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Abstract

Our main motivation for the work presented in this paper is to construct a localization functor, in a
certain sense dual to thlocalization of Bousfield and Farjoun, and to study some of its properties.
We succeed in a case which is related to the Sullivan profinite completion. As a corollary we prove
the existence of certain cohomological localizations.
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1. Introduction

We can viewf -localization as the initial coaugmented idempotent functor on the homo-
topy category which takes a mgpto an equivalence. In [1] Bousfield used the small object
argument to prove thagt-localizations exist for all mapg. The role of these functors was
especially exposed in 1990s when they were put in a convenient framework in terms of
mapping complexes. A survey of related methods can be found in [10,6]. It seems natural
to ask if a dual notion of a localization at a sp&ghat is the terminal idempotent functor
with a given space in its image (Definition 4), might not also be interesting. The main
reason these localizations have not been considered very much is that they are not known
to exist in general, even in the stable case (see [12, Chapter 7]).

As every homological localization can be realized asfalocalization, every coho-
mological localization, provided it exists, is a localization at a suitable space. Research
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towards establishing the existence of cohomological localizations was briefly summarized
in [5, 2.6] (here one should especially note [11]).

Here we prove the existence of localizations at compactly topologized spaces (Defin-
ition 10 and Theorem 17). Examples of such spaces include the ones which are profinite
completions of another space, mapping complexes with a profinitely completed target,
and others. This result allows us to construct an idempotent approximation to the Sullivan
profinite completion (Theorem 21).

We would like to be able to prove the existence of localization at an arbitrary space
without relying on the compactness condition, and there is some evidence that such
localizations should exist at abelian Eilenberg—Mac Lane spaces. These would form
“truncated localizations at an ordinary cohomology theory”, an analogue of “truncated
localizations at a homology theory” whose existence was shown by Ohkawa in [14]. It
would also be interesting to find how such localizations act on spaces and how they are
related to thosg -localizations, that do not correspond to a localization at any space.

Casacuberta, Scevenels and Smith investigated in [7] dependence on certain large
cardinal axioms of a more general question, from a positive answer to which the existence
of localizations at any space would follow. Despite extensive efforts we were unable to
avoid similar set theoretic problems in our attempts to prove the existence of localizations
at a general space, nor were we able to disprove it under some large cardinal axioms.

The main Theorem 17 is proved in Section 5. In Section 6 we describe an idempotent
approximation to the Sullivan profinite completion and prove the existence of certain
cohomological localizations.

The paper is written simplicially. We use terms “space” and “simplicial set” as syno-
nyms choosing the second one wherever confusion with compact topological space might
occur or to emphasize it when we work on the point set level rather than in the homotopy
category. To make the presentation more accessible, we frequently work in the pointed
homotopy categoryf o.. Adjective “compact” always means “compact Hausdorff”.

2. Localizations

In this section we collect basic definitions and facts related to homotopical localizations.
A functor L is calledcoaugmentedf it comes with a natural transformatiory : X —
LX from the identity toL. A coaugmented functor idempotentf in the diagram

X——LX

i im
Lnx

LX——LLX
the maps). x andLny are equivalences angt x = Lnx.

Definition 1. A coaugmented idempotent functor is calleldealization

Although this definition makes sense in any category we will consider only localizations
in the homotopy categor¥f o, of pointed simplicial sets (spaces). A sp&és said to be



A.J. Przedziecki / Topology and its Applications 126 (2002) 131-143 133

L-local if the mapnz:Z — LZ is an equivalence. It is straightforward to check that the
class ofL-local spaces uniquely determines and is determined by the fuhctArmap
g:X — Y is an L-equivalencef Lg is an equivalence. There is a natural ordering of
localizations as described below.

Definition 2. Given two localization functorg, and L, we say that.; < Lo if one of the
equivalent conditions hold:

(i) there is a natural transformatidn — L2 giving LoL1 >~ L;
(i) any Li-equivalence is also ahy-equivalence;
(iif) any Ly-local space is alsé1-local.

This definition is an obvious extension of the ordering in the Bousfield latticg -of
localizations [5, 4.3].
Given a mapf : A — B we say that a fibrant spacgis f-local if the induced map of

function complexes

f*:map.(B,Z) - map(A, Z) 1)
is an equivalence. IZ is connected the condition above is equivalent to the one that the
induced map of unbased function complexes

f*:mapgB, Z) — mapA, Z)

is an equivalence.
Amapg: X — Y is an f-equivalencef any f-local space is alsg-local. This means
that for any fibrant spacg if

f*:map.(B, Z) — map.(4, Z)
then
¢*map.(Y, Z) — map.(X, Z).

Definition 3. An f-localizationis a localization functorL ; such that the following
conditions hold:

(i) The classes of -equivalences andl r-equivalences coincide.
(i) The classes off-local andL ¢-local spaces coincide.
(i) The mapX — L;X is an f-equivalence and ;X is f-local.
(iv) L isthe initial localization functor such that the mgps anL ¢-equivalence.

For a mapf, there are obvious implications @& (ii) < (iii) < (iv).

The existence off -localizations for arbitrary mapg was proved by Bousfield [1] and
Farjoun [9].

Let Z be afibrant space. We say that a gafX — Y is aZ-equivalencéf the induced
map of function complexes

g*:map (Y, Z) — map.(X, Z)
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is an equivalence. A fibrant spaégis Z-local if it is g-local for all Z-equivalences.
This means that for any if

g :map (Y, Z) = map.(X, Z)
then

¢*:map.(¥, K) — map.(X, K).

Definition 4. A localization at Z is a localization functoiLz such that the following
conditions hold:

(i) the classes of-equivalences andl z-equivalences coincide.
(i) the classes of-local andL z-local spaces coincide.
(i) The mapX — LzX is aZ-equivalence and z X is Z-local.
(iv) Lz is the terminal localization functor such that the spZds L z-local.

For a space, there are obvious implications @& (i) < (iii) = (iv).

The implication (iv) = (iii) is obvious whenL; in the sense of (i)—(iii) exists. The
only problem might arise ifL; exists in the sense of (iv) but not (i)—(iii), that is, a
terminal localizationT such thatZ is T-local exists but not alll-local spaces ar&-
local (condition (ii)). Suppos& is such aT'-local but notZ-local space. Then there is a
Z-equivalencef : A — B which is not akK -equivalence. Thuf is T-local but notf-local
henceL ; is not less thaiT” which contradicts (iv).

The existence of localization at a given spaces not known in general.

It is clear that the classes &f-equivalences ang-equivalences are closed under
arbitrary homotopy colimits. Also the classes Bflocal and f-local spaces are closed
under arbitrary homotopy limits.

Lemma 5. Suppose that for a certain spagethere is a set o -equivalence$f,} such
that everyZ-equivalence can be presented as a homotopy colimit of elements of the set
{f«}. Then the localization aZ is simply anf-localization for f =\/ f,.

3. A characterization of Z-equivalences

In this section we recall Lemma 7. Although it is not new we prove it here since we
did not find an appropriate reference.

We say that a magf: A — B has a left lifting property (LLP) with respect to a map
g:C — D ifany diagram

=

HC
7

f 8

-

/
7/
7

>

HD
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admits the dashed map. For the sake of clarity we will use the term homotopy LLP when
the lift we have in mind is in the homotopy category.

Lemmaé. Let f: A — B andg:C — D be maps inHo,. The mapf has the homotopy
LLP with respect to

g*:map.(D, Z) — map.(C, Z)
if and only ifg has the homotopy LLP with respect to
f¥:map.(B,Z) — map.(A, 2).

Proof. We use adjointness to note that the existence of a dashed lift in the diagram

A——map.(D, Z)

7
lf - \Lg*

B~—=map,(C, Z)
is equivalent to the existence of the dashed map in the following diagram.

id
AAD<—""8 A ncC

fnid 7 fAid
/7

e
e

s d
BAD=——2%  pBAcC

This in turn is equivalent to the lifting property as indicated on the next diagram.
C——>map.(B, Z)

/7
8 e lf*

’e

DI —>map(A,Z) O

Lemma 7. Letg:\/,~oS" = \/, 505" be the trivial map. A mag:A — B is a Z-
equivalence if and only if it has the homotopy LLP with respect to

() 2)-r((V7) )

n>0 n>0

Proof. By Lemma 6 f has the homotopy LLP with respect ¢§ if and only if g, has

the homotopy LLP with respect t¢*: map.(B, Z) — map.(A, Z). Obviously if f* is a
weak equivalence thegi. has the homotopy LLP hence the proof will be complete once
we show that the homotopy LLP fgr. implies thatf™* is a weak equivalence. We see that
if g, has the homotopy LLP with respect f&° then all the mapg’} : S} — {x}; — S}

for n > 0 have the homotopy LLP. The case= 0 implies thatf* induces a bijection on
the components.
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We are proving thaf ™ induces isomorphisms of homotopy groups of the corresponding
components. Assume thdtis an inclusionA < B of simplicial sets and is a fibrant
simplicial set. We fix any mapo: B — Z as a basepoint of mafB, Z) andag = f*(bo)
as a basepoint of mapA, Z). The homotopy LLP fog’, forn > 0 implies thatf* induces
bijections of the homotopy groups modulo the action of the fundamental group:

ma(Map.(B, Z), bo)/~ — ma(Map,(A, Z), ag) /~.
Since 0 is fixed by the action of the fundamental group we see that
£ imn(map.(B, ), bo) < mx(Map.(A, Z), ao)

is a monomorphism fom > 0. Choose an elemeri € n,(map.(4, Z),ap). It is
represented by some:A A St — Z such thatoe|A:AA{*}+ = ap. We construct the
following diagram.

id Ag"

ANSY ANSY

fnid Z £ Aid
B - b

BAS <————BAS}

The mapb is the compositiolB A S} — B A {x}; =B % 7. The diagram commutes
by the definition ofag asbgf. By the proof of Lemma 6 the assumption thgt has
the homotopy LLP with respect tg* implies the existence of the dashed m@apvhich
closes this diagram up to homotopy. Sinfé is a bijection on components we see that
Bl BAfs)s - B — Z must be homotopic thg. SinceA A {x} < B A S| is a cofibration we
can fmJﬂl, homotopic tog, such thais; | BAl), = bo. We see thags induces an element

B in ,(map,(B, Z), bo) such thatf*(8) = @ hencef* is a weak equivalence.o

4. Categoriesof pairsand topologized objects

In this section we collect some categorical definitions and facts which will be used in
Section 5. Some statements refer to a general catefydmgwever for us the interesting
cases are whei = S, (pointed simplicial sets) af = Ho,.

Definition 8. Given a categorg we will denote byC? the usuakategory of pairsvhose
objects are the maps thand whose maps are commutative squargsas below.

ha
—_—

kS
o5}

~
-
-

)

hp
—_—

>
~
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Following Bousfield and Friedlander (see [2, A3]) we introduce a model category
structure orC?.

Definition 9. LetC be a model category. Amag f — g as in Definition 8 is called weak
equivalencérespectivelfibration) if both 2 4 andh g are weak equivalencérespectively
fibrationg. Itis acofibrationif 24 : A — Sand(hp, g): BLI4 S — T are cofibrations. This
implies thath g : B — T is also a cofibration.

Note that an objecf : A — B is cofibrant inC? if A is cofibrantinC and the magy is
a cofibration irC. It is fibrant if bothS andT are fibrant inC.

We will be interested imoSf the homotopy category of pairs whér= S, the category
of pointed simplicial sets. The obvious functBr. hoS? — Ho? induces equivalence of
categories.

Some of the definitions below are chosen after [8]. For any categand an objeck
of C atopologized object oveX is a factorization

COP———————Sets

C(—.X)

where G is the forgetful functor. We say that a morphisfn X — Y is continuousif
it induces a natural transformatioff : X* — Y#, that is to say, the map herntZ, 1) is
continuous with respect to the topologies¥tZ andY#Z for all Z in C.

Definition 10. We say that a topologized obje¢f is compactif the corresponding
functor X* takes values in compact Hausdorff spaces. A category of compact objects and
continuous morphisms i@ will be denoted byCC.

Lemma 11.If g: S — T is a map inC Ho, then it is naturally a compact object iH 2.
In other words the categorig& Ho,)? and C Ho? have the same objects.

Proof. We need to show that for an§: A — B in Ho, the sethorg,2(f, g) has a natural
compact topology. This is obvious since this set is the limit of the following diagram

[A, S]  [B, T]:;Z[A, T]

where the entries are compact sirkand 7T are inC Ho,. The mapsp(«, ) = g and
¥ (a, B) = Bf are continuous. O

By adjointness argument we immediately obtain the following.

Lemmal2.If T is in C Ho. then for anyX the spacenap.(X, T) isin C Ho, and for any
map f : X — Y the induced mamap. (Y, T) — map.(X, T) is continuous.
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5. Localizationsat a space

In this section we will prove (Theorem 17) that localization at a spraegists whenever
Z is a homotopy retract of a compact object in the sense of Definition 10. We attain this by
showing that for such spac&sany Z-equivalence can be presented as a filtered colimit of
Z-equivalences of bounded cardinalities so that we can use Lemma 5.

Let S? be the usual category of mapsdy. We will say thatf is a subobject off if
there is a cofibratiorfp — f and will denote this fact byp C f. Given f: A — B we
will write | | for the number of nondegenerate simplexegiof B and will say thatf is
finite if | f] is.

Lemma 13. Let f € h be cofibrant objects iSf. Letg, fibrantin Sf, represent an object
in ChoS?. Leta € homsf(f, g). If for every finite subobjedt C h the mapa extends to
f Uk thena extends td:.

Proof. Lets be inS2 such thatf C ¢ C h. Letr: hom,,s2(t, g) — hom,,s2(f. ) be the

restriction map. DefingZ () asr~1([«]) that is the set of all extensions, lme, of a

to ¢t. Sincer is a continuous map between compact spaces we seé thais empty or
compact. The limit limE (f Uk) taken over all finite subobjects bfis nonempty since it is
directed and the sef8(f U k) are compact (nonempty by assumption). The proof will be
complete once we show that(z) is nonempty. We will show thak (k) =Ilim E(f U k).

Let map.(¢, g) be a simplicial set whose-simplexes form a set hogg(t A (A, 8)
and whose faces and degeneracies are induced by the cosimplicial structute on
Obviously rg(map. (7, g)) = E(t). Sinceg represents an object iﬁhosf we see that
mq(Map,(r, g)) = hom,,s2(f A (A7/9AY), g) is compact fo; > 0 which gives us the last
equation in the following sequence.

mo(map,(h, g)) = mo(map,(colim f Uk, g)) = mo(map, (hocolimf Uk, g))
mo(holim map,(f Uk, g)) = lim mo(map,(f Uk, g)).

This means that
E(h) =lim E(f Uk). O

Directly from Lemma 13 we obtain the following statement.

L emma 14. Given cofibrantf and fibrantg in S2 with g representing an object 67052
there is a cardinal number = = (f, g) such that for any: in Sf with f C h there isk in
S? such thatf Ck C hand|k| <t andifa: f — g extends tay 1k — g then it extends
toa,:h— g.

Proof. For eacha: f — g which does not factor ag — 7 — g Lemma 13 gives us
a finite objectk, in S2 such thate does not factor ag < f Uk, — g. We can take
k= fuUlJ, k. Since eaclt, is finite and the number of possible mapsiepends only
on f andg we see that there is an upper bound for the cardinalignehich depends only
onfandg. O
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The role of this Lemma is following. We think of andg as fixed and of: as uncon-
trollably big. We want the obstruction to extending a map frgrno / to be detected on
somek whose cardinality we can control.

Lemma 15. Given cofibrantf and fibrantg in S2 with g representing an object 67052
there is a cardinal numbe¥ = §( f, g) such that for any: in S? with f C & there isk in S2
such thatf € k € h and|k| < é and the restriction mapom,,s2 (4, g) - hom, s2(k, g)
is an epimorphism. ’ ’

Proof. The object is constructed as a union of an ascending chfaiakg C k1 C --- C
k, C ---. This chain is built by induction on. Givenk, we use Lemma 14 to choo&g; 1
so thatk, < k,4+1 C h and if a mapk, — g extends td;,1 then it extends ta.

Givena : k — g we need to show that we can extentb @ : h — g. By the construction
of k there are maps, : h — g such thaty,| g =l - Since by assumption hcyggg(h, g)
is compact we can take to be an accumulation point of the det,}.

We havea|k a|k for all n since the sequen@e|k € hOfT’ymSz(kn,g) converges
to af, , it is actually constant foi > n, and the restriction map h%Z(h g) —
hom,,(,sz(kn, g) is continuous.

A similar argument as in the last paragraph of the proof of Lemma 13 tells us that

a € homy,s2(k, g) = limhomy,, 52 (kx, &)

hencex|, ~«l|, forallnimpliesa|, ~«. O
kn kll k

Lemma 16. Let g in S? represent an object i€hoS?. Let cofibrant: and fibrantp be in
Sf. Let p be a retract inSf of g and have the homotopy LLP with respectjoThere
is a cardinaly = y(g) such thatz is a colimit of subobjects,, such that eaclh, has the
homotopy LLP with respect @ and |hy| < y.

Proof. We can writeh ash = colimh, where eaclh,, is finite. Inductively we replace

he With objectsh,, that have the left lifting property with respect o We start with

the trivial object inS?, a map between spaces consisting of a basepoint only, which need
not be replaced. Suppose that for someall subobjects of:,, have been replaced. Let

h =hgy U Ua<a0 h+«. Lemma 15 gives us a factorization

h' < hygy <= h
such that the restriction map

hon}zan(h’ g) —>» hornhoSE(h*ao’ g) (2)

is an epimorphism. We want to show that,, has the homotopy LLP with respect to
For any mapp : h., — p consider a diagram

h*olo L>p

o)

h——8
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where the mapy exists by (2). Since by assumptianhas the left lifting property with
respect top and any map fronk.,, to p factors througtt we obtain the homotopy LLP
for h.q, With respect tgp. We see thalth .| depends only og, on., for o < ag and on

the bounds (i, g) from Lemma 15. 0O

We are ready to prove the main theorem of this paper. In the following we prefer to
work in the Ho? rather than in the equivalent categaiyS2.

Theorem 17. Let Z in Ho, represent an object i@ Ho,. For anyZ in Ho,, a homotopy
retract of Z, there exists a may such thatL ; is a localization atZ.

Proof. To use Lemma 7 we consider maps

p:mapk<< \/ S”>+, Z) . mag<<,1\>/()sn)+, Z)

n>0
and
g:mag<< \/ S”) ,Z) - mag(( \/ S") ,Z).
n>0 + n>0 +

We observe thap is a homotopy retract of and by Lemma 12 represents an object in

CHof. By Lemma 7 a map is a Z-equivalence if and only if it has the homotopy LLP
with respect tqp. By Lemma 16 there is a cardinal= y (g) such that any-equivalencé

is a colimit of Z-equivalences whose cardinalities do not exceeflince this is a directed

colimit of cofibrations it is equivalent to a homotopy colimit. By Lemma 5 we can take
to be a wedge of alf -equivalences whose cardinality does not exceed

Since one would like to remove the compactness assumption in Theorem 17 we briefly
review the points where we used it in the proof. The key property we used in Lemmas 13
and 15 is that for a compactly topologiz€dand a directed diagrad; in Ho, there is a
bijection

[holimX;, C] —> lim[X;, C].

Other properties are much simpler, in Lemma 15 we needed to know that an infinite subset
of a compact topological space has an accumulation point and in Lemma 11 that a closed
subspace of a product of compact spaces is compact.

We end this section with Example 20 which shows that the “retract” condition in
Theorem 17 is relevant. More precisely there are spaces which represent ob{géts,in
but whose retracts are not(hHo..

We will need the following two lemmas. Bysimplicial compact spacee understand
a simplicial object in the category of compact (Hausdorff) topological spaces.

Lemma 18. Let X be a simplicial set andZ a simplicial compact space. The set
homs, (X, Z) has a natural compact topology.
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Proof. To see this observe that hgniX, Z) is a subset of

[ [setsx.. zo =[] ]2

n o X,

which has a compact product topology. The subset 0k Z) is determined by a
number of equations (see May [13, 1.2]) between continuous maps so it forms a closed
hence compact subspace of the product.

Lemma 19. Let T be a simplicial compact space which is fibrant as a simplicial set. Then
T naturally represents an object ifiHo.

Proof. We need to show that for any simplicial sétthe set{ X, T'] is naturally compact.
We have map(X, T); = homg (X A (Aﬁ), T) hence by Lemma 18 the mapping space
map.(X, T) is a simplicial compact space. Sin¢&, T] = romap.(X, T) hence by
Proposition 47 in [4] it is naturally compact. O

Example 20. Let n > 0, Z = K(Q,n) andZ = K (S, n). As a model ofK (S, n) we

use the one described in [3, 1.Z:(S%, n); is a product of(;) copies ofS?, hence it is

a compact topological space, faces and degeneracies are given by projections and group
operations hence they are continuous. This modek ¢$2, ) is a simplicial compact

space which is fibrant as a simplicial set. It has a homotopy type of an Eilenberg—Mac
Lane space fos! viewed as a discrete group. The grasibis a direct sum ofQ/Z and

a rational vector space hen@is a retract ofS® and soZ is a retract ofZ. We have

Z which represents an object fiHo, and its retractZ which does not represent any
objects inCHo, sincer,Z = Q is an infinite countable group hence admits no compact
structure.

6. Applicationsand examples

We note that Theorem 17 implies the existence of localizations at spaces which belong
to the following classes:

(a) Profinite completions of other spaces.
(b) Simplicial compact spaces which are fibrant as simplicial sets (Lemma 19).
(c) Mapping spaces with targets in (a) or (b) (Lemma 12).

Our first example of alocalization at a space is an idempotent approximation to the profinite
completion. The work of Rao [15] implies the existence of such an approximation defined
on the nilpotent spaces. Here we do not require such assumptions.

The profinite completion was introduced by Sullivan in Section 3 of [16] via the Brown
representability theorem. To a given spatée assigns another spa'ﬁewhich represents
the functorX (Y) = limx, 7 [Y, F1. The limit is taken over the catego(X | F) whose
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objects are mapX — F in Ho, with F connected and, F finite for all g > 0. The
morphisms are commutative diagramsi,. as below.

Fl/X\Fz

The functorF : (X | F) — S, takes an objecX — Fp to the spacép. This limit is well
defined since the catego¢X | ) is equivalent to a small category.

Theorem 21. There exists an idempotent approximation to the profinite completion.
More precisely, there is the terminal localization among localizatibnshich admit the
following factorization.

X > LX - X.

Proof. For each homotopy class of connected spacesayjfhfinite for all g > 0 choose
a representativé’. Let Z = [ F be the product of those representatives. Since éach
is naturally compact (in the sense of Definition 10) d#dZ] = [[[Y, F] for all Y we
see thatZ is compact. The localizatioh; exists by Theorem 17. We observe thafif
is connected withr, F finite for ¢ > 0 thenF is Z-local. Letr:Z — F — Z be the

retraction onto the axis that correspondsfoWe see that' ~ holim(. - - Lz5 7
hence it isZ-local. This implies thafL;z X, F] — [X, F] is a bijection and consequently
that the categoriegX | F) and(LzX | F) are equivalent henc¥ ~ (LzX)~ which
leads us to the factorization we were looking for:

X — LzX — (LzX) " ~X. ©)
It remains to show thaLz is the terminal localization which admits factorization (3).

Suppose that a localizatidh also admits (3). Since profinite completion is idempotent on
finite spaced as above we have

F>TF—>F~F

SO F is a homotopy retract of F henceT -local. This means that the spaZeis T -local
hence by the definition af ; we haveT < Lz. O

Theorem 22. Let* be a cohomology theory represented bysarspectrum{#, }. If each
h, is a homotopy retract of a compact, in the sense of Definiti@nspace then there

exists a mapf such thatL ;-equivalences and*-equivalences coincide. In particular the
corresponding cohomological localization exists.

Proof. Let Z =[]k, and use Theorem 17.0
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