Comparison of implicit-texture and population-balance foam models

Mohammad Lotfollahia, Rouhi Farajzadeh, Mojdeh Delshad, Abdoljalil Varavei, William R. Rossen

*University of Texas at Austin, USA
bDelft University of Technology, The Netherlands
cShell Global Solutions International, Rijswijk, The Netherlands

A R T I C L E I N F O

Article history:
Received 16 November 2015
Received in revised form 3 March 2016
Accepted 4 March 2016
Available online 9 March 2016

Keywords:
Foam
Implicit texture
Population balance
Modeling
Gas
Enhanced oil and gas recovery

A B S T R A C T

Simulation models for foam enhanced oil recovery are of two types: those that treat foam texture or bubble size explicitly (population-balance models) and those that treat the effects of foam texture implicitly through a gas mobility-reduction factor. The implicit-texture models all implicitly assume local equilibrium (LE) between the processes of foam creation and destruction. In published studies most population-balance models predict rapid attainment of local-equilibrium as well, and some have been recast in LE versions.

In this paper we compare population-balance and implicit-texture (IT) models in two ways. First, we show the equivalence of the two approaches by deriving explicitly the foam texture and foam-coalescence-rate function implicit in the IT models, and then show its similarity to that in population-balance models. Second, we compare the models based on their ability to represent a set of N2 and CO2 steady-state foam experiments and discuss the corresponding parameters of the different methods.

Each of the IT models examined was equivalent to the LE formulation of a population-balance model with a lamella-destruction function that increases abruptly in the vicinity of the limiting capillary pressure P_c^*, as in current population-balance models. The relation between steady-state foam texture and water saturation or capillary pressure implicit in the IT models is essentially the same as that in the population-balance models. The IT and population-balance models match the experimental data presented equally well. The IT models examined allow for flexibility in making the abruptness of the coalescence rate near P_c^* an adjustable parameter. Some allow for coarse foam to survive at high capillary pressure, and allow for a range of power-law non-Newtonian behavior in the low-quality regime.

Thus the IT models that incorporate an abrupt change in foam properties near a given water saturation can be recast as LE versions of corresponding population-balance models with a lamella-destruction function similar to those in current PB models. The trends in dimensionless foam texture implicit in the IT models is similar to that in the PB models. In other words, both types of model, at least in the LE approximation, equally honor the physics of foam behavior in porous media.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Enhanced oil recovery (EOR) techniques such as solvent, thermal, and chemical injection have the potential to increase oil production and oil recovery efficiency (Lake et al., 2014). With growth of global energy demand there is a significant interest by the oil industry in the development, optimization, and implementation of EOR methods.

Mobility control is essential to the effectiveness of EOR processes, such as surfactant/alkali flooding, miscible and immiscible gas flooding, and steam flooding. Gas-injection EOR projects often suffer from poor volumetric sweep efficiency due to low gas density and viscosity. The use of foam in gas-injection EOR applications has the potential to improve oil recovery by reducing gas mobility (Schramm, 1994; Kovscek and Radke, 1994; Rossen, 1996; Farajzadeh et al., 2011; Andrianov et al. 2012).

Foam in porous media can be defined as a dispersion of gas phase in liquid phase such that the liquid phase is connected and at least some gas flow paths are blocked by thin liquid films, called lamellae (Falls et al., 1988). It has been experimentally observed...
that when gas/water capillary pressure in a porous medium approaches a certain value, the foam coarsens abruptly; this value referred to as the “limiting capillary pressure” and the corresponding saturation is called “limiting water saturation,” \(S_{w}^{*} \) (Khatib et al., 1988; Zhou and Rossen, 1995). The limiting capillary pressure is a function of surfactant formulation and concentration, electrolyte concentration, formation properties such as permeability, and other factors (Khatib et al., 1988; Farajzadeh et al., 2015). The limiting-capillary-pressure concept is illustrated in Fig. 1.

In the absence of oil, foam exhibits two steady-state flow regimes (Osterloh and Jante, 1992; Alvarez et al., 2001; Chen et al., 2010). In the “low quality” (i.e., low gas fractional flow) or “wet” regime, the foam bubble size remains near the average pore size and pressure gradient is nearly independent of liquid velocity. In the “high-quality”, “dry-out” or “coalescence” regime, bubble size increases and foam becomes coarser over a narrow range of water saturation. In the high-quality regime, pressure gradient is nearly independent of gas superficial velocity.

The limiting capillary pressure is thought to regulate foam behavior in the high-quality regime as follows. Suppose foam is at local equilibrium in the high-quality regime. The capillary pressure just below \(P_{c}^{*} \). Then suppose gas velocity increases by a factor \(X \) at constant water superficial velocity. As a result, water saturation falls slightly. Capillary pressure \(P_{c} \) approaches a bit closer to \(P_{c}^{*} \). The approach to \(P_{c}^{*} \) causes a large increase in coalescence rate (Ettinger and Radke, 1992; Aronson and Radke, 1994), coarsening the foam and raising gas mobility by the same factor \(X \) with little or no change in water saturation. The decrease in water saturation is slight, so water saturation and water relative permeability are nearly unchanged. Therefore, LE is restored with the same pressure gradient as before the increase in gas superficial velocity. Foam is near \(P_{c}^{*} \) in the high-quality or coalescence regime and the abrupt increase in coalescence rate as \(P_{c} \) approaches \(P_{c}^{*} \) is responsible for foam behavior in this regime.

Design of foam EOR processes for field application requires accurate simulation models. Foam simulation models come in two types: Population-balance (PB) models attempt to represent the dynamic processes of lamella creation and destruction as well as the effect of bubble size on gas mobility. These models can be set to incorporate only partial and imperfect physics. An essential test for models is their ability to fit available data.

Skoreyko et al. (2012) represent foam generation, foam degradation and trapped foam by defining a set of first order, non-reversible reactions. They use Arrhenius-type equations to compute reaction rates. This model makes no reference to foam coarsening at a limiting capillary pressure, however, which distinguishes it from the models described here. Likewise, the population-balance models of Falls et al. (1988), Friedmann et al. (1991) and Zitha (2006) do not include foam coalescence at a limiting capillary pressure. Therefore, we do not address these models further in this paper.

In all the foam models discussed here, foam coalescence is related to \(P_{c} \). In the PB models, \(P_{c} \) or its corresponding saturation, \(S_{w}^{*} \), is explicitly specified as an input parameter to calculate the coalescence rate and bubble size. The IT models incorporate \(P_{c} \) implicitly by employing the limiting water saturation \(S_{w}^{*} \) as an input parameter. In PB models foam collapses as capillary pressure approaches \(P_{c} \) or \(S_{w}^{*} \) approaches \(S_{w}^{*} \), while in the IT models foam collapse occurs when foam becomes too dry i.e. in the vicinity of \(S_{w}^{*} \). The IT models differ from each other in whether foam collapses completely, or degrades partially, in the vicinity of \(S_{w}^{*} \) (Cheng et al., 2000).

This paper investigates the limiting-capillary-pressure concept as applied in both IT and PB models. Specifically, it shows that the limiting water saturation in IT models can be expressed as a coalescence (destruction) term in an equivalent way to that in PB models. Moreover, the foam texture implicit in these models can be derived; it abruptly coarsens near \(P_{c} \) as in the PB models. In other words, each IT model examined is equivalent to the LE formulation of a corresponding population-balance model: the physics of foam

Fig. 1. Limiting-capillary-pressure \((P_{c}^{*})\) concept (adapted from Khatib et al., 1988). The right-hand figures show the fractional-flow curves for different bubbles sizes, but \(P_{c} \) and \(S_{w}^{*} \) control bubble size at LE. For \(P_{c} \) many \((S_{w} > S_{w}^{*})\) bubble size is small and the green fractional-flow curve applies. Approaching the limiting capillary pressure from lower \(P_{c} \) (approaching \(S_{w} \) higher \(S_{w}^{*} \)) bubble size increases, gas mobility rises and gas fractional flow in the porous medium increases. If the transition is abrupt, the “high-quality” flame regime is at \(S_{w}^{*} = S_{w}^{*} \) (dotted line), and the low-quality regime is at \(S_{w} > S_{w}^{*} \) (on the green curve). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
coalescence as represented in the two types of models is essentially the same, at least under the conditions of the given experiments. In addition, the experimental data for steady-state apparent foam viscosity (without oil present) versus foam quality are matched with the different foam models and the corresponding parameters in each model are discussed. The results confirm that the steady-state flow of foam in porous media can be adequately represented equally well by the simpler IT models.

Only population-balance models can represent the dynamics of foam creation and propagation at a shock front, the creation of foam at the entrance of the porous medium or near an abrupt change in permeability, and, possibly, foam dynamics in natural fractures. However, in published applications, PB models come to local equilibrium rapidly, suggesting that on the field scale LE applies, at least in relatively homogeneous formations (Rossen et al., 1999; Chen et al., 2010). The first step in fitting any foam model is to examine its ability to represent laboratory LE data, and this study focuses on that issue.

2. Foam models

Nearly all foam models alter the transport properties of gas only and assume that liquid mobility remains the same function of saturations as in the absence of foam, in accordance with laboratory observations (Bernard and Holm, 1964; Bernard et al., 1965; Sanchez et al., 1989; de Vries and Wit, 1990; Friedmann et al., 1991). In the presence of foam, gas trapped by stationary lamellae reduces mobile gas saturation, blocks gas flow and alters gas flow paths, and thus reduces gas relative permeability. The fraction of gas itself is not increased by foam, the effect of increased resistance to gas flow and alters gas flow and thus reduces gas relative permeability. The fraction of trapped gas is a function of pressure gradient, capillary pressure, aqueous-phase saturation, pore geometry and bubble size (Kovscek et al., 1995; Nguyen et al., 2007, 2009). On the other hand, moving lamellae experience a drag force when they slide along the pore walls (Hirasaki and Lawson, 1985) that is complicated by capillary effects on the lamellae (Falls et al., 1989; Xu and Rossen, 2003). This effect is similar to an increase in gas viscosity. Because the viscosity of gas itself is not increased by foam, the effect of increased resistance to gas flow reflecting the presence of lamellae is termed "apparent (effective) gas viscosity." However, many models combine the effects of foam on gas relative permeability and apparent gas viscosity and reduce the gas mobility by a factor applied to either the gas viscosity or the gas relative permeability. In the following sections, IT and PB foam models are briefly discussed. Appendix A and Ma et al. (2015) provide a review of foam models.

2.1. Implicit-texture (IT) models

In this section we briefly discuss the UT (Cheng et al. (2000)), STARS (Computer Modeling Group, 2012) and Vassenden-Holt (1998) IT models. A summary of these models is provided in Table A-1.

2.1.1. UT model

The UT model (Rossen et al., 1999; Cheng et al., 2000) was originally based on data of Persoff et al. (1991), which lies entirely in the high-quality regime. At fixed gas superficial velocity, this model gives a steep, linear increase in gas mobility as water saturation decreases through a narrow interval in the immediate vicinity of S_w^*, and a constant reduction in gas mobility for larger values of S_w^*. The model allows for non-Newtonian behavior in the low-quality regime by making the mobility-reduction factor in the low-quality regime a power-law function of gas superficial velocity. This model is currently in use in compositional simulator UT-DOECO2 (Delshad et al., 2013; Naderi Beni et al., 2013) and chemical-flood simulator UTCHEM (Delshad, 2013). Because of the functional form chosen for the increase in gas mobility near S_w^*, the UT foam model cannot represent formation of strong foam during gas injection in a process of injection of alternating slugs of gas and surfactant solution (Dong, 2001; Shan and Rossen, 2004).

2.1.2. STARS model

In the STARS model (Computer Modeling Group (CMG), 2012), when foam is present, the gas relative permeability is multiplied by a factor FM, which is function of several factors that reflect the effects of different physical parameters, such as surfactant concentration, water saturation, oil saturation (and composition), salt concentration, and capillary number on foam behavior in porous media. In this paper, we focus on the dry-out function F_2 and shear-thinning function F_5, which are defined in Table A-1. As in the UT model, gas mobility increases as S_w^* decreases in the vicinity of S_w^*, which is given the name f_{mdry} in the STARS model. However, in the STARS model foam does not collapse completely at any water saturation. The function F_3 allows for shear-thinning in the low-quality regime by making the mobility-reduction factor depend on capillary number (i.e., on pressure gradient).

2.1.3. Vassenden-Holt model

Vassenden and Holt (1998) proposed a foam simulation model in which the gas mobility reduction factor, F, is the sum of two exponential functions of water saturation. For water saturation slightly greater than S_f (equivalent to S_w^*), gas mobility decreases steeply because of the first exponential function; this corresponds to foam dryout and the high-quality regime. The second function decreases more gradually for higher water saturation and controls foam behavior in the low-quality regime.

2.2. Population-balance (PB) models

Foam mobility is influenced by its texture (Patzek, 1988; Falls et al., 1988). Foam texture is quantified as the number of lamellae per unit volume of gas. A foam with a fine texture has more lamellae in a given volume of gas and therefore induces more resistance to gas flow. Population-balance models incorporate foam texture explicitly to predict flow properties. A conservation equation for lamellae allows the simulator to track foam texture dynamically, i.e. without the local-equilibrium assumption. The rates of accumulation, convection, generation, and coalescence of foam bubbles are incorporated into the lamella balance, and, if desired, rates of trapping and mobilization as well, as they are for other molecular species in a reservoir simulator.

The transient population balance for the average flowing and trapped lamellae is written as (Chen et al., 2010):

$$\frac{\partial}{\partial t} \left[\phi \left(S_f n_f + S_w n_t \right) \right] + \nabla \cdot \left(u \eta_f \right) = q_f + Q_0$$

(1)

where S_f and S_t are flowing and trapped gas saturations, and n_f and n_t are number density of flowing and trapped foam lamellae, respectively. All current models assume $n_f = n_t$ are discussed below. Q_0 is a source/sink term, and q_f is the net rate of generation of lamellae which can be defined as

$$q_f = R_g - R_c$$

(2)

where R_g and R_c represent generation and coalescence rates, respectively.

The population-balance models can be simplified by assuming local equilibrium if desired (Ettinger and Radke, 1992; Myers and Radke, 2000; Kam and Rossen, 2003; Chen et al., 2010). In the LE
version of the PB models, the rates of foam generation and coalescence are set equal to each other, which defines the LE value of foam texture \(n_f \) at each location. Eq. (1) is eliminated from the set of governing equations.

In this section we briefly discuss the models of Chen et al. (2010), Kam et al. (2007), and Kam (2008). The models are summarized in Table (A-2).

The population-balance models examined here use the shear-thinning expression for effective viscosity of Hirasaki and Lawson (1985),

\[
\mu_f = \mu_g + \frac{\alpha n_f}{|n_f|^{1/3}}
\]

where \(\mu_g \) is gas viscosity and \(\mu_f \) is apparent (effective) gas viscosity in the presence of foam, \(n_f \) is the foam lamella density (number of lamella per unit volume), \(v_f \) is local gas velocity and \(\alpha \) is a proportionality constant that depends on the surfactant formulation and permeability.

Kovscek et al. (1993) considered roof snap-off as the mechanism of lamella creation. The model employs a capillary-pressure-dependent kinetic expression for lamella coalescence (to reflect the limiting capillary pressure) and also a term to represent the trapped fraction of foam. The gas relative permeability is then reduced according to the fraction of flowing gas to reflect the effect of gas trapping (Eq. (A-15)). The lamella-generation rate is taken as a power-law expression, proportional to the magnitude of the interstitial velocity of surfactant solution and 1/3 power of the interstitial gas velocity. Chen et al. (2010) introduced an upper limit for the concentration of lamellae that is related to pore size. The upper limit is achieved by the reducing generation rate as this limit is approached; they contend that this accounts for pre-existing gas bubbles that occupy foam-generation sites. They showed that the LE form of this model can predict both low- and high-quality regimes.

2.2.2. Kam et al. model (2007)

Kam et al. (2007) presented a foam model in which lamella creation depends on pressure gradient and also on water saturation or capillary pressure, which governs the presence of lenses or lamellae available to be mobilized (Rosen and Gauglitz, 1990; Gauglitz et al., 2002). Specifically, lamella generation rate is proportional to water saturation and a power-law expression of pressure gradient. In this model, the generation rate monotonically increases with the pressure gradient. Lamella-coalescence rate is a power-law function of \((S_w - S_{sw}) \), with the exponent an adjustable parameter. This model can represent multiple (coarse and strong) foam states at the same superficial velocity and jumps between those states, as well as the low- and high-quality regimes for strong foam.

2.2.3. Kam model (2008)

In this extension of the model of Kam et al. (2007), for the lamella creation, the local pressure gradient must exceed the minimum pressure gradient required for lamellae mobilization and division. Kam (2008) proposed a new lamella-creation function, which reaches a plateau at larger pressure gradient (Eq. (A-22)).

3. Corresponding foam model parameters

Parameters \(S_{sw}, f_{ndry} \), and \(S_f \) represent the limiting water saturation in the IT models and the PB models of Kam, while Kovscek et al. and Chen et al. use the corresponding capillary pressure \(P_c \) in their model. The STARS model foam weakens in the vicinity of \(f_{ndry} \) but does not collapse completely at any value of \(S_w \) (Farajzadeh et al., 2015). In the UT model, foam collapses in the vicinity of \(S_{sw} \), specifically in an interval of \((S_{sw} - \epsilon) \). In the other models foam collapses completely for \(S_w < S_f, S_w < S_{sw}, \) or \(P_c > P_c \).

Parameters \(RF \) and \(f_{nmob} \) represent reference (or maximum) mobility reduction factor that could be achieved by foam when all the conditions are favorable and are directly set in the IT models. Parameters \(n_f \) and \(n_{max} \) are upper limits for the concentration of foam bubbles in the Chen et al., Kam et al. and Kam models, respectively. They are related to pore size. More than one foam bubble per pore is not expected (Bertin et al., 1998; Kil et al., 2011). Parameters \(\epsilon, epdry, \) and \(s_1 \) control the sharpness of the transition from high-quality to low-quality regimes in the IT models.

The extent of the saturation range in the transition from high-quality to low-quality regimes is set to \(2\epsilon \) in the UT model. In both STARS and the Vassenden-Holt models, for the large values of eddry and \(s_1 \) the transition is sharp and foam collapses within a narrow range of water saturation. In the Kam et al. and Kam models the coalescence exponent \(n \) controls the transition, with smaller \(n \) giving a sharper transition. The coalescence rate depends on nearness of capillary pressure to \(P_c \) with an exponent (–2) in the Chen et al. model (Eq. (A-12)). Parameters \(\epsilon, epdry, \) and \(s_1 \) account for shear-thinning behavior in the low-quality regime in UT, STARS, and modified Vassenden-Holt models, respectively; this would reflect both gas trapping and mobilization and the shear-thinning drag on individual moving bubbles. The population-balance models use the shear-thinning expression by Hirasaki and Lawson (1985) with an exponent of (–1/3) for the dependence of apparent gas viscosity on gas velocity.

4. Fitting foam models to experimental data

In this section we apply different foam models to match the steady-state CO2 foam experimental data reported by Moradi-Araghi et al. (1997), and the N2 foam experimental data of Alvarez et al. (2001). Then we discuss and compare the fits with different foam models.

Moradi-Araghi et al. (1997) conducted experiments with CO2 at 98 °F and 2000 psi in a 551.5-md-permeability reservoir core from the South Cowden Unit in West Texas. The core plugs were 1 inch in diameter and 4.84 inches in length. Foam was made with 2000 ppm surfactant Chaser CD-1050 surfactant in synthetic South Cowden formation brine. The overall pressure drop in the foam experiments was measured and divided by that for single-phase water flow at the same total superficial velocity and reported as the reduction factor (RF). Therefore, to calculate the apparent foam viscosity as a function of gas fraction or foam quality \(f_f \), the reported reduction factor is multiplied by water viscosity (\(\mu_w \)) at the experimental conditions:

\[
\mu_{app} = \mu_w RF = 0.65RF
\]
Alvarez et al. (2001) conducted experiments with N2 foam at room temperature and 600 psi outlet pressure in 530-md Berea sandstone core. The cores were 2 inches in diameter and 11 inches in length. Foam was made with 1 wt% Bio-Terge AS-40 surfactant in brine of 3 wt% NaCl and 0.01 wt% CaCl2. The pressure gradient at a fixed superficial velocity of 2.5 ft/day was measured and apparent foam viscosity is reported here by multiplication by absolute permeability and dividing by total velocity:

$$\mu_{app} = \frac{k \nabla p}{u_w + u_g}$$ \hspace{1cm} (5)

Relative-permeability data are not reported for the porous media used in these experiments. Although the parameters depend somewhat on the choice of the relative-permeability parameters (Ma et al., 2014), the generality of our results will not be affected, e.g., with the choice of different relative permeability parameters the correlation between the basic foam properties such as P_c and rock properties like permeability will remain unaltered (Farajzadeh et al., 2015). For fitting the foam data we use a relative-permeability function fit to the data of Persoff et al. (1991) in Boise sandstone. We also use the water-gas relative permeability and capillary-pressure functions described in Appendix B. Table 1 summarizes all the rock and fluid properties used in this paper.

The objective function for the optimization of foam model parameters is defined as

$$\Phi(x) = \sum_{i=1}^{n_{data}} \left(\mu_{app,i}(x) - \mu_{app,exp,i} \right)^2$$ \hspace{1cm} (6)

where x is the vector of foam-model parameters. For example in the STARS model, $x = [fmmob, epdary, fmdry, ecapp]$. The reference capillary number, $fmcapp$, is not an independent parameter and was set to a fixed value. In Eq. (6) $\mu_{app,exp,i}$ and $\mu_{app,i}$ are, respectively, the experimental data and values predicted by the foam model for the given set of foam-model parameters. A constrained least-squares algorithm in the optimization toolbox of MATLAB (Isqnonlin function) was used to solve our non-linear data-fitting problem. The constraints are set to physical limits for the foam parameters, e.g. $S_w > S_{Swc}$, $S_f > S_{Sc}$ or $fmdry > S_{Smdry}$ or, depending on the model; and $P_{Swc} > P_c$.

The final (best-fit) set of fitted parameters may depend on the initial guess. We discuss the issue of non-uniqueness in the various model fits below. In cases where the fit depends on the initial guess, we show here the best fit (i.e., the fit with the smallest value of $\Phi(x)$). The model parameters are listed in Tables 2–7. Fig. 2 through 7 show the apparent foam viscosity as a function of foam quality. Symbols are the experimental data and the curves are the match of

Fig. 2. UT model fit to experimental data using the parameters in Table 2

Fig. 3. STARS model fit to experimental data using the parameters in Table 3

Fig. 4. a) Vassenden-Holt model fit to experimental data using the parameters in Table 4 assuming $a = 1$ (Eq. (A-8)). b) Vassenden-Holt model fit to experimental data using the parameters in Table 4, including a.

Fig. 5. Chen et al. model fit to experimental data using the parameters in Table 5
the different foam models.

The Vassenden and Holt model was not able to match the data in low-quality regime until we introduced an exponent \(a\) for the velocity term (see Eq. (A-8) and Fig. 4). The original model corresponds to a value of the exponent \(a\) in Eq. (A-8) of one.

The results show that the two types of models match the experimental data equally well. Some individual models do better in matching the data over some range and others better in other ranges. For instance, for the Moradi-Araghi et al. data the UT and STARS models do a little better than the others.

For the Chen et al. model we match the experimental data using three sets of foam parameters for both the data of Moradi-Araghi et al. and Alvarez et al. (Table 5). In set #1 we assume a maximum gas trapping saturation of 50% and we scale the gas relative permeability along with the gas viscosity to match the experimental results; the resulting fit is shown in Fig. 5. Since the value of trapped-gas saturation is uncertain, in set #2 we ignore gas trapping but we obtain the same quality match by adjusting \(n\) and slightly adjusting \(P_c\). The fits are indistinguishable from each other, as shown in Fig. 5. For at least these two experiments, the trapping parameter in the Chen et al. model does not play an essential part of the data-fitting procedure and could be ignored without harming the fit to the data.

In all the models, except that of Chen et al., the limiting water saturation did not vary with initial guess (though the other parameters did vary). In the Chen et al. model, however, the experimental data could be matched with different values of \(P_c\) by adjusting parameter \(k_{\text{e}}\). In parameter set #1 we use \(P_c = 0.19\) psi \((S_{wL} = 0.265)\) and \(P_c = 0.55\) psi \((S_{wL} = 0.31)\) for the Moradi-Araghi (CO2) and Alvarez (N2) data, respectively. These parameters are compatible with those of other models. In set #2, we had to slightly increase \(P_c\) to account for trapped-gas saturation. In set #3, we obtained essentially the same fit to the data using \(P_c = 0.80\) psi for both experiments \((S_{wL} = 0.219\) for Moradi-Araghi and \(S_{wL} = 0.284\) for Alvarez data). There are two implications. First, one cannot derive even an approximate value of \(P_c\) from these data using Chen et al.’s model without assuming \textit{a priori} a value for the coalescence constant \(k_{\text{e}}\). Second, in fitting data to this model, capillary pressure in the foam need not be close to \(P_c\) in the high-quality or coalescence regime.

Dong (2001) examined this issue in the earlier model of Kovscek et al. (1995). Suppose, as posed in the Introduction, that foam is initially at LE in the high-quality regime, and then gas superficial velocity increases by a factor \(X\). In this model, lamella-generation rate increases by \(X^{1/3}\) (Eq. (A-9)). The coalescence rate increases by the factor \(X\) (Eq. (A-11)) because of the increase in gas velocity. This increase in coalescence rate does not depend upon nearness to \(P_c\). Equilibrium foam texture \(n_f\) therefore changes by a factor \((X^{1/3})\) \(X = \frac{X_f}{X_{\text{co}}}\). Apparent foam viscosity \(\mu_{\text{app}}\) is proportional to \((n_f V_g X^{1/3}) - (X F X^{1/3}) = X^{1/3}\) because of the dependence on texture and on gas velocity (Eq. (3)). Through Darcy’s law on the gas phase, the pressure gradient is proportional to \((V_g \mu_{\text{app}}) - (X^{1/3})\), i.e. is constant, with no change in capillary pressure. In this model, the pressure gradient is independent of gas superficial velocity in the high-quality regime because of the particular forms assumed for apparent gas viscosity (Eq. (3)) and the lamella-generation and coalescence rates, not the divergence of coalescence rate at the limiting capillary pressure.

In the model of Chen et al. (2010) the dependence of generation rate and gas mobility on gas superficial velocity is more complex. In our model fits, the water saturation and capillary pressure in the high-quality regime is the same for all three sets of parameters \((#1\text{ to }#3)\) at \(S_w = 0.270 - 0.274\) for Moradi-Araghi and \(S_w = 0.311\) for Alvarez et al. Nevertheless, the fitted values of \(S_w\) and \(P_c\) vary among the parameter fits to the data: from \(S_w = 0.265\) to 0.263 to 0.219 (\(P_c\) between 0.19 and 0.80 psi) for parameter sets \#1, 2 and 3, respectively for Moradi-Araghi and \(S_w = 0.310\) to 0.309 to 0.284 (\(P_c\) between 0.55 and 0.80 psi) for Alvarez et al. In the model of Chen et al., the high-quality regime water saturation need not be close to \(S_w\), nor the capillary pressure close to \(P_c\).

The water saturation in the high-quality regime can be derived from the slope of the pressure gradient versus \(f_g\) in the experimental data, using Darcy’s law for the water phase (Booij and Rossen, 2013; Ma et al., 2013, 2014). The water saturation in the high-quality regime is calculated to be 0.295 and 0.314 for the Moradi-Araghi and Alvarez data, respectively; the corresponding values of \(P_c\) are 0.113 and 0.524 psi. Table 8 summarizes values of \(S_w\) or the corresponding parameters in other models (\(f_{\text{dry}}\) in STARS model and \(S_f\) in Vassenden-Holt) used to fit the experimental data in different models. While in the UT, STARS, Kam et al., and Kam models the value of \(S_w\) was close to the water saturation in the high-quality regime, in the Vassenden-Holt and Chen et al. models water saturation in the high-quality regime is not close to \(S_w\), nor is \(P_c\) in the foam close to \(P_c\).

5. Coalescence function in implicit-texture models

In the IT models examined here foam experiences an abrupt change in its properties near the limiting water saturation. In this section we show that this abrupt change can be expressed by a lamella-destruction function similar to that in population-balance models with a limiting capillary pressure.

The coalescence rate \(r_c\) in population-balance models (Eqs. (A-11), (A-20), and (A-23)) can be expressed as

\[
r_c = \frac{X_{\text{app}}}{C_0} \left(\frac{1}{f_{\text{g}}^{1/3}} \right)^n \left(\frac{1}{f_{\text{g}}^{1/3}} \right) \]
where \(c_c \) is constant, \(n_f \) is lamella density (foam texture), \(n_D \) is dimensionless foam texture, \(n_f \) is foam texture in the low-quality regime (which we assume to be constant (Alvarez et al., 2001)), and \(f \) is a destruction function. In other words, lamellae have a probability of breaking proportional to \(f \), where \(f \) can be expressed in terms of water saturation or capillary pressure. Kovscek et al. (1993) suggested that \(f \propto (P_c-P_a)^{2/3} \); Bertin et al. (1998) proposed \(f \propto (P_c-P_a)^{-1} \); Kam et al. (2007) and Kam (2008) assumed \(f \propto (S_w-S_w^* - \varepsilon)^n \) with \(n \) as a fitted parameter. In all the models, foam coalescence rate increases sharply as foam texture in the low-quality regime and increases sharply in the interval \(S_w \rightarrow 1 \) as the reference texture. Let \(P \) be the function \(F \) defined in Eq. (A-8) but without the \((u_g/u_0)\) term. Then

\[
F'(S_w) = \exp \left(\left(S_f - S_w \right) S_1 \right) + F_0 \exp \left(\left(S_f - S_w \right) S_2 \right)
\]

This function, related to the mobility-reduction factor \(F \) in Vassenden-Holt model, is inversely proportional to foam texture. Thus

\[
n_D = \left(\frac{1}{F'(S_w)} - 1 \right) \left(\frac{1}{F'(1) - 1} \right)^{-1}
\]

In the STARS model, gas mobility reduction is proportional to \(FM \), with the maximum reduction when \(FM = 1/(1 + f_{mmb}) \). Excluding the shear-thinning effect \(F_2 \) function from \(FM \), the corresponding dimensionless foam texture is defined by

\[
n_D = \frac{1 + f_{mmb} F_2}{1 + f_{mmb}}
\]

Different population-balance models use different lamella-generation functions, and the best choice for this function remains controversial. Kam and Rossen (2003) show that different lamella-generation functions can give the same steady-state foam behavior. Moreover, behavior in the coalescence regime is dominated by an abrupt increase in coalescence rate, not a change in generation rate. Therefore, for simplicity, we assume here a constant bubble-generation rate, \(r_g \). Zitha (2006) assumes a constant generation rate in his model. More complicated generation functions could be used without changing our conclusions, which hinge on abrupt changes in foam behavior near \(P_c \) or \(S_w \). Therefore, assuming local equilibrium, the destruction function is

\[
f = \frac{r_g}{c_c n_D n_f} = \frac{r_{gd}}{n_D}
\]

with

\[
r_{gd} = \frac{r_g}{c_c n_f}
\]

Fig. 10 through 15 show the lamella-destruction functions implied by the UT, STARS, and Vassenden-Holt models, using the parameter values fit to the experimental data of Moradi-Araghi et al. and Alvarez et al. in Figs. 2, 3 and 4b. The UT model implies a destruction function that remains constant in the low-quality regime and increases sharply in the interval \(S_w^* - \varepsilon, \) diverging to
in the Vassenden-Holt model the destruction function increases sharply in the high-quality regime and it reaches its maximum value at S_f. In this model, the destruction function increases with larger slope for a larger value of s_1. The STARS model implies a destruction function that increases sharply in the vicinity of f_{mdry} but remains finite at all water saturations. In this model, the destruction function increases more abruptly as S_w approaches f_{mdry} for larger values of e_{pdry}. The lamella-destruction functions implied by these IT models are similar to those in the PB models.

There is no theoretical reason or experimental justification to prefer any of the functions in Figs. 9, 11 and 13, or 15 above the others. Thus, in terms of the most important mechanism in foam behavior without oil (Farajzadeh et al., 2012), i.e. foam collapse at the limiting capillary pressure, the IT models are as well-supported by theory and experiment as the population-balance models.
Fig. 16 through 19 show dimensionless foam texture in the implicit-texture and population-balance models, using the parameter values fit to Moradi-Araghi et al. and Alvarez et al. experimental data. In the population-balance models, dimensionless foam texture is defined as the foam bubble density (n_f) divided by the maximum foam bubble density in the low-quality regime n_{max} ($n_f = n_f/n_{max}$). In all the models, dimensionless foam texture drops sharply close to S_w^*. Dimensionless foam textures implied in the IT models are similar to those in population-balance models.

6. Summary and conclusions

Implicit-texture (IT) models are often perceived as not reflecting the essential physics of foam in porous media. Although only population-balance models can represent the entrance region, dynamics at shock fronts, the process of foam generation, and regions in heterogeneous or fractured media, where abrupt heterogeneities mean that foam is not at local equilibrium, in this study we focus on the ability to fit steady-state data. IT models all assume local equilibrium (LE). Therefore, we compare IT and LE version of population-balance (PB) models. The main conclusions are as follows:

- An essential test of a model’s usefulness is its ability to match available data and thereby give confidence in predicting new data. We show that both IT models and PB models at LE match the steady-state experimental data for CO2 and N2 foam presented here equally well. The corresponding parameters of the different foam models are presented and discussed.
- The original Vassenden-Holt model does not match the data in low-quality regime until we introduce an exponent a in the velocity term.
- The trapping parameter in the Chen et al. model does not play an essential part of the data-fitting procedure, for these data, at least.
- In the Vassenden-Holt and Chen et al. models, the high-quality or coalescence regime does not necessarily reflect a capillary pressure near the limiting capillary pressure (P_c^*. Values of P_c fit to foam-mobility data with model of Chen et al. are sensitive to the value of the coalescence kinetic parameter k_0.
- We define dimensionless foam texture implicit in the IT models and derive the foam-coalescence-rate function implicit in these models. The results show that the IT models that incorporate an abrupt change in foam properties near a given water saturation can be recast as LE versions of corresponding population-balance models with a lamella-destruction function similar to those in current PB models. The trends in dimensionless foam texture implicit in the IT models is similar to that in the PB models. In other words, both types of models, at least in the LE approximation and without oil, equally honor the physics of foam behavior in porous media.

Acknowledgement

The authors thank Prof. C. van Kruijsdijk and Dr S. Vincent-Bonnieu for careful review of the manuscript. They also thank...
Shell Global Solutions International for permission to publish this work.

Nomenclature

\[\begin{align*}
&\text{a} & \text{shear-thinning exponent in Vassenden-Holt model} \\
&\text{b} & \text{capillary pressure model parameters} \\
&\text{c}_g & \text{coalescence rate constant} \\
&\text{c}_\text{f} & \text{generation rate constant in Kam et al. and Kam model} \\
&\text{c}_\text{s} & \text{surfactant concentration} \\
&\text{c}_\text{t} & \text{threshold surfactant concentration in UT model} \\
&\text{c}_\text{r} & \text{reference surfactant concentration in Chen et al. model} \\
&\text{epd} & \text{shear-thinning exponent in STARS model} \\
&\text{epcap} & \text{shear-thinning exponent in Vassenden-Holt model} \\
&\text{f} & \text{foam mobility multiplier in Vassenden-Holt model} \\
&\text{f}_\text{m} & \text{destruction function} \\
&\text{f}_\text{r} & \text{function in Vassenden-Holt model reflecting foam texture but non-Newtonian effects} \\
&\text{F}_\text{d} & \text{dry-out function in STARS model} \\
&\text{F}_\text{g} & \text{shear-thinning function in STARS model} \\
&\text{FM} & \text{mobility reduction factor in STARS model} \\
&\text{fmcap} & \text{reference rheology capillary number in STARS model} \\
&\text{fndry} & \text{reference water saturation in dry-out calculation (F2) in STARS model} \\
&\text{fnmb} & \text{maximum resistance factor in STARS model} \\
&\text{F}_\text{w} & \text{foam mobility constant in Vassenden-Holt model} \\
&\text{K}_\text{w} & \text{Permeability} \\
&\text{K}_\text{f} & \text{generation rate coefficient in Chen et al. model} \\
&\text{K}_\text{m} & \text{coalescence coefficient in Chen et al. model} \\
&\text{K}_\text{r} & \text{model parameter in Chen et al. model} \\
&\text{K}_\text{t} & \text{model parameter in Chen et al. model} \\
&\text{S}_\text{f} & \text{gas endpoint relative permeability} \\
&\text{S}_\text{m} & \text{gas endpoint relative permeability in foam} \\
&\text{S}_\text{mg} & \text{coalescence exponent in Kam et al. and Kam model} \\
&\text{S}_\text{g} & \text{coalescence rate constant} \\
&\text{S}_\text{co} & \text{limiting (maximum) lamella density in Chen et al. model} \\
&\text{S}_\text{gD} & \text{number density of trapped foam bubbles} \\
&\text{S}_\text{r} & \text{number density of lamellae (lamellae/volume gas) } \\
&\text{S}_\text{D} & \text{reference lamella density used in de Vries foam texture} \\
&\text{S}_\text{fD} & \text{limiting (maximum) lamella density in Chen et al. model} \\
&\text{S}_\text{gmax} & \text{Maximum foam lamella density in Kam model} \\
&\text{S}_\text{up} & \text{number density of trapped foam bubbles} \\
&\text{S}_\text{w} & \text{water relative permeability} \\
&\text{P}_\text{f} & \text{capillary pressure} \\
&\text{P}_\text{g} & \text{limiting capillary pressure} \\
&\text{P}_\text{c} & \text{entry capillary pressure} \\
&\text{P}_\text{cmax} & \text{limiting value of } P_\text{c} \text{ in Chen et al. model} \\
&\text{Q}_\text{b} & \text{source/sink term for foam bubbles} \\
\end{align*} \]

\[q \text{ net rate of generation of foam bubbles} \]
\[R \text{ foam resistance factor in UT model} \]
\[r_\text{c} \text{ foam coalescence rate} \]
\[RF \text{ mobility reduction factor} \]
\[r_\text{g} \text{ foam generation rate} \]
\[r_\text{ref} \text{ dimensionless foam generation rate} \]
\[R_\text{ref} \text{ reference foam resistance factor at reference gas velocity in UT model} \]
\[s_1 \text{ slope of the gas relative permeability at high quality region in Vassenden-Holt model} \]
\[s_2 \text{ slope of the gas relative permeability at low quality region in Vassenden-Holt model} \]
\[S_\text{f} \text{ flowing gas saturation (lowest water saturation) for foam effect in Vassenden-Holt model} \]
\[S_\text{d} \text{ dimensionless gas saturation in the presence of foam} \]
\[S_\pi \text{ trapped gas saturation} \]
\[S_\text{w} \text{ water saturation} \]
\[S_\text{w} \text{ limiting water saturation} \]
\[S_\text{wD} \text{ connate water saturation} \]
\[S_\text{wD} \text{ dimensionless water saturation} \]
\[u_\text{f} \text{ Darcy velocity of gas in foam} \]
\[u_\text{g} \text{ gas Darcy velocity} \]
\[u_{\text{ref}} \text{ reference gas Darcy velocity} \]
\[u_\text{w} \text{ water Darcy velocity} \]
\[v_\text{f} \text{ local gas velocity} \]
\[v_\text{w} \text{ local water velocity} \]
\[x \text{ vector of foam model parameters} \]
\[X_\text{f} \text{ trapping foam fraction Chen et al. model} \]
\[X_{\text{max}} \text{ maximum trapping fraction in Chen et al. model} \]
\[\alpha \text{ proportionality constant} \]
\[\beta \text{ trapping parameter Chen et al. model} \]
\[\epsilon \text{ width of high-quality regime in UT model (in terms of } S_\text{w}) \]
\[\lambda \text{ capillary pressure model parameters} \]
\[\mu_\text{f} \text{ apparent gas viscosity (effective viscosity of gas phase in foam)} \]
\[\mu_\text{fp} \text{ apparent foam viscosity, treated as a single phase} \]
\[\mu_\text{g} \text{ gas viscosity in the absence of foam} \]
\[\sigma \text{ power-low exponent in UT model} \]
\[\sigma_{\text{CO}_2} \text{ CO}_2\text{-water surface tension} \]
\[\sigma_{\text{N}_2} \text{ } \text{N}_2\text{-water surface tension} \]
\[\Phi \text{ objective function for the optimization of foam model} \]
\[\omega \text{ constant exponent in Chen et al. Model} \]
\[\nu P \text{ pressure gradient} \]
\[\nu P_\text{o} \text{ model parameters related to minimum pressure gradient in Kam model} \]

Appendix A. Foam Models

<table>
<thead>
<tr>
<th>Table (A-1)</th>
<th>IT foam models used in this study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model description</td>
<td>Model parameters</td>
</tr>
<tr>
<td>UT Model (1994)</td>
<td>k_g: gas relative permeability k_f: foam relative permeability C_r: surfactant concentration C_t: threshold surfactant conc. $S_0\text{w}$: limiting water saturation u_g: gas Darcy velocity $u_\text{w}\text{ref}$ ref. gas Darcy velocity R: foam resistance factor ϵ: Water saturation tolerance</td>
</tr>
<tr>
<td>$k_\text{g} = \begin{cases} k_\text{g} & S_\text{w} < S_\text{wm} - \epsilon \text{ or } C_\text{t} < C_\text{t}^0 \ k_\text{g} & \left(1 + \left(\frac{1}{R_\text{w}}\right)\left(S_\text{wm} - S_\text{wm}^\epsilon + \epsilon\right)\right) / 2w \ k_\text{g} & S_\text{w} > S_\text{wm}^\epsilon + \epsilon \text{ or } C_\text{t} \geq C_\text{t}^0 \end{cases}$</td>
<td>(A-1)</td>
</tr>
</tbody>
</table>

(continued on next page)
Table (A-2) (continued)

<table>
<thead>
<tr>
<th>Model description</th>
<th>Model parameters</th>
</tr>
</thead>
</table>

\[R = R_{\text{ref}} \left(\frac{u_g}{u_{\text{m}}(F)} \right)^{\sigma} \] \hspace{1cm} (A-2)

STAR Model

\[k_{\text{m}} = k_g \times FM \] \hspace{1cm} (A-3)

\[\text{FM} = \frac{1}{1 + \frac{f_{\text{mob}}(F_1 \times F_2 \times F_3 \times F_4 \times F_5)}{C_0}} \] \hspace{1cm} (A-4)

\[F_2 = 0.5 \times \frac{1}{\pi} \arctan \left(\frac{\text{edpy}(S_w - f_{\text{dry}})}{\text{edpy}} \right) \] \hspace{1cm} (A-5)

\[F_3 = \left(\frac{f_{\text{mcap}}}{N_{\text{cap}}} \right) \text{ orp} \] \hspace{1cm} (A-6)

1 \hspace{1cm} \text{N_{cap}} > f_{\text{mcap}}

Vassenden-Holt Model

\[k_{\text{ef}} = k_g \times F \] \hspace{1cm} (A-7)

\[F = \left\{ \begin{array}{l} e^{\left(S_w - S_f \right) / a} \left(\frac{u_g}{u_{\text{ref}}} \right)^{\alpha} \quad \text{S}_w > S_f \vspace{0.5em} \\
1 \quad \text{S}_w \leq S_f \end{array} \right. \] \hspace{1cm} (A-8)

Note: In the most recent version of STARs, the parameter \(\text{fmdry} \) is renamed \(\text{sfdry} \), and \(\text{edpy} \) is renamed \(\text{sfber} \) (Coombes, 2012). The water saturation around which foam collapses (\(\text{fmdry} \)) is no longer treated as a constant, but is a function of surfactant concentration, oil saturation, salt concentration, and capillary number. If one disables these other functionalities \(\text{sfdry} \) plays the same role as \(\text{fmdry} \) as described here.

Table (A-2)

Population-balance foam models used in this study

<table>
<thead>
<tr>
<th>Model description</th>
<th>Model Parameters</th>
</tr>
</thead>
</table>

| \text{Chen et al. (2010)} | \psi: local gas velocity \hspace{1cm} \nu_w: local water velocity \hspace{1cm} k_g: generation coefficient \hspace{1cm} n_f: flowing foam lamella density \hspace{1cm} n_b: limiting (max) lamella density \hspace{1cm} \omega: constant exponent \hspace{1cm} k_c: coalescence coefficient \hspace{1cm} \kappa: model parameter (const.) \hspace{1cm} P_c: capillary pressure \hspace{1cm} P_{c, \text{max}}: limiting capillary pressure \hspace{1cm} C_f: surfactant concentration \hspace{1cm} C_{g, \text{ref}}: surfactant concentration \hspace{1cm} \text{k}_{\text{g}}: gas endpoint relative permeability \hspace{1cm} n_c: gas exponent relative permeability \hspace{1cm} S_{\text{w, ref}}: dimensionless gas saturation \hspace{1cm} S_{\text{g, ref}}: dimensionless gas saturation in presence of foam \hspace{1cm} \text{X}_{\text{c, max}}: maximum trapping foam fraction \hspace{1cm} n_i: trapped lamella density \hspace{1cm} \beta: trapping parameter \hspace{1cm} n_f: foam lamella density \hspace{1cm} c_g: generation rate coefficient \hspace{1cm} c_c: coalescence rate coefficient \hspace{1cm} S_{\text{w, \text{lim}}}: limiting water saturation \hspace{1cm} \nabla P: pressure gradient \hspace{1cm} m: model parameter |

| \text{Kam et al. (2007)} | \text{generation rate} \hspace{1cm} \text{coalescence rate} \hspace{1cm} at LE |

| \text{Kam (2008)} | \text{generation rate} \hspace{1cm} \text{coalescence rate} \hspace{1cm} at LE |
Table 1
Rock and fluid properties

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Moradi-Araghi et al.</th>
<th>Alvarez et al.</th>
</tr>
</thead>
<tbody>
<tr>
<td>gas</td>
<td>CO₂</td>
<td>N₂</td>
</tr>
<tr>
<td>k (md)</td>
<td>551.5</td>
<td>530</td>
</tr>
<tr>
<td>u₀ (ft/day)</td>
<td>5</td>
<td>2.5</td>
</tr>
<tr>
<td>μₑ (cp)</td>
<td>0.05</td>
<td>0.7</td>
</tr>
<tr>
<td>S_w</td>
<td>0.05</td>
<td>0.02</td>
</tr>
<tr>
<td>S_sw</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>kₙₑ</td>
<td>0.22</td>
<td>0.2</td>
</tr>
<tr>
<td>kₙₚ</td>
<td>1.0</td>
<td>0.94</td>
</tr>
<tr>
<td>n_s</td>
<td>4</td>
<td>4.2</td>
</tr>
<tr>
<td>n_w</td>
<td>1.83</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Table 2
UT model parameters to fit experimental data

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Moradi-Araghi et al.</th>
<th>Alvarez et al.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rₙₑ</td>
<td>8.4 x 10⁸</td>
<td>5.6 x 10⁹</td>
</tr>
<tr>
<td>Sₙₑ</td>
<td>0.264</td>
<td>0.31</td>
</tr>
<tr>
<td>ε</td>
<td>0.015</td>
<td>0.002</td>
</tr>
<tr>
<td>uₙₑ (ft/day)</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>σ</td>
<td>0.8</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Table 3
STARS model parameters to fit experimental data

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Moradi-Araghi et al.</th>
<th>Alvarez et al.</th>
</tr>
</thead>
<tbody>
<tr>
<td>fₙₚ</td>
<td>1.58 x 10⁶</td>
<td>1.6 x 10⁷</td>
</tr>
<tr>
<td>fₚₚ</td>
<td>0.265</td>
<td>0.31</td>
</tr>
<tr>
<td>epd</td>
<td>100</td>
<td>500</td>
</tr>
<tr>
<td>fₙₑ</td>
<td>2.46 x 10⁻⁵</td>
<td>2.46 x 10⁻⁵</td>
</tr>
<tr>
<td>eₑₑ</td>
<td>0.2</td>
<td>0.5</td>
</tr>
</tbody>
</table>

* fₙₑ is a reference capillary pressure below which shear-thinning is assumed not to apply. The choice of this reference also affects the value of fₙₑ (Boeije and Rossen, 2013).

Table 4
Vassenden-Holt (1998) model parameters to fit experimental data

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Moradi-Araghi et al.</th>
<th>Alvarez et al.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fₑ</td>
<td>4.5 x 10⁻⁵</td>
<td>1.2 x 10⁻⁴</td>
</tr>
<tr>
<td>Sₙₑ</td>
<td>0.235</td>
<td>0.235</td>
</tr>
<tr>
<td>S₁</td>
<td>280</td>
<td>280</td>
</tr>
<tr>
<td>S₂</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>uₙₑ</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>a</td>
<td>1.0</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Table 5
Chen et al. (2010) model parameters to fit experimental data

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Moradi-Araghi et al.</th>
<th>Alvarez et al.</th>
</tr>
</thead>
<tbody>
<tr>
<td>k₀ (ft⁻³/day)</td>
<td>8 x 10¹⁵</td>
<td>8 x 10¹⁵</td>
</tr>
<tr>
<td>k₀ (ft⁻¹)</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>n₀ (ft⁻³)</td>
<td>5.4 x 10¹¹</td>
<td>1.9 x 10¹²</td>
</tr>
<tr>
<td>Pₑₑ (psi)</td>
<td>0.19</td>
<td>0.20</td>
</tr>
<tr>
<td>Xₑₑ_max</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>β</td>
<td>1 x 10⁻⁹</td>
<td>1 x 10⁻⁹</td>
</tr>
<tr>
<td>a(f³/day⁻¹/³)</td>
<td>5 x 10⁻¹⁰</td>
<td>5 x 10⁻¹⁰</td>
</tr>
</tbody>
</table>

Table 6
Kam et al. (2007) model parameters to fit experimental data

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Moradi-Araghi et al.</th>
<th>Alvarez et al.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_d/2Cₑₑ</td>
<td>8 x 10¹⁵</td>
<td>8 x 10¹⁵</td>
</tr>
<tr>
<td>S_w</td>
<td>0.268</td>
<td>0.31</td>
</tr>
<tr>
<td>n</td>
<td>2.05</td>
<td>1.91</td>
</tr>
<tr>
<td>m</td>
<td>0.7</td>
<td>0.2</td>
</tr>
<tr>
<td>n_max (ft⁻³)</td>
<td>5.4 x 10¹¹</td>
<td>5.4 x 10¹¹</td>
</tr>
<tr>
<td>a(f³/day⁻¹/³)</td>
<td>1.83 x 10⁻⁹</td>
<td>4.2 x 10⁻⁹</td>
</tr>
</tbody>
</table>

Table 7
Kam (2008) model parameters to fit experimental data

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Moradi-Araghi et al.</th>
<th>Alvarez et al.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_d/2Cₑₑ</td>
<td>2.3 x 10¹⁵</td>
<td>2.3 x 10¹⁵</td>
</tr>
<tr>
<td>S_w</td>
<td>0.268</td>
<td>0.31</td>
</tr>
<tr>
<td>n</td>
<td>1.83</td>
<td>1.64</td>
</tr>
<tr>
<td>Ψₚₚ(psi)</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>n_max (ft⁻³)</td>
<td>5.4 x 10¹¹</td>
<td>5.4 x 10¹¹</td>
</tr>
<tr>
<td>a(f³/day⁻¹/³)</td>
<td>4.57 x 10⁻¹³</td>
<td>4.2 x 10⁻⁹</td>
</tr>
</tbody>
</table>

Appendix B. Relative-Permeability and Capillary-Pressure Models Used in This Study

Two-phase foam-free water-gas relative permeabilities are calculated from the following expressions

\[k_{rw} = k_{ref} (S_{wd})^{n_rw} \tag{B-1} \]
\[k_{gw} = k_{ref} (1 - S_{wd})^{n_{gw}} \tag{B-2} \]

where Sₙₑₑ is dimensionless water saturation and is defined as

\[S_{wd} = \frac{S_w - S_{wr}}{1 - S_{wr} - S_{gr}} \tag{B-3} \]

The general form of gas-water capillary pressure represented by Li (2004) is

\[P_c = P_{cws}(1 - bS_{wd})^{-\lambda/2} \tag{B-4} \]

where, \(P_{cws} \) is the capillary pressure at the connate water saturation, \(S_{cws} \) when drainage capillary pressure is used. \(b \) and \(\lambda \) are constants and are defined as
Table 8
Values of limiting water saturation used in different models

<table>
<thead>
<tr>
<th>Model</th>
<th>S_w (Moradi-Araghi)</th>
<th>S_e (Alvarez et al.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UT</td>
<td>0.264</td>
<td>0.31</td>
</tr>
<tr>
<td>STARS</td>
<td>0.265</td>
<td>0.31</td>
</tr>
<tr>
<td>Vassenden-Holt</td>
<td>0.235</td>
<td>0.286</td>
</tr>
<tr>
<td>Chen et al.</td>
<td>0.265–0.219</td>
<td>0.310–0.284</td>
</tr>
<tr>
<td>Kam et al.</td>
<td>0.268</td>
<td>0.31</td>
</tr>
<tr>
<td>Kam</td>
<td>0.268</td>
<td>0.31</td>
</tr>
</tbody>
</table>

\[n_w = 1 + \frac{2}{\lambda} \quad (B-5) \]

\[b = 1 - \left(\frac{P_{ce}}{P_{e<Swc}} \right)^{-2} \quad (B-6) \]

where n_w is the water Corey exponent and P_{ce} is the capillary entry pressure.

Parameters $P_{e<Swc}$ and P_{ce} are assumed here to be 21.036 and 0.042 psi for the data of Alvarez et al. for foam made with N₂. Assuming a similar rock type the capillary pressure for the Moradi-Araghi et al. (CO₂) data set can be scaled as

\[P_{CO2} = P_{e<Swc} \frac{\sigma_{CO2}}{\sigma_{N2}} \quad (B-7) \]

where $\sigma_{CO2} \approx 5$ dyne/cm and $\sigma_{N2} \approx 30$ dyne/cm are CO₂ and N₂ interfacial tension with water, respectively. Figure (B-1) shows the capillary-pressure curves used in this study to model CO₂ and N₂ experiments.

![Figure B-1](image-url)

Fig. (B-1). Capillary-pressure curves used to model CO₂ (Moradi-Araghi) and N₂ (Alvarez et al.) experiments.

References

Delshad, 2013. The University of Texas Chemical Flooding Simulator. UTCHEM. The University of Texas at Austin. http://www.cpege.utexas.edu/?q=UTChem_GL.

