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We find all matrices A from the spectral unit ball Ωn such that the Lempert function
lΩn (A, ·) is continuous.
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The characteristic polynomial of an n × n complex matrix A is

P A(t) := det(t In − A) =: tn +
n∑

j=1

(−1) jσ j(A)tn− j,

where In is the unit matrix. Let r(A) := max{|λ|: P A(λ) = 0} be the spectral radius of A. The spectral unit ball is the
pseudoconvex domain Ωn := {A: r(A) < 1}.

Let σ(A) := (σ1(A), . . . , σn(A)). The symmetrized polydisc is the bounded domain Gn := σ(Ωn) ⊂ C
n , which is hypercon-

vex (see [3]) and hence taut.
We are interested in two-point Nevanlinna–Pick problems with values in the spectral unit ball, so let us consider the

Lempert function of a domain D ⊂ C
m: for z, w ∈ D ,

lD(z, w) := inf
{|α|: ∃ϕ ∈ O(D, D): ϕ(0) = z, ϕ(α) = w

}
,

where D ⊂ C is the unit disc. For general facts about this function, see for instance [4]. The Lempert function is symmetric
in its arguments, upper semicontinuous and decreases under holomorphic maps, so for A, B ∈ Ωn ,

lΩn (A, B) � lGn

(
σ(A),σ (B)

)
. (1)

The domain Gn is taut, so its Lempert function is continuous.
The systematic study of the relationship between Nevanlinna–Pick problems valued in the symmetrized polydisc or

spectral ball began with [1]. In particular, it showed that when both A and B are cyclic (or non-derogatory) matrices,
i.e. they admit a cyclic vector (see other equivalent properties in [5]), then equality holds in (1). It follows that lΩn is
continuous on Cn × Cn , where Cn denotes the (open) set of cyclic matrices. On the other hand, in general, if equality holds
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in (1) at (A, B), then lΩn is continuous at (A, B) (see [6, Proposition 1.2]). The converse is also true, since lΩn is an upper
semicontinuous function, lGn is a continuous function and (1) holds.

The goal of this note is to study the continuity of lΩn separately with respect to each argument. In [6], the authors looked
for matrices B such that lΩn (A, .) is continuous at B for any A. They conjecture that this holds for any B ∈ Cn , and prove it
for n � 3 [6, Proposition 1.4], and the converse statement for all dimensions (see [6, Theorem 1.3]).

In the present paper, we ask for which A the function lΩn (A, .) is continuous at B for any B (or simply, continuous on
the whole Ωn). By [5, Proposition 4], for any matrix A ∈ Cn with at least two different eigenvalues, the function lΩn (A, ·)
is not continuous at any scalar matrix. On the other hand, lΩn (0, B) = r(B) and hence lΩn (A, ·) is a continuous function for
any scalar matrix A (since the automorphism Φλ(X) = (X − λI)(I − λX)−1 of Ωn maps λIn to 0, where λ ∈ D).

We have already mentioned that if A ∈ Ωn (n � 2), then the following conditions are equivalent:

(i) the function lΩn is continuous at (A, B) for any B ∈ Ωn;
(ii) lΩn (A, ·) = lGn (σ (A),σ (·)).

Consider also the condition:

(iii) A ∈ C2 has two equal eigenvalues.

By [2, Theorem 8], (iii) implies (ii). Theorem 1 below says that the scalar matrices and the matrices satisfying (iii) are the
only cases when lΩn (A, ·) is a continuous function. Then the mentioned above result [5, Proposition 4] shows that for n = 2
(i) implies (iii) and hence the conditions (i)–(iii) are equivalent.

Theorem 1. If A ∈ Ωn, then lΩn (A, ·) is a continuous function if and only if either A is scalar or A ∈ C2 has two equal eigenvalues.

Proof. Using an automorphism of Ωn of the form X → P−1 X P , where P is an invertible matrix, we may assume that A is
in Jordan form. Using an automorphism Φλ , we may assume s1 � · · · � sk are the numbers of Jordan blocks corresponding
to each of the pairwise different eigenvalues λ1 = 0, λ2, . . . , λk .

It is enough to prove that lΩn (A, ·) is not a continuous function if A has at least one non-zero eigenvalue or A ∈ Ωn is a
non-zero nilpotent matrix and n � 3.

In the first case, we shall prove that lΩn (A, ·) is not continuous at 0. It is easy to see that A can be represented as
blocks A1, . . . , Al (with sizes n1, . . . ,nl) such that the eigenvalues of A1 are equal to zero and the other blocks are cyclic
with at least two different eigenvalues values (A1 is omitted if s1 = s2). By [5, Proposition 4], we know that there are
(Ai, j) j → 0, 1 � i � l, such that supi, j lΩni

(Ai, Ai, j) := m < r(A). Taking A j to be with blocks A1, j, . . . , Al, j , it is easy to see
lΩn (A, A j) � maxi lΩni

l(Ai, Ai, j) � m < lΩn (A,0) which implies that lΩn (A, ·) is not continuous at 0.
Let now A �= 0 be a nilpotent matrix. Then A = (aij)1�i, j�n with aij = 0 unless j = i + 1. Let r = rank(A) � 1. Following

the proof of Proposition 4.1 in [6], let

F0 := {1} ∪ {
j ∈ {2, . . . ,n}: a j−1, j = 0

} := {1 = b1 < b2 < · · · < bn−r},
and bn−r+1 := n + 1. We set di := 1 + #(F0 ∩ {(n − i + 2), . . . ,n}). The hypotheses on A imply that we can choose its Jordan
form so that an−1,n = 1, so 1 = d1 = d2 � d3 � · · · � dn = #F0 = n − r, d j+1 � d j + 1.

Corollary 4.3 and Proposition 4.1 in [6] show that for any C ∈ Cn ,

lΩn (A, C) = hGn

(
0,σ (C)

) := inf
{|α|: ∃ψ ∈ H(D,Gn): ψ(α) = σ(C)

}
,

where

H(D,Gn) = {
ψ ∈ O(D,Gn): ord0 ψ j � d j, 1 � j � n

}
.

Note that d j � j − 1 for j � 2. Let m := min j�2
d j

j−1 and choose a k such that dk
k−1 = m. If m = 1, then d j = j − 1 for all

j � 2, and if furthermore n � 3, we can take k = 3.
With k chosen as above, let λ be a small positive number, b = kλk−1 and c = (k − 1)λk . Then λ is a double zero of the

polynomial Λ(z) = zn−k(zk − bz + c) with zeros in D. Let B be a diagonal matrix such that its characteristic polynomial is
P B(z) = Λ(z).

Assuming that lΩn (A, ·) is continuous at B , then

lΩn (A, B) = hGn

(
0,σ (B)

) =: α.

Lemma 2. If lΩn (A, B) = α, then there is a ψ ∈ H(D,Gn) with ψ(α) = σ(B) and

n∑

j=1

ψ ′
j(α)(−λ)n− j = 0.
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Proof. This is analogous to the proof of the necessary condition in Proposition 4.1 in [6]. Let ϕ ∈ O(D,Ωn) be such that
ϕ(0) = A and ϕ(α̃) = B . Corollary 4.3 in [6] applied to A shows that ψ̃ := σ ◦ ϕ ∈ H(D,Gn).

Now we study σn(ϕ(ζ )) − σn(B) = σn(ϕ(ζ )) near ζ = α. We may assume that the first two diagonal coefficients of B
are equal to λ. If we let ϕλ(ζ ) := ϕ(ζ ) − λIn , then the first two columns of ϕλ(α) vanish, so σn ◦ ϕλ = det(ϕλ) vanishes to
order 2 at α. On the other hand,

det
(−ϕλ(ζ )

) = det
(
λIn − ϕ(ζ )

) = λn +
n∑

j=1

(−1) jλn− jψ̃ j(ζ ),

and since the derivative of the left-hand side vanishes at α̃, the same holds for the right-hand side. It remains to let α̃ → α
and to use that Gn is a taut domain, providing the desired ψ . �
Lemma 3. We have αm � λ; furthermore if m = 1 and n � 3, then α2/3 � λ. So in all cases α � λ.

Proof. Note that there is an ε > 0 such that for λ < ε the map ζ → (0, . . . ,0,k(εζ )dk , (k−1)λ(εζ )dk ,0, . . . ,0) is a competitor
for hΩn (A, B). So (εα)dk � λk−1, that is, αm � λ.

If m = 1 and n � k = 3, then considering the map ζ → (0,3λ1/2εζ,2(εζ )2,0, . . . ,0) we see that (εα)2 � λ3. �
Setting ψ j(ζ ) = ζ d j θ(ζ ), the condition in Lemma 2 becomes

a
(−λ)n

α
+ S = 0, (2)

where a = (k − 1)dk − kdk−1 and S = ∑n
j=1 αd j θ ′

j(α)(−λ)n− j . Note that a �= 0. Indeed, if m < 1, then dk = dk−1 and hence
a = −dk; if m = 1, then a = (k − 1)(k − 1) − k(k − 2) = 1. Since Gn is bounded, |θ ′

j(α)| � 1.
By Lemma 3 and the choice of k, for any j,

αd j � λ(k−1)d j/dk � λ j−1 � λn−1.

Thus S � λn−1. By Lemma 3 again, α � λ, a contradiction with (2). �
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