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imum eigenvalue q(B ◦ A−1) for the Hadamard product of A−1 and

B, and a lower bound on the minimum eigenvalue q(A � B) for the
Fan product of A and B are given. In addition, an upper bound on

the spectral radius ρ(A ◦ B) of nonnegative matrices A and B is also

obtained. These bounds improve several existing results in some

cases and the estimating formulas are easier to calculate for they

are only depending on the entries of matrices A and B.
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1. Introduction

For a positive integer n, N denotes the set {1, 2, . . ., n} throughout. We write A� B if aij � bij for all

i, j ∈ N. We write A� 0 if all aij � 0. If A� 0, we say A is a nonnegative matrix, and if A > 0, we say
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that A is a positive matrix. The spectral radius of A is denoted by ρ(A). If A is a nonnegative matrix,

the Perron–Frobenius theorem guarantees that ρ(A) ∈ σ(A) , where σ(A) is the set of all eigenvalues

of A. Denote by Zn the set of n × n real matrices all of whose off-diagonal entries are nonpositive.

An matrix A = (aij) ∈ Rn×n is called an L-matrix if A = (aij) ∈ Zn, and aii > 0. An n × n matrix A is

called an M-matrix, if there exists an n × n nonnegative matrix B and a nonnegative real number λ
such that A = λI − B and λ � ρ(B) (where ρ(B) is the spectral radius of B); if λ > ρ(B) we call A

is a nonsingular M-matrix; if λ = ρ(B), we call A is a singular M-matrix. Denote by Mn the set of

nonsingularM-matrices (see [1]).

Let A ∈ Zn and denote q(A) = min{Re(λ) : λ ∈ σ(A)}. If A ∈ Mn, then ρ(A−1) is the Perron eigen-

value of the nonnegative matrix A−1, and q(A) = (ρ(A−1))−1 is a positive real eigenvalue of A (see

[2]).

For twomatricesA = (aij) ∈ Rn×n, B = (bij) ∈ Rn×n, theHadamardproduct ofA andB is thematrix

A ◦ B = (aijbij) ∈ Rn×n.

The Fan product of A and B is defined by A � B = (cij) ∈ Rn×n, where

cij =
{−aijbij , if i /= j,

aiibii, if i = j.

The Hadamard product of matrices and the Fan product of matrices arise in a wide variety of ways,

such as trigonometric moments of convolutions of periodic functions, products of integral equation

kernels, the weak minimum principle in partial differential equations, characteristic functions in

probability theory, the study of association schemes in combinatorial theory, and so on (see [3]).

Motivated by these problems, estimation of the lower bounds of q(B ◦ A−1) and the lower bounds

of q(A � B) for two matrices A, B ∈ Mn has been a focus of attention of many researchers and some

important results are presented (see [2,4–7,10] and the references). In this paper, we present several

new estimating formulas of the lower bounds of q(B ◦ A−1) and the lower bounds of q(A � B) for two

matrices A, B ∈ Mn. These bounds improve several existing results in some cases and our estimating

formulas are easier to calculate for they are only depending on the entries of matrices A and B.

This paper is organized as follows: firstly, we exhibit a lower bound of q(B ◦ A−1) for two matrices

A, B ∈ Mn in Section 2; secondly, we exhibit a lower bound of q(A � B) for two matrices A, B ∈ Mn in

Section 3; finally, for two nonnegative matrices A, B ∈ Rn×n, we exhibit an upper bound of ρ(A ◦ B) in
Section 4.

For any j, k, l ∈ N = {1, 2, . . . , n}, denote
Ri = ∑

k /=i

|aik|, di = Ri

|aii| , i ∈ N;

rli = |ali|
|all| − ∑

k /=l,i|alk| , l /= i; ri = max
l /=i

{rli}, i ∈ N;

cil = |ail|
|all| − ∑

k /=l,i |akl| , l /= i, ci = max
l /=i

{cil}, i ∈ N;

sji = |aji| + ∑
k /=j,i |ajk|rk

|ajj| , j /= i, si = max
j /=i

{sij}, i ∈ N,

mji = |aji|hj , hj =
{
dj , dj /= 0,

1, dj = 0,
mi = max

j /=i
{mji}; i, j ∈ N.

2. A lower bound for q(B ◦ A
−1

)

In this section, we present a new lower bound for q(B ◦ A−1). Firstly, we give some lemmas which

are mainly involving about some inequalities for the entries of matrix A−1. They will be useful in the

following proofs.
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Lemma 2.1 [5]. (a) If A = (aij) is an n × n strictly diagonally dominant matrix by row, that is, |aii| >∑
j /=i|aij| for any i ∈ N, then A−1 = (βij) exists, and

|βji| �
∑

k /=j |ajk|
|ajj| |βii|, for all i /= j. (2.1)

(b) If A = (aij) is an n × n strictly diagonally dominant matrix by column, that is, |aii| >
∑

j /=i|aji| for
any i ∈ N, then A−1 = (βij) exists, and

|βij| �
∑

k /=j |akj|
|ajj| |βii|, for all i /= j. (2.2)

Lemma 2.2. (a) Let A = (aij) ∈ Rn×n be a strictly row diagonally dominant M-matrix. Then, for A−1 =
(βij), we have

βji �
|aji| + ∑

k /=j,i |ajk|rk
ajj

βii, for all j /= i. (2.3)

(b) Let A = (aij) ∈ Rn×n be a strictly column diagonally dominant M-matrix. Then, for A−1 = (βij),
we have

βij �
|aij| + ∑

k /=j,i |akj|ck
ajj

βii, for all j /= i. (2.4)

Proof. (a) For i ∈ N , let ri(ε) = max
l /=i

{
|ali|+ε

all−∑
k /=l,j |alk|

}
. Since A is strictly diagonally dominant, then

|ali|
all−∑

k /=l,j |alk| < 1. Hence, there exists ε > 0 such that 0 < ri(ε) < 1, for all i ∈ N. Let

Ri(ε) = diag(r1(ε), . . . , ri−1(ε), 1, ri+1(ε), . . . , rn(ε)).

For a given i ∈ N, it is easy to check that the matrix ARi(ε) is again a strictly row diagonally dominant

M-matrix. By Lemma 2.1 (a) , we derive the following inequality

r
−1
j (ε)βji �

|aji| + ∑
k /=j,i |ajk|rk(ε)

rj(ε)ajj
βii, j /= i, j ∈ N.

i.e.,

βji �
|aji| + ∑

k /=j,i |ajk|rk(ε)
ajj

βii, j /= i, j ∈ N.

Let ε −→ 0 to obtain

βji �
|aji| + ∑

k /=j,i |ajk|rk
ajj

βii, j /= i, j ∈ N.

(b) For matrix Ci(ε)A , where Ci(ε) = diag(c1(ε), . . . , ci−1(ε), 1, ci+1(ε), . . . , cn(ε)), i ∈ N and

ci(ε) = max
l /=i

{ |ail| + ε

all − ∑
k /=l,i |akl|

}
, i ∈ N,

by Lemma 2.1 (b) and the same technique as in the above proof (a), Lemma 2.2 (b) is obtained. �

Lemma 2.3. Let A = (aij) ∈ Mn be a strictly row diagonally dominant M-matrix. Then, for A−1 = (βij),
we have

βii �
1

aii
. (2.5)
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Proof. Since A is anM-matrix, then A−1 � 0. From AA−1 = I, we have

1 =
n∑

j=1

aijβji = aiiβii −
∑
j /=i

|aij|βji, for all i ∈ N.

Hence

aiiβii � 1, that is,
1

aii
� βii, for all i ∈ N. �

Lemma 2.4 [7]. If A−1 is a doubly stochastic matrix, then Ae = e, ATe = e, where e = (1, 1, . . . , 1)T .

Lemma 2.5 [6]. If A = (aij) ∈ Mn, and A−1 = (βij) is a doubly stochastic matrix, then

βii �
1

1 + ∑
j /=i sji

, i ∈ N. (2.6)

Lemma 2.6 [8]. Let A = (aij) be an arbitrary complex matrix and x1, x2, . . . , xn be positive real numbers.
Then all the eigenvalues of A lie in the region:

⋃ ⎧⎨
⎩z ∈ C : |z − aii| � xi

∑
j /=i

1

xj
|aji|, i ∈ N

⎫⎬
⎭ .

Lemma 2.7 [9]. If A = (aij) ∈ Rn×n is an M-matrix, then there exists diagonal matrix D with positive

diagonal entries, such that D−1AD is strictly row diagonally dominant matrix.

Lemma 2.8 [9]. Let A, B ∈ Rn×n, and suppose D ∈ Rn×n, E ∈ Rn×n are diagonal matrices. Then

D(A ◦ B)E = (DAE) ◦ B = (DA) ◦ (BE) = (AE) ◦ (DB) = A ◦ (DBE).

Lemma 2.9 [9]. If A ∈ Mn, and D = diag(d1, d2, . . . , dn), di > 0 (i = 1, 2, . . . , n), then D−1AD is also

an M-matrix.

Now,we consider the lower bound of q(B ◦ A−1). In 1991, Horn et al. [3, p. 375] showed the classical

result: If A = (aij), B = (bij) ∈ Mn, and A−1 = (βij), then

q(B ◦ A−1) � q(B)min
i

βii.

Subsequently, Huang in [4] improved the bounds in some cases, and obtained the following results:

q(B ◦ A−1) �
1 − ρ(JA)ρ(JB)

1 + ρ2(JA)
min

1� i � n

bii

aii
,

where ρ(JA), ρ(JB) are the spectral radius of the Jacobi iterative matrices JA and JB.

The twobounds are theoretical formulas and it is difficult to calculate the lower boundof q(B ◦ A−1)
by using the formulas because of the difficulty of calculating q(B),βii, ρ(JA), ρ(JB). Now, we present a

new estimating formula of the lower bounds of q(B ◦ A−1) which is easier to calculate.

Theorem 2.1. Let A = (aij), B = (bij) ∈ Mn, and A−1 = (βij). Then

q(B ◦ A−1) �min
i

{
bii − si

∑
j /=i |bji|

aii

}
. (2.7)

Proof. Let A be anM-matrix. By Lemmas 2.7–2.9, there exists diagonalmatrixDwith positive diagonal

entries such that D−1AD is strictly row diagonally dominant matrix. The matrix D−1AD is again an

M-matrix and satisfies q(B ◦ A−1) = q(D−1(B ◦ A−1)D) = q(B ◦ (D−1AD)−1).
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So, for convenience and without loss of generality, we assume that A is a strictly row diagonally

dominant matrix. Therefore, rk < 1 from the definition of rk .

First, we assume that A and B are irreducible. For convenience, we denote

Rrj = ∑
k /=j

|ajk|rk , j ∈ N.

Then for any j ∈ N, we have

Rrj = ∑
k /=j

|ajk|rk � |aji| + ∑
k /=j,i

|ajk|rk � Rj = ∑
k /=j

|ajk| � ajj. (2.8)

Therefore, there exists a real number αji(0� αji � 1), such that

|aji| + ∑
k /=j,i

|ajk|rk = αjiRj + (1 − αji)R
r
j . (2.9)

Hence

sji = αjiRj + (1 − αji)R
r
j

ajj
= |aji| + ∑

k /=j,i |ajk|rk
ajj

. (2.10)

Let αj = max
i /=j

{αji}. Then 0 < αj � 1 (if αj = 0, then A is reducible, which is a contradiction) and

sj = max
i /=j

{sji} = αjRj + (1 − αj)R
r
j

ajj
, j ∈ N.

From 0 < αj � 1, (2.8), (2.9) and (2.10), we have

0 < sj � 1.

Now let λ be an eigenvalue of B ◦ A−1 and satisfy q(B ◦ A−1) = λ. Thus, by Lemma 2.6, there exists

i0(1� i0 � n), such that

|λ − bi0i0βi0i0 | � si0

∑
j /=i0

1

sj
|bji0βji0 |.

Then,

λ � bi0i0βi0i0 − si0

∑
j /=i0

1

sj
|bji0βjio |

� bi0i0βi0i0 − sio

∑
j /=i0

1

sj
|bji0 |

|aji0 | + ∑
k /=j,i0

|ajk|rk
ajj

βi0i0 (by Lemma 2.2)

� bi0i0βi0i0 − si0

∑
j /=i0

|bji0 |βi0i0

=
⎛
⎝bi0i0 − si0

∑
j /=i0

|bji0 |
⎞
⎠ βi0i0

�

⎛
⎝bi0i0 − si0

∑
j /=i0

|bji0 |
⎞
⎠ 1

ai0i0
(by Lemma 2.3)

� min
i

{
bii − si

∑
j /=i |bji|

aii

}
.

Now assume that one of A and B is reducible. It is well known that a matrix in Zn is a nonsingular

M-matrix if and only if all its leading principal minors are positive (see condition (E17) of Theorem

6.2.3 of [1]). If we denote by T = (tij) the n × n permutation matrix with
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t12 = t23 = · · · = tn−1,n = tn1 = 1,

the remaining tij = 0, then both A + εTand B + εT are irreducible nonsingular M-matrices for any

chosen positive real number ε, sufficiently small such that all the leading principal minors of both

A + εT and B + εT are positive. Nowwe substitute A + εT and B + εT for A and B, respectively in the

previous case, and then letting ε → 0, the result follows by continuity, that is, the result holds. �

By using Lemma 2.5 and Theorem 2.1, we can get the following corollary.

Corollary 2.1. If A, B ∈ Mn and A−1 = (βij) is a doubly stochastic matrix, then

q(B ◦ A−1) �min
i

{
bii − si

∑
j /=i |bji|

1 + ∑
j /=i sji

}
.

Example 2.1. Let

A =
⎛
⎜⎜⎝

4 −1 −1 −1

−2 5 −1 −1

0 −2 4 −1

−1 −1 −1 4

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝

1 −1/2 0 0

−1/2 1 −1/2 0

0 −1/2 1 −1/2
0 0 −1/2 1

⎞
⎟⎟⎠ .

It is easy to check that A, B ∈ M4.

If we apply Theorem 5.7.31 of [3], we have

q(B ◦ A−1) � q(B)min
i

βii = 0.07.

If we apply Theorem 9 of [4], we have

q(B ◦ A−1) �
1 − ρ(JA)ρ(JB)

1 + ρ2(JB)
min

i

bii

aii
= 0.0707.

Now, applying Theorem 2.1, we have

q(B ◦ A−1) �min
i

{
bii − si

∑
j /=i |bji|

aii

}
= 0.08.

Example 2.2. Let

A =
(
3 −1

0 2

)
, B =

(
6 −5

−3 8

)
.

Then 2 = q(B ◦ A−1) = min
i

{
bii−si

∑
j /=i |bji|

aii

}
= 2.

It is surprise to see that our bound is the minimum eigenvalue of B ◦ A−1.

Remark 2.1. The given numerical examples show that the bound in Theorem 2.1 is better than 5.7.31

of [3] and Theorem 9 of [4] in some cases. On the other hand, it is only depending on the entries of

matrices A and B. So the bound (2.7) is more easily derived than others.

3. A lower bound for q(A � B)

In this section, we present a lower bound of the minimum eigenvalue q(A � B) for the Fan product

ofM-matrices.
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In 1991, Horn et al. [3, p. 359] proved the classical result: If A, B ∈ Mn, then

q(A � B) � q(A)q(B). (3.1)

Recently, in [4, p. 1554], Huang proved

q(A � B) �(1 − ρ(JA)ρ(JB)) min
1� i � n

(aiibii), (3.2)

where ρ(JA), ρ(JB) are the spectral radius of the Jacobi iterative matrices JA and JB.

In [10, p. 13], Fang improved (3.1), and obtained

q(A � B) � min
1� i � n

{aiiq(B) + biiq(A) − q(A)q(B)}. (3.3)

These bounds are theoretical formulas and it is difficult to calculate the lower bound of q(A � B) by

using the formulas because of the difficulty of calculating q(A), q(B), ρ(JA), ρ(JB). Now, we present a

new estimating formula of the lower bounds of q(A � B) which is easier to calculate.

Theorem 3.1. Let A, B ∈ Mn. Then

q(A � B) � min
1� i � n

⎧⎨
⎩aiibii − mi

∑
j /=i

|bji|
hj

⎫⎬
⎭ . (3.4)

Proof. It is evident that (3.4) holdswith equality for n = 1. Therefore, we assume that n� 2 and divide

two cases to prove.

Case 1. Let A � B be irreducible. Then A and B are irreducible. Now let λ be an eigenvalue of A � B and

satisfy

q(A � B) = λ.

By Lemma 2.6, there exists i0(1� i0 � n), such that

|λ − ai0i0bi0i0 | �mi0

∑
j /=i0

1

mj

|aji0bji0 |,

i.e.,

λ � ai0i0bi0i0 − mi0

∑
j /=i0

1

mj

|aji0 ||bji0 |

� ai0i0bi0i0 − mi0

∑
j /=i0

1

|aji0 |hj
|aji0 ||bji0 |

= ai0i0bi0i0 − mi0

∑
j /=i0

|bji0 |
hj

� min
i

⎧⎨
⎩aiibii − mi

∑
j /=i

|bji|
hj

⎫⎬
⎭ .

Case 2. Let A � B be reducible. It is well known that a matrix in Zn is a nonsingular M-matrix if and

only if all its leading principal minors are positive ( see condition (E17) of Theorem 6.2.3 of [1]). If we

denote by T = (tij) the n × n permutation matrix with

t12 = t23 = · · · = tn−1,n = tn1 = 1,

the remaining tij = 0, then both A − εT and B − εT are irreducible nonsingular M-matrices for any

chosen positive real numbers ε, sufficiently small such that all the leading principal minors of both

A − εT and B − εT are positive. Nowwe substitute A − εT and B − εT for A and B, respectively in the

previous case, and then letting ε → 0, the result follows by continuity. �
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Example 3.1. Now we again consider the numerical example in the Example 2.1.

Let

A =
⎛
⎜⎜⎝

4 −1 −1 −1

−2 5 −1 −1

0 −2 4 −1

−1 −1 −1 4

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝

1 −1/2 0 0

−1/2 1 −1/2 0

0 −1/2 1 −1/2
0 0 −1/2 1

⎞
⎟⎟⎠ .

If we apply the classical result (3.1), we have

q(A � B) � q(A)q(B) = 0.191.

If we apply (3.2), that is, Theorem 9 of [4], we have

q(A � B) � min
1� i � n

{aiiq(B) + biiq(A) − q(A)q(B)} = 1.573.

If we apply (3.3), that is, Theorem 4 of [10], we have

q(A � B) �(1 − ρ(JA)ρ(JB)) min
1� i � n

(aiibii) = 0.1808.

If we apply Theorem 3.1, we have

q(A � B) �min
i

⎧⎨
⎩aiibii − mi

∑
j /=i

|bji|
hj

⎫⎬
⎭ = 2.4333.

In fact, q(A � B) = 3.2296.

Remark 3.1. The example shows that the bound (3.4) in Theorem3.1 is better than (3.1), (3.2) and (3.3)

in some cases. On the other hand, the bound (3.4) is only depending on the entries of matrices A and

B. So, the bound is more easily derived than others.

4. An upper bound for the spectral radius of the Hadamard product of two nonnegtive matrices

In this section, we present an upper bound of ρ(A ◦ B) for nonnegtive matrices A, B.

In [3,4,10], the following bounds of ρ(A ◦ B) are given for A, B � 0 for nonnegtive matrices A, B,

respectively.

ρ(A ◦ B) � ρ(A)ρ(B), (4.1)

ρ(A ◦ B) �(1 + ρ(J′A)ρ(J′B)) max
1� i � n

aiibii, (4.2)

ρ(A ◦ B) � max
1� i � n

{2aiibii + ρ(A)ρ(B) − aiiρ(B) − biiρ(A)}. (4.3)

These bounds are theoretical formulas and it is difficult to calculate the upper bound of ρ(A ◦ B)
by using the formulas because of the difficulty of calculating ρ(A), ρ(B) and ρ(J′A), ρ(J′B). Now, we

present a new estimating formula of the upper bounds of ρ(A ◦ B) which is easier to calculate.

Lemma 4.1 [1]. Let A ∈ Rn×n be a given nonnegative matrix. Then either A is irreducible or there exists a

permutation P such that

PTAP =

⎛
⎜⎜⎜⎜⎜⎜⎝

A1 A12 · · · A1k

A2 · · · A2k

. . .
...0
Ak

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.4)

in which each Ai is irreducible, i = 1, . . . , k.
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Lemma 4.2 [1]. Eq. (4.4) is called the irreducible normal form. Note that σ(A) = ⋃k
i=1 σ(Ai) and ρ(A) =

max{ρ(Ai) : i = 1, . . . , k}.
Theorem 4.1. Let A, B ∈ Rn×n be two nonnegative matrices. Then

ρ(A ◦ B) �max
i

⎧⎨
⎩aiibii + mi

∑
j /=i

|bji|
hj

⎫⎬
⎭ . (4.5)

Proof. Let C = A ◦ B. First assume that C is irreducible, obviously A and B are irreducible.

Let λ be an eigenvalue of C and satisfy ρ(C) = λ. Thus, by Lemma 2.6, there exists i0(1� i0 � n),
such that

|λ − ai0i0bi0i0 | �mi0

∑
j /=i0

1

mj

aji0bji0

i.e.,

λ � ai0i0bi0i0 + mi0

∑
j /=i0

1

mj

aji0bji0

� ai0i0bi0i0 + mi0

∑
j /=i0

1

aji0hj
aji0bji0

= ai0i0bi0i0 + mi0

∑
j /=i0

bji0

hj

� max
i

⎧⎨
⎩aiibii + mi

∑
j /=i

bji

hj

⎫⎬
⎭ .

Now, let C be reducible. We may assume that C has a block upper triangular form with irreducible

diagonal blocks Ci = Ai ◦ Bi for i = 1, . . . , s. This means that Ai and Bi are also irreducible. By Lemma

4.2, we have

ρ(A ◦ B) = max
i

ρ(Ai ◦ Bi).

From the equality, we easily get that the conclusion holds for A� 0 and B � 0. �

Example 4.1. Let

A =
⎛
⎜⎜⎝
4 1 1 1

2 5 1 1

0 2 4 1

1 1 1 4

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝
1 1 0 0

1 3 2 0

0 1 4 3

0 0 1 5

⎞
⎟⎟⎠ .

If we apply (4.1), we have

ρ(A ◦ B) � ρ(A)ρ(B) = 50.1274.

If we apply (4.2), we have

ρ(A ◦ B) �(1 + ρ(JA)ρ(JB)) max
1� i � n

aiibii = 39.7468.

If we apply (4.3), we have

max
1� i � n

{2aiibii + ρ(A)ρ(B) − aiiρ(B) − biiρ(A)} = 25.5364.



Y.-T. Li et al. / Linear Algebra and its Applications 432 (2010) 536–545 545

But, if we apply Theorem 4.1, we have

max
i

⎧⎨
⎩aiibii + mi

∑
j /=i

|bji|
hj

⎫⎬
⎭ = 23.2.

In fact, ρ(A ◦ B) = 20.7439.

Remark 4.1. The example shows that the bound (4.5) in Theorem4.1 is better than (4.1), (4.2) and (4.3)

in some cases. On the other hand, the bound (4.5) is only depending on the entries of matrices A and

B. So, the bound is more easily derived than others.
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