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Abstract 

This article provides an exponential generating function and a recurrence relation for computing 
the number of topologically distinct clone orderings. 

Denote the number of maps for n clones by c(n) and define the exponential generating function 

C(x) = 5 c(n);. 

n=O 

We show c(1) = 1, c(2) = 2, c(3) = 10, and, for n > 3, that c(n) = (4n-S)c(n-l)-(4n-7) 
c(n - 2) + (n - 2)c(n - 3). We show 

We also prove that 

C(x) = exp ( 1+2X-JFX 

4 >. 

1. Introduction 

With the advent of the Human Genome Project there has been much effort to con- 

struct physical and genetic maps of the chromosomes within each of us. The task is 

daunting and will require several years or decades of effort. 

One yardstick for measuring the amount of effort required to make a physical map is 

the number of possible maps. This measure can take two forms. In the more abstract 

form, we wish to count the number of possible maps as a function of the size of 

the problem. That is, considering the collection of all data sets of a given size, we 

wish to count the number of distinguishable maps that they imply. This number is a 

measure of the complexity of the mapping problem. For instance, its logarithm, base 
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2, is a lower bound on the worst-case running time of any algorithm that asks binary 
questions about a chromosome to determine the correct map. 

In the second form we measure the ambiguity in a worst-case data set for a par- 
ticular experimental procedure. Given a particular experiment and its data it may 
not be possible to reconstruct the physical map unambiguously; there may be sev- 
eral different maps, each consistent with the experimental data. As a function of 
the size of the data set this second yardstick measures the maximum over all data 
sets of the given size of the number of solutions consistent with that data set. This 
number is a measure of the quality of a particular experimental procedure in that, 
generally, procedures that give less ambiguous data than others are considered 
better. 

In this article we use the first measure to gain an understanding of the Clone Ordering 
Problem. There are several previous results that discuss the second measure as applied 
to related problems. The paper [26] discusses the number of possible solutions of 
the Partial Digest Problem. It shows that in the worst cases the number of solutions 
for data from n restriction sites (and hence N = ( 2) fragment lengths) is at least 

in”.8107. The paper [23] discusses the number of possible solutions of the Probed 
Partial Digest Problem. In the worst cases the number of solutions for data from N 
fragment lengths is at least N ’ 7286 Also, the papers [16, 251 provide a result for the . 

Double Digest Problem. They show that under certain statistical assumptions there can 
be exponentially many solutions. 

Previous theoretical work on the Clone Ordering Problem can be found in [20,2]. 
Algorithms for solving the Clone Ordering Problem can be found in [ 1, 11, 10, 14,221. 

1.1. The biology experiment 

Generally, the biologist’s experiment goes as follows: Take a strand of DNA and 
make many copies of it. Cut up these copies of the DNA in all sorts of differ- 
ent ways using restriction enzymes. Throw away all but those fragments (clones) 
that are near a certain easy to manage length. The biologist takes these remaining 
clones and runs experiments on them to determine which clones overlap which other 
clones and by how much. (Two clones are said to overlap if they are copied from 
overlapping intervals on the original DNA.) This information is used to construct a 
clone ordering (a.k.a. contig map), a description of the locations of the clones along 
the original DNA. (See [7, 41 for more information on the biological aspects of the 
experiment.) 

Note that the term “clone ordering” is somewhat vague and is used for maps of 
various levels of detail. In its most detailed form it describes the exact location of each 
clone along the DNA. For such a map the DNA can be represented as a line segment, 
usually drawn horizontally, with the clones represented as equal-length subintervals. In 
a less detailed form a clone ordering may describe only the relative order of the left 
ends of the clones along the DNA, hence the name “clone ordering.” 
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Fig. 1. The two possibilities for two clones - the two clones either overlap or don’t overlap. 
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Fig. 2. The ten possibilities for three clones. The second, third, and fourth diagrams each have 3 distinguish- 

able ways to label the clones. 

There may be some portions of the DNA not represented by any of the clones. 
Thus, the clone ordering will show the clones in a collection of connected components 
known as islands. Those islands with more than one clone are also called contigs. 

If we try to be too precise with our clone ordering, we may find that it is no longer 
a unique solution to the mapping problem. Using the experiment described there is no 
way to know the relative order along the DNA of the islands. Also, there is no way 
to tell whether a given island is present as shown or if it is present as its left-right 
(biologists say “sense-antisense”) reflection. Furthermore, it is impossible to prove the 
amount of overlap of any two clones even when it is known that they do overlap. 

We say that two clone orderings are topologicaily similar if one can be transformed 
into the other by permuting the islands and/or reflecting some of the islands. Further- 
more, an adjustment of the amount by which any pair of clones overlaps leaves one 
with a topologically similar clone ordering if no endpoint of a clone is moved past 
an endpoint of another clone. We shall denote by c(n) the number 
distinct clone orderings for n clones. 

1.2. Results 

For small values of n we can enumerate the maps by hand. For 
there is just one map. With two clones there are two possibilities. 
either overlap or they do not overlap. See Fig. 1. 

of topologically 

only one clone, 
The two clones 

For three clones there are 10 possibilities. One possibility is that the three clones are 
mutually nonoverlapping. A second possibility is that all three clones overlap but clone 
#l is between clones #2 and #3. A third possibility is that all three clones overlap but 
clone #2 is between clones #l and #3, and so on. See Fig. 2 for all 10 possibilities. 

The value of c(n) for the first few values of n is given in Table 1. These values 
were computed using the values for c(l), c(2), and c(3) and the recurrence relation 
we derive, 

c(n) = (4n - 5)c(n - 1) - (4n - 7)c(n - 2) + (n - 2)c(n - 3), n 2 4. 

We define an exponential generating function 

C(z) = 2 c(n); 
n=O 
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Table 1 

The number of topologically distinct 

clone orderings for n distinguishable 

equal-length clones. 

2 

3 

4 

5 

6 

7 

8 

9 

10 

L 

10 

94 

1,286 

22,876 

499,612 

12,925,340 

386,356,924 

13,099,953,016 

and show that 

C(z) = exp 
( 

1+2z-vi=% 

4 1, 

C(z) gives us the asymptotic growth of c(n). We show that 

2. Mathematical model 

We model the DNA as the real line drawn horizontally. Each clone is modeled by 

an interval of unit length. The clones are distinguishable. 

We say that two clones overlap if their intervals have a non-empty intersection. We 

assume that in the collection of endpoints of intervals there are no duplicates. Thus, 

we do not have to define whether the intervals are closed or open. 

An ordered n-tuple of locations for the left endpoints of the respective intervals is 

called a placement of the clones. We define an equivalence relation on placements 

where the equivalence classes are called interleavings. Two placements are equivalent 

(i.e., topologically similar) if one can be transformed to the other using only the 

following three types of transformations: 

1. Clone sliding: The n clones may be moved if the linear ordering of their 2n 
endpoints remains unchanged. 

2. Reflection Symmetry: Any of the connected components (islands) in the set 

which is the union of the clones may be reflected in place. 

3. Island Re-ordering Symmetry: The order of the islands may be permuted. 

The goal is to count the interleavings. 
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3. Combinatorics 

We shall derive the results using a three-step process. In the first step we shall 

assume that the clones are indistinguishable and form one island, and we shall ignore 

the reflection symmetry. In the second step we shall correct for distinguishability and 

the reflection symmetry. In the third step we shall allow more than one island. 

3.1. Step 1 

For this first step, assume that the clones are indistinguishable. Also for this step, 

ignore the reflection symmetry for islands and assume that the clones form one island. 

For an interleaving, choose a placement which represents it. Label the clones 1 to 

n from left to right based upon the relative order of their left endpoints. Label the 2n 

clone endpoints el < . . . < e2,, from left to right. These endpoints define 2n - 1 atomic 

intervals (el, e2 1, (e2, e3 ), . . . , (e2n- 1, e2n 1. 

Lemma 1. For any k, the set of clones containing the atomic interval (ek_l,ek) is 
{i,i + l,... , j} for some 1 d i < j < n. Furthermore, the set of clones containing 

(ek,ek+l) iS either {i ,..., j+ 1) or {i+ l,..., j}. 

Proof. Because the clones are labeled by the relative order of their left endpoints, the 

set of clones with left endpoints before (e&l, ek) is { 1,. . . , j} for some 1 < j < n. 

Because the clones are equilength, the order of their right endpoints is the same as 

the order of their left endpoints. Thus, the set of clones with right endpoints before 

(ek-l,ek) is {1,..., i - 1) for some 0 < i - 1 < j where i = 1 corresponds to the empty 

set. Because the island is connected, i - 1 must be strictly less than j. 

The endpoint ek is either a left endpoint or a right endpoint, hence the set of clones 

containing (ek,ek+l) is either {i ,..., j + 1) or {i + l,.. .,j}. 0 

We define a function P from the atomic intervals to the set { 1,. . . ,n} x { 1,. . . ,n} 

where an atomic interval gets mapped to the point (i, j) if i is the first clone containing 

the atomic interval and j is the last clone containing the atomic interval. The sequence 

P((el, ez)), . . . , P((ez,_l, ezn)) which for brevity we shall denote by P(.), is such that 

each point is derived from the previous point by incrementing either the first or the 

second coordinate. The sequence starts at (1,1) ends at (n,n) and can only include 

points (x, y) for which x d y. 

Notice that this sequence does not depend on the placement chosen to represent the 

interleaving. Thus we have a function from interleavings to sequences. Furthermore, 

the function is bijective (i.e., one-to-one and onto) onto a subset of the sequences. 

Lemma 2. If P(s) is a sequence starting at (1, l), ending at (n,n), always incre- 
menting exactly one of the coordinates, and only passing through points (i, j) with 
i < j, then there exists a unique interleaving that gives rise to P(.) under the above 
mapping. 
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Proof. Omitted. 0 

Thus we can count interleavings by counting these sequences. Let a(n) be the number 
of such sequences. It is a Catalan number (see [21, 6, 13, 15, 51) and is given by 

1 2n-2 
a(n) = ; 

( > n-l * 

It will be convenient to define a generating function (see [28, 18, 17, 121) for a(n). 

Let 

A(z) = 2 a(n)z”. 
n=l 

A(z) is an analytic function well defined when IzI < l/4. In this neighborhood of the 
origin of the complex plane we have that 

where dm is interpreted as the analytic function whose square is 1-4~ and which 
equals 1 at z = 0. This identity is not hard to verify using repeated differentiation. Also 
see [19]. 

A(z) is called a generating function for the sequence {a(n)} because the values of 
the sequence can be generated from A(z); in this case, the value a(n) can be found 
through repeated differentiation of A(z), which is analytic in a neighborhood of the 
origin. Every generating function in this article will be analytic in a neighborhood of 
the origin and its sequence of coefficients can be recovered through differentiation. 

3.2. Step 2 

Our next step is the return of distinguishability to the clones. Also, we shall now 
properly account for the reflection symmetry. However, we shall still require that the 
clones form one island. 

Lemma 3. Let b(n) be the number of ways that n distinguishable equal-length clones 
can be interleaved to form one island. Dejine B(z), the exponential generating function 
for b(n), to be the exponential series 

B(z) = 2 b(n);. 
n=O 

Then, 

n ifn < 1, 
b(n) = n! 

a(n)- otherwise. 
2 
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Furthermore, 

B(z) = 
1+22-J= 

4 . 

We call B(z) an exponential series because each b(n) is multiplied by z’/n! rather 

than just z”, as was the case in the definition of .4(z). This is why B(z) simplifies to 

an expression quite similar to that for A(z). 

Proof of Lemma 3. Consider an island composed of n indistinguishable clones. It is 

topologically symmetric if its sequence has the property 

(i,j) E {P(.)} w (n + 1 - j,n + 1 - i) E {P(.>}. 

The clones in an asymmetric island can be labeled in n! ways. If the island is sym- 

metric and n > 1 then the clones can be labeled in only n!/2 topologically distinct 

ways because of the reflection symmetry. Notice that because we ignored the reflec- 

tion symmetry previously, u(n) double-counts asymmetric islands (of indistinguishable 

clones) but correctly counts symmetric ones. 

Thus when n > 1, we have that a(n)n!/2 is the number of ways that n distinguishable 

equal-length clones can be interleaved to form one island. When IZ = 1 there is only one 

interleaving possible. It is impossible to form one island with no clones so b(0) = 0. 

Thus. 

B(z) = 9 b(n)$ = z + 5 F; = ’ + 2z j-. 0 

n=O n=2 

3.3. Step 3 

We are now ready to address the “real” problem. We wish to count how many 

interleavings are possible when we do not restrict the number of connected components 

(i e., islands) that the n clones form. 

Lemma 4. Let c(n) be the number of interleavings (involving any number of islands) 
for n clones. De$ne C(z), the exponential generating function for c(n), to be the 

exponential series 

C(z) = 2 c(n);. 
n=O 

Then, 

C(z) = eB@) = exp ( 1+22-d_ 

4 >- 
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Proof. Consider the exponential generating function exp(B(z)): 

Z” 

n! 

where 

(nl n,“... nk) 
is the multinomial coefficient 

n! 

The coefficient of z”/n! in a single term of the innermost summation is of the form 

The multinomial coefficient counts the number of ways to allocate n distinguishable 

(nl n,“... nk) (fibcni’) ’ 

clones among k islands where the ith island from the left gets ni clones. Conditioned 

upon this distribution, each b(q) factor counts how many ways the clones allocated 

to the ith island can be arranged within that island. Thus, this term counts the number 

of ways n clones can be distributed within k ordered islands with sizes nl, . . . , nk. The 

summation over all positive n; subject to (C ni) = n gives a count of the number of 

ways n clones can be distributed within k ordered islands, regardless of their sizes. The 

k! divisor cancels the overcounting we have introduced by ignoring the equivalence of 

interleavings in which the islands are permuted. (Notice that the k! divisor is appropri- 

ate even if two or more of the k islands have the same size because these islands are 

distinguished by the clones they contain.) The summation over all k gives the number 

of ways n clones can be distributed within any number of unordered islands. That is, 

it is the number of interleavings for n clones. 0 

The use of exponentials in exponential generating functions is also described in [12, 

Example 5.5, p. 2871. 
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4. Recurrence relation and asymptotic growth 

4.1. Recurrence relation 

Because of its complexity we cannot provide a closed-form expression describing 

each coefficient of the exponential series expansion of C(z). However, we can find 

an easy recurrence relation by using the fact that C(z) satisfies a simple differential 

equation. 

Theorem 1. 

c(n) = (4n - 5)c(n - 1) - (4n - 7)c(n - 2) + (n - 2)c(n - 3) 

for n > 3. 

Proof. The first two derivatives of C(z) are 

dC(z)= ( 1 

d.Z 
1+ 
2 2dFZ > 

C(z), 

dzc(z)= 
dz2 

‘+ 
1 1 1 

4 2Ji=z + 4( 1 - 42) + (1 - 42)3/Z c(z). 

We solve for C(z)/dm in the first equation and substitute into the second equation. 

We see that C(z) satisfies the differential equation 

Substituting in the definition for C(z) we get 

(1-4&(n)&+(4z-3)&)&i(l -z)&~); =o. 
II=2 n=l n=O 

A power series can only be zero if the coefficient of every term is zero. A little 

algebra gives the desired result. 0 

This relation provides a way to compute c(n) using O(n) arithmetic operations. The 

first few values of c(n) can be found in Table 1. Note that this sequence is not in 

Sloane’s Handbook of Integer Sequences [27]. 

4.2. Asymptotic Growth 

We can calculate the asymptotic growth of c(n) by examining properties of the con- 

vergence of the Taylor series of C(z) about the origin. It should not be too surprising 

that this can be done; the reverse is done in calculus when the radius of convergence of 

a power series is determined through an examination of the growth of its coefficients. 
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Let F(z) = C,T, f(n)? b e a p ower series. We shall say that F(z) has conoerging 

coejticient ratios if the limit 

f= lim f(n-1) 

a+lXX f(n) 

exists and is finite but not zero. We shall call the limiting value the limiting coeficient 

ratio of F(z). Note that the absolute value of the limiting coefficient ratio is the radius 

of convergence of F(z). For example, F(z) = C 7c”2finKZ ln(n + Jt;)z” has converging 

coefficient ratios with a limiting coefficient ratio of l/rc. 

To prove the asymptotic growth of c(n) we shall rely on the following two lemmas. 

Lemma 5 is easy to prove and we omit the details. Lemma 6 is a known result. See 

[24, Exercise 1781, [3,9]. Also see [28, Sections 5.2 and 5.31 for similar lemmas which 

are applicable when F(z) is restricted to other classes of functions. 

Lemma 5. Q-F(z) = C,“=, f(n).? h as converging coejficient ratios with limiting co- 

efJicient ratio f, G(z) = C,“=, g(n)zn has a radius of convergence g > If 1, and 

D(z) = C,“=, d( ) n z” satisfies D(z) = G(z) + F(z) then D(z) has converging coefi- 

cient ratios with limiting coejficient ratio f and d(n) - f(n). 

Lemma 6. If F(z) = C,“=, f (n)z” h as converging coeficient ratios with limiting co- 

efJicient ratio f, G(z) = C,“=, g(n)z” has a radius of convergence g > (f 1, D(z) = 

C,“=od(n)z” sutisjies D(z) = G(z)F(z), and G(f) # 0 then D(z) has converging 

coeficient ratios with limiting coeficient ratio f and d(n) N G(f )f (n). 

Armed with these lemmas we can prove the asymptotic growth of c(n). 

Theorem 2. 

Proof. We rewrite C(z): 

C(z)=exp(F) [cash(q) -sinh(q)] 

=exp(~)cosh(~) -exp(!$!?)H(~) T 

where H(y) is defined to be sinh(y)/y for y # 0 and H(0) = 1. Both cash(.) and 

H(.) are even functions that “cancel out” the square-roots in their argument and they 

are entire functions of z (i.e., analytic over the entire complex plane). The function 

exp(( 1 + 2z)/4) is also entire. Thus we can apply Lemmas 5 and 6 to relate the 

coefficients c(n)/n! to the coefficients of F(z) = -1,/m/4 if the relatively simple 

function F(z) has converging coefficient ratios. 
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To show that F(z) has converging coefficient ratios, we observe that F(z) = $4(z)- 

+ (see Section 3.1) and thus 

f(n- 1) = l im a@- 1) n(n - 1) 1 

,‘lEl f(n) n-co a(n) ~ = ,‘Ek (2n - 2)(2n - 3) = 4’ 

Therefore, F(z) has converging coefficient ratios and its limiting coefficient ratio is $. 

Lemma 5 tells us that we may ignore the term exp (( 1 + 2z)/4) cash (v-/4) be- 

cause it is entire. We define G(z) = exp(( 1 + 2z)/4)H (v’m/4) and use Lemma 6 

on the coefficients c(n)/n! and the equation C(z) = F(z)G(z) to compute 

c(n) N n!f(n)G( l/4) N n! Fe’/’ N F (2n)(ln _ 1) y N 8n 

using Stirling’s formula, n! N &n”e-“. 0 

It is interesting to note that c(n) = e3/8b(n) and thus, asymptotically, 69% of all 

maps have a single contig. 

5. Open problems 

We see three ways in which these results could be expanded. The third merits the 

most attention. 

1. Remove the assumption that no endpoint of a clone coincides with the endpoint 

of another clone: Because DNA is made of discrete base pairs it is cut at discrete 

places. Furthermore, the process of cutting the DNA into pieces is not strictly a 

random one. (See [8].) Thus, although the probability that two endpoints coincide 

may be small, it cannot be assumed to be zero. 

2. Remove the assumption that the clones are of equal length: Although the clones are 

generally of similar lengths they need not be exactly equal. The possibility that one 

clone may completely contain another allows clone orderings which we have not 

counted here. 

3. Remove the assumption that the DNA has an arbitrarily large length: More often 

than not the experiment produces so many clones that the sum of their lengths 

exceeds the length of the DNA. This necessarily precludes some of the interleavings 

we count. (Note that this effect is mitigated somewhat when not all overlaps are 

detectable. In many experiments an overlap between two clones is not detectable 

unless it is at least 0 (usually 40 - 70%) of a clone’s length. This reduces the 

efictive length of the clones to a (1 - f3) fraction of their original length. (See 

[20].) Thus, in the case of a DNA that is small, the number of maps that include 

only detectable overlaps may be larger than the number of maps that show all 

overlaps.) 
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