0.983 0.013 0.978 0.015 0.899 0.030 0.896 0.030
2003 17 Jan 17th EVI 500 0.984 0.015 0.978 0.018 0.893 0.037 0.893 0.037
2007 281 Oct 8th EVI 500 0.987 0.016 0.983 0.019 0.892 0.035 0.895 0.036
2008 345 Dec 12th EVI 500 0.982 0.015 0.973 0.019 0.920 0.037 0.920 0.037
Mean EVI 500 0.985 0.015 0.980 0.018 0.908 0.034 0.908 0.034

given pixel in the second year of a 13 year data series, and the A1l
model was attempting to fill a missing value for that pixel found in
year three, neighbor ratios created from years two and four to 13
would all reflect that change while neighbor ratios from year one
would not.

By creating two algorithms that can be used independently or in
conjunction, the presented gap-filling approach offers flexibility for
balancing the accuracy of modeled results with data production
times and/or the computational resources available. Furthermore,
the gap-filling models each contain multiple user-defined thresh-
olds that allow users to fine-tune the model parameters. For exam-
ple, user-defined parameters of the A1l algorithm include the
maximum search radius used to find neighboring ratio pairs, as
well as the number of usable ratios required to calculate the result-
ing fill value. While the presence of modifiable parameters pre-
sents a slight challenge for users who wish to adapt this
approach to new datasets, a preliminary sensitivity analysis start-
ing with the values presented in the manuscript (and elaborated
upon in the supplemental information) will allow users to balance
run-times, given the nature of the time-series dataset, and the
acceptable uncertainty of the results.

As with all modeled data products, some uncertainty is associ-
ated with the final output from our hybrid gap-filling procedure. To
account for uncertainty we utilized an intensive sampling

approach whereby we created a large sample (n = 120,000) of mod-
eled pixel values, within artificial gaps of varying sizes (see Fig. 8),
and distributed widely across the African continent. This approach
enabled us to estimate the maximum error associated with each
predicted gap pixel value while incorporating a large number of
sample pixels from all major land cover types. The resulting images
provide robust estimates of uncertainty in the units of the dataset
being modeled (e.g., in degrees Celsius for the LST products), which
allows the modeled uncertainty to be readily incorporated within
subsequent analyses. However, neither our gap-filling method
nor our uncertainty metric can account fully for error associated
with land cover changes, a limitation that could potentially be
addressed in future research via the inclusion of ancillary datasets.
While the level of acceptable uncertainty will vary according to the
specific, eventual use of the gap-filled product, the results of
the nighttime LST example indicated (via RMSE, see Table 4) that
the average error for a filled pixel (relative to the raw MODIS LST
value) is at worst ~1.5 °C and likely closer to ~0.6 °C. These values
are quite close to the 0.5 °C error associated with the raw MODIS
LST (relative to in situ LST measurements) products as reported
by Wan (Wan, 2008), which suggests that the combined RMSE
for a resulting gap-filled nighttime LST images would range from
approximately 1.1 to 2.0 °C relative to in situ measurements. An
important caveat to this finding, however, is that LST is impacted
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by cloud cover (i.e., the underlying cause of most gap pixels), which
means gap filled LST data most accurately represents ‘“clear sky”
LST conditions.

6. Conclusion

The novel gap-filling approach presented in this research repre-
sents an adaptation of existing techniques to create an operational
method that is applicable to continental-scale image time-series.
While our analysis was restricted to MODIS products, the described
method could be readily adapted to a very wide variety of remotely
sensed time-series, irrespective of the cause(s) of the missing data.
Our method produces highly accurate results while utilizing a con-
ceptually simple, computationally efficient algorithmic framework
that leverages the wealth of empirical information present within
large imagery time-series to fill missing pixels. This data-driven,
spatio-temporal approach represents a departure from more com-
monly used, model-based approaches for gap-filling missing pixels.
Additionally, our approach does not rely on ancillary datasets such
as land cover class maps or digital elevation models that require
acquisition of additional data and potentially introduce new
sources of error to the modeling process (e.g., in cases where land-
cover is misclassified). Our method of estimating model error pro-
vides a means of characterizing model uncertainty for all gap-filled
pixels in a format that can be readily passed along to downstream
applications of the gap-filled datasets. Lastly, the use of two com-
plementary algorithms, in conjunction with user-defined parame-
ters inherent to the approach, offers the flexibility necessary to
address real-world limitations associated with large data volumes
and processing demands, limited computational infrastructure,
and time-sensitive products.
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