Note

Separate continuity of the Lempert function of the spectral ball ${ }^{\text {* }}$

Nikolai Nikolov ${ }^{\text {a,* }}$, Pascal J. Thomas ${ }^{\text {b }}$
${ }^{\text {a }}$ Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev 8, 1113 Sofia, Bulgaria
${ }^{\text {b }}$ Université de Toulouse, UPS, INSA, UT1, UTM, Institut de Mathématiques de Toulouse, F-31062 Toulouse, France

A R T I C L E I N F O

Article history:

Received 24 October 2009
Available online 16 December 2009
Submitted by Steven G. Krantz

Keywords:

Lempert function
Spectral ball
Symmetrized polydisc

Abstract

We find all matrices A from the spectral unit ball Ω_{n} such that the Lempert function $l_{\Omega_{n}}(A, \cdot)$ is continuous.

© 2009 Elsevier Inc. All rights reserved.

The characteristic polynomial of an $n \times n$ complex matrix A is

$$
P_{A}(t):=\operatorname{det}\left(t I_{n}-A\right)=: t^{n}+\sum_{j=1}^{n}(-1)^{j} \sigma_{j}(A) t^{n-j}
$$

where I_{n} is the unit matrix. Let $r(A):=\max \left\{|\lambda|: P_{A}(\lambda)=0\right\}$ be the spectral radius of A. The spectral unit ball is the pseudoconvex domain $\Omega_{n}:=\{A: r(A)<1\}$.

Let $\sigma(A):=\left(\sigma_{1}(A), \ldots, \sigma_{n}(A)\right)$. The symmetrized polydisc is the bounded domain $\mathbb{G}_{n}:=\sigma\left(\Omega_{n}\right) \subset \mathbb{C}^{n}$, which is hyperconvex (see [3]) and hence taut.

We are interested in two-point Nevanlinna-Pick problems with values in the spectral unit ball, so let us consider the Lempert function of a domain $D \subset \mathbb{C}^{m}$: for $z, w \in D$,

$$
l_{D}(z, w):=\inf \{|\alpha|: \exists \varphi \in \mathcal{O}(\mathbb{D}, D): \varphi(0)=z, \varphi(\alpha)=w\}
$$

where $\mathbb{D} \subset \mathbb{C}$ is the unit disc. For general facts about this function, see for instance [4]. The Lempert function is symmetric in its arguments, upper semicontinuous and decreases under holomorphic maps, so for $A, B \in \Omega_{n}$,

$$
\begin{equation*}
l_{\Omega_{n}}(A, B) \geqslant l_{\mathbb{G}_{n}}(\sigma(A), \sigma(B)) \tag{1}
\end{equation*}
$$

The domain \mathbb{G}_{n} is taut, so its Lempert function is continuous.
The systematic study of the relationship between Nevanlinna-Pick problems valued in the symmetrized polydisc or spectral ball began with [1]. In particular, it showed that when both A and B are cyclic (or non-derogatory) matrices, i.e. they admit a cyclic vector (see other equivalent properties in [5]), then equality holds in (1). It follows that $l_{\Omega_{n}}$ is continuous on $\mathcal{C}_{n} \times \mathcal{C}_{n}$, where \mathcal{C}_{n} denotes the (open) set of cyclic matrices. On the other hand, in general, if equality holds

[^0]in (1) at (A, B), then $l_{\Omega_{n}}$ is continuous at (A, B) (see [6, Proposition 1.2]). The converse is also true, since $l_{\Omega_{n}}$ is an upper semicontinuous function, $l_{\mathbb{G}_{n}}$ is a continuous function and (1) holds.

The goal of this note is to study the continuity of $l_{\Omega_{n}}$ separately with respect to each argument. In [6], the authors looked for matrices B such that $l_{\Omega_{n}}(A,$.$) is continuous at B$ for any A. They conjecture that this holds for any $B \in \mathcal{C}_{n}$, and prove it for $n \leqslant 3$ [6, Proposition 1.4], and the converse statement for all dimensions (see [6, Theorem 1.3]).

In the present paper, we ask for which A the function $l_{\Omega_{n}}(A,$.$) is continuous at B$ for any B (or simply, continuous on the whole Ω_{n}). By [5, Proposition 4], for any matrix $A \in \mathcal{C}_{n}$ with at least two different eigenvalues, the function $l_{\Omega_{n}}(A, \cdot)$ is not continuous at any scalar matrix. On the other hand, $l_{\Omega_{n}}(0, B)=r(B)$ and hence $l_{\Omega_{n}}(A, \cdot)$ is a continuous function for any scalar matrix A (since the automorphism $\Phi_{\lambda}(X)=(X-\lambda I)(I-\bar{\lambda} X)^{-1}$ of Ω_{n} maps λI_{n} to 0 , where $\lambda \in \mathbb{D}$).

We have already mentioned that if $A \in \Omega_{n}(n \geqslant 2)$, then the following conditions are equivalent:
(i) the function $l_{\Omega_{n}}$ is continuous at (A, B) for any $B \in \Omega_{n}$;
(ii) $l_{\Omega_{n}}(A, \cdot)=l_{\mathbb{G}_{n}}(\sigma(A), \sigma(\cdot))$.

Consider also the condition:
(iii) $A \in \mathcal{C}_{2}$ has two equal eigenvalues.

By [2, Theorem 8], (iii) implies (ii). Theorem 1 below says that the scalar matrices and the matrices satisfying (iii) are the only cases when $l_{\Omega_{n}}(A, \cdot)$ is a continuous function. Then the mentioned above result [5, Proposition 4] shows that for $n=2$ (i) implies (iii) and hence the conditions (i)-(iii) are equivalent.

Theorem 1. If $A \in \Omega_{n}$, then $l_{\Omega_{n}}(A, \cdot)$ is a continuous function if and only if either A is scalar or $A \in \mathcal{C}_{2}$ has two equal eigenvalues.
Proof. Using an automorphism of Ω_{n} of the form $X \rightarrow P^{-1} X P$, where P is an invertible matrix, we may assume that A is in Jordan form. Using an automorphism Φ_{λ}, we may assume $s_{1} \geqslant \ldots \geqslant s_{k}$ are the numbers of Jordan blocks corresponding to each of the pairwise different eigenvalues $\lambda_{1}=0, \lambda_{2}, \ldots, \lambda_{k}$.

It is enough to prove that $l_{\Omega_{n}}(A, \cdot)$ is not a continuous function if A has at least one non-zero eigenvalue or $A \in \Omega_{n}$ is a non-zero nilpotent matrix and $n \geqslant 3$.

In the first case, we shall prove that $l_{\Omega_{n}}(A, \cdot)$ is not continuous at 0 . It is easy to see that A can be represented as blocks A_{1}, \ldots, A_{l} (with sizes n_{1}, \ldots, n_{l}) such that the eigenvalues of A_{1} are equal to zero and the other blocks are cyclic with at least two different eigenvalues values (A_{1} is omitted if $s_{1}=s_{2}$). By [5, Proposition 4], we know that there are $\left(A_{i, j}\right)_{j} \rightarrow 0,1 \leqslant i \leqslant l$, such that $\sup _{i, j} l_{\Omega_{n_{i}}}\left(A_{i}, A_{i, j}\right):=m<r(A)$. Taking A_{j} to be with blocks $A_{1, j}, \ldots, A_{l, j}$, it is easy to see $l_{\Omega_{n}}\left(A, A_{j}\right) \leqslant \max _{i} l_{\Omega_{n_{i}}} l\left(A_{i}, A_{i, j}\right) \leqslant m<l_{\Omega_{n}}(A, 0)$ which implies that $l_{\Omega_{n}}(A, \cdot)$ is not continuous at 0 .

Let now $A \neq 0$ be a nilpotent matrix. Then $A=\left(a_{i j}\right)_{1 \leqslant i, j \leqslant n}$ with $a_{i j}=0$ unless $j=i+1$. Let $r=\operatorname{rank}(A) \geqslant 1$. Following the proof of Proposition 4.1 in [6], let

$$
F_{0}:=\{1\} \cup\left\{j \in\{2, \ldots, n\}: a_{j-1, j}=0\right\}:=\left\{1=b_{1}<b_{2}<\cdots<b_{n-r}\right\}
$$

and $b_{n-r+1}:=n+1$. We set $d_{i}:=1+\#\left(F_{0} \cap\{(n-i+2), \ldots, n\}\right)$. The hypotheses on A imply that we can choose its Jordan form so that $a_{n-1, n}=1$, so $1=d_{1}=d_{2} \leqslant d_{3} \leqslant \cdots \leqslant d_{n}=\# F_{0}=n-r, d_{j+1} \leqslant d_{j}+1$.

Corollary 4.3 and Proposition 4.1 in [6] show that for any $C \in \mathcal{C}_{n}$,

$$
l_{\Omega_{n}}(A, C)=h_{\mathbb{G}_{n}}(0, \sigma(C)):=\inf \left\{|\alpha|: \exists \psi \in \mathcal{H}\left(\mathbb{D}, \mathbb{G}_{n}\right): \psi(\alpha)=\sigma(C)\right\},
$$

where

$$
\mathcal{H}\left(\mathbb{D}, \mathbb{G}_{n}\right)=\left\{\psi \in \mathcal{O}\left(\mathbb{D}, \mathbb{G}_{n}\right): \operatorname{ord}_{0} \psi_{j} \geqslant d_{j}, 1 \leqslant j \leqslant n\right\} .
$$

Note that $d_{j} \leqslant j-1$ for $j \geqslant 2$. Let $m:=\min _{j \geqslant 2} \frac{d_{j}}{j-1}$ and choose a k such that $\frac{d_{k}}{k-1}=m$. If $m=1$, then $d_{j}=j-1$ for all $j \geqslant 2$, and if furthermore $n \geqslant 3$, we can take $k=3$.

With k chosen as above, let λ be a small positive number, $b=k \lambda^{k-1}$ and $c=(k-1) \lambda^{k}$. Then λ is a double zero of the polynomial $\Lambda(z)=z^{n-k}\left(z^{k}-b z+c\right)$ with zeros in \mathbb{D}. Let B be a diagonal matrix such that its characteristic polynomial is $P_{B}(z)=\Lambda(z)$.

Assuming that $l_{\Omega_{n}}(A, \cdot)$ is continuous at B, then

$$
l_{\Omega_{n}}(A, B)=h_{\mathbb{G}_{n}}(0, \sigma(B))=: \alpha
$$

Lemma 2. If $l_{\Omega_{n}}(A, B)=\alpha$, then there is a $\psi \in \mathcal{H}\left(\mathbb{D}, \mathbb{G}_{n}\right)$ with $\psi(\alpha)=\sigma(B)$ and

$$
\sum_{j=1}^{n} \psi_{j}^{\prime}(\alpha)(-\lambda)^{n-j}=0
$$

Proof. This is analogous to the proof of the necessary condition in Proposition 4.1 in [6]. Let $\varphi \in \mathcal{O}\left(\mathbb{D}, \Omega_{n}\right)$ be such that $\varphi(0)=A$ and $\varphi(\tilde{\alpha})=B$. Corollary 4.3 in [6] applied to A shows that $\tilde{\psi}:=\sigma \circ \varphi \in \mathcal{H}\left(\mathbb{D}, \mathbb{G}_{n}\right)$.

Now we study $\sigma_{n}(\varphi(\zeta))-\sigma_{n}(B)=\sigma_{n}(\varphi(\zeta))$ near $\zeta=\alpha$. We may assume that the first two diagonal coefficients of B are equal to λ. If we let $\varphi_{\lambda}(\zeta):=\varphi(\zeta)-\lambda I_{n}$, then the first two columns of $\varphi_{\lambda}(\alpha)$ vanish, so $\sigma_{n} \circ \varphi_{\lambda}=\operatorname{det}\left(\varphi_{\lambda}\right)$ vanishes to order 2 at α. On the other hand,

$$
\operatorname{det}\left(-\varphi_{\lambda}(\zeta)\right)=\operatorname{det}\left(\lambda I_{n}-\varphi(\zeta)\right)=\lambda^{n}+\sum_{j=1}^{n}(-1)^{j} \lambda^{n-j} \tilde{\psi}_{j}(\zeta)
$$

and since the derivative of the left-hand side vanishes at $\tilde{\alpha}$, the same holds for the right-hand side. It remains to let $\tilde{\alpha} \rightarrow \alpha$ and to use that \mathbb{G}_{n} is a taut domain, providing the desired ψ.

Lemma 3. We have $\alpha^{m} \lesssim \lambda$; furthermore if $m=1$ and $n \geqslant 3$, then $\alpha^{2 / 3} \lesssim \lambda$. So in all cases $\alpha \ll \lambda$.
Proof. Note that there is an $\varepsilon>0$ such that for $\lambda<\varepsilon$ the map $\zeta \rightarrow\left(0, \ldots, 0, k(\varepsilon \zeta)^{d_{k}},(k-1) \lambda(\varepsilon \zeta)^{d_{k}}, 0, \ldots, 0\right)$ is a competitor for $h_{\Omega_{n}}(A, B)$. So $(\varepsilon \alpha)^{d_{k}} \leqslant \lambda^{k-1}$, that is, $\alpha^{m} \lesssim \lambda$.

If $m=1$ and $n \geqslant k=3$, then considering the map $\zeta \rightarrow\left(0,3 \lambda^{1 / 2} \varepsilon \zeta, 2(\varepsilon \zeta)^{2}, 0, \ldots, 0\right)$ we see that $(\varepsilon \alpha)^{2} \leqslant \lambda^{3}$.
Setting $\psi_{j}(\zeta)=\zeta^{d_{j}} \theta(\zeta)$, the condition in Lemma 2 becomes

$$
\begin{equation*}
a \frac{(-\lambda)^{n}}{\alpha}+S=0 \tag{2}
\end{equation*}
$$

where $a=(k-1) d_{k}-k d_{k-1}$ and $S=\sum_{j=1}^{n} \alpha^{d_{j}} \theta_{j}^{\prime}(\alpha)(-\lambda)^{n-j}$. Note that $a \neq 0$. Indeed, if $m<1$, then $d_{k}=d_{k-1}$ and hence $a=-d_{k}$; if $m=1$, then $a=(k-1)(k-1)-k(k-2)=1$. Since \mathbb{G}_{n} is bounded, $\left|\theta_{j}^{\prime}(\alpha)\right| \lesssim 1$.

By Lemma 3 and the choice of k, for any j,

$$
\alpha^{d_{j}} \lesssim \lambda^{(k-1) d_{j} / d_{k}} \leqslant \lambda^{j-1} \leqslant \lambda^{n-1} .
$$

Thus $S \lesssim \lambda^{n-1}$. By Lemma 3 again, $\alpha \ll \lambda$, a contradiction with (2).

References

[1] J. Agler, N.J. Young, The two-point spectral Nevanlinna-Pick problem, Integral Equations Operator Theory 37 (2000) 375-385.
[2] C. Costara, The 2×2 spectral Nevanlinna-Pick problem, J. London Math. Soc. 71 (2005) 684-702.
[3] A. Edigarian, W. Zwonek, Geometry of the symmetrized polydisc, Arch. Math. (Basel) 84 (2005) 364-374.
[4] M. Jarnicki, P. Pflug, Invariant Distances and Metrics in Complex Analysis, de Gruyter Exp. Math., vol. 9, de Gruyter, Berlin, New York, 1993.
[5] N. Nikolov, P.J. Thomas, W. Zwonek, Discontinuity of the Lempert function and the Kobayashi-Royden metric of the spectral ball, Integral Equations Operator Theory 61 (2008) 401-412.
[6] P.J. Thomas, N.V. Trao, Discontinuity of the Lempert function of the spectral ball, arXiv:0811.3093, Proc. Amer. Math. Soc., in press.

[^0]: This note was written during the stay of the second named author at the Institute of Mathematics and Informatics of the Bulgarian Academy of Sciences supported by a CNRS grant (September 2009).

 * Corresponding author.

 E-mail addresses: nik@math.bas.bg (N. Nikolov), pthomas@math.univ-toulouse.fr (P.J. Thomas).

