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The characteristic polynomial of an n x n complex matrix A is

n
Pa(t) :=det(tl, — A) ="+ (=1)Ioj(A}"
j=1

where [, is the unit matrix. Let r(A) := max{|x|: P4(A) = 0} be the spectral radius of A. The spectral unit ball is the
pseudoconvex domain £2, := {A: r(A) < 1}.

Let o (A) := (01(A), ..., on(A)). The symmetrized polydisc is the bounded domain G, := o (£2;) C C", which is hypercon-
vex (see [3]) and hence taut.

We are interested in two-point Nevanlinna-Pick problems with values in the spectral unit ball, so let us consider the
Lempert function of a domain D c C™: for z, w € D,

Ip(z, w) :=inf{|a|: 3p € O, D): 9(0) =2z, p(a) =w},

where D c C is the unit disc. For general facts about this function, see for instance [4]. The Lempert function is symmetric
in its arguments, upper semicontinuous and decreases under holomorphic maps, so for A, B € £2;,

lo, (A, B) > Ig, (0 (A), 0 (B)). (1)

The domain G, is taut, so its Lempert function is continuous.

The systematic study of the relationship between Nevanlinna-Pick problems valued in the symmetrized polydisc or
spectral ball began with [1]. In particular, it showed that when both A and B are cyclic (or non-derogatory) matrices,
i.e. they admit a cyclic vector (see other equivalent properties in [5]), then equality holds in (1). It follows that lg, is
continuous on C, x C,, where C, denotes the (open) set of cyclic matrices. On the other hand, in general, if equality holds

* This note was written during the stay of the second named author at the Institute of Mathematics and Informatics of the Bulgarian Academy of Sciences
supported by a CNRS grant (September 2009).
* Corresponding author.
E-mail addresses: nik@math.bas.bg (N. Nikolov), pthomas@math.univ-toulouse.fr (PJ. Thomas).

0022-247X/$ - see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2009.12.023


https://core.ac.uk/display/82579875?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:nik@math.bas.bg
mailto:pthomas@math.univ-toulouse.fr
http://dx.doi.org/10.1016/j.jmaa.2009.12.023

N. Nikolov, PJ. Thomas /J. Math. Anal. Appl. 367 (2010) 710-712 711

in (1) at (A, B), then I, is continuous at (A, B) (see [6, Proposition 1.2]). The converse is also true, since lo, is an upper
semicontinuous function, lg, is a continuous function and (1) holds.

The goal of this note is to study the continuity of I, separately with respect to each argument. In [6], the authors looked
for matrices B such that I, (A, .) is continuous at B for any A. They conjecture that this holds for any B € Cy, and prove it
for n < 3 [6, Proposition 1.4], and the converse statement for all dimensions (see [6, Theorem 1.3]).

In the present paper, we ask for which A the function I, (A, .) is continuous at B for any B (or simply, continuous on
the whole £2,). By [5, Proposition 4], for any matrix A € C, with at least two different eigenvalues, the function Ig, (A, )
is not continuous at any scalar matrix. On the other hand, I, (0, B) =r(B) and hence I, (A, -) is a continuous function for
any scalar matrix A (since the automorphism @; (X) = (X — A)(I — AX)~! of £2, maps Al, to 0, where A € D).

We have already mentioned that if A € £2,; (n > 2), then the following conditions are equivalent:

(i) the function I, is continuous at (A, B) for any B € £2p;
(i) lg, (A, ) =lg, (0 (A), o ().

Consider also the condition:
(iii) A € Cy has two equal eigenvalues.

By [2, Theorem 8], (iii) implies (ii). Theorem 1 below says that the scalar matrices and the matrices satisfying (iii) are the
only cases when I, (A, -) is a continuous function. Then the mentioned above result [5, Proposition 4] shows that for n =2
(i) implies (iii) and hence the conditions (i)-(iii) are equivalent.

Theorem 1. If A € §2y,, then lg, (A, -) is a continuous function if and only if either A is scalar or A € C has two equal eigenvalues.

Proof. Using an automorphism of §2, of the form X — P~!1XP, where P is an invertible matrix, we may assume that A is
in Jordan form. Using an automorphism &;, we may assume s; > --- > s are the numbers of Jordan blocks corresponding
to each of the pairwise different eigenvalues A1 =0, A2, ..., Ag.

It is enough to prove that I, (A, -) is not a continuous function if A has at least one non-zero eigenvalue or A € §2;, is a
non-zero nilpotent matrix and n > 3.

In the first case, we shall prove that I, (A, -) is not continuous at 0. It is easy to see that A can be represented as
blocks A1, ..., A; (with sizes nq,...,n;) such that the eigenvalues of A; are equal to zero and the other blocks are cyclic
with at least two different eigenvalues values (A; is omitted if s; = s;). By [5, Proposition 4], we know that there are
(Ai,j)j— 0, 1<i < such that sup,-,jlgni (Ai, Ajj) :==m <r(A). Taking A; to be with blocks A1 j,..., Ay, it is easy to see
lo, (A, Aj) < max; lgnil(Ai, A; j) <m <lg,(A,0) which implies that I, (A, -) is not continuous at 0.

Let now A # 0 be a nilpotent matrix. Then A = (a;j)1<i, j<n With a;; =0 unless j=1i4- 1. Let r =rank(A) > 1. Following
the proof of Proposition 4.1 in [6], let

Fo:={1}U{je{2,....n}: aj_1j=0}:={1=by <by <--- <by_},

and by_;11:=n+1. We set d; :=1+#(FoN{(n—i+2),...,n}). The hypotheses on A imply that we can choose its Jordan
form so that a1, =1,50 1=di =dy <d3 <. - <dpn=#Fp=n—r,dj;1 <d;j+ 1.
Corollary 4.3 and Proposition 4.1 in [6] show that for any C € C,
lg, (A, C) =hg,(0,0(0) :=inf{la|: Iy € HID, Gp): ¥ (@) =0 (O},
where

HD, Gn) = {§ € O, Gp): ordo ¥ >dj, 1< j<n}.

Note that d; < j—1 for j> 2. Let m:=minj) dej] and choose a k such that dek1 =m.If m=1, thend; = j—1 for all
j > 2, and if furthermore n > 3, we can take k =3.

With k chosen as above, let A be a small positive number, b = kA¥~! and ¢ = (k — 1)A¥. Then A is a double zero of the
polynomial A(z) = z"*(zX — bz + ¢) with zeros in . Let B be a diagonal matrix such that its characteristic polynomial is
Pp(z) = A(2).

Assuming that [o, (A, -) is continuous at B, then

lg,(A, B) =hg,(0,0(B)) =:a.

Lemma 2. Iflo, (A, B) = «, then there is a y € H(ID, Gy) with ¥ (a) = o (B) and

D vjer=n"T=o.

j=1



712 N. Nikolov, PJ. Thomas /J. Math. Anal. Appl. 367 (2010) 710-712

Proof. This is analogous to the proof of the necessary condition in Proposition 4.1 in [6]. Let ¢ € O(D, §2;) be such that
¢(0) = A and ¢(&) = B. Corollary 4.3 in [6] applied to A shows that V=00 ¢ € HD, Gp).

Now we study o, (¢(¢)) — 0n(B) = 0n(¢(¢)) near ¢ = «. We may assume that the first two diagonal coefficients of B
are equal to A. If we let ¢, (¢) := @(¢) — Al, then the first two columns of ¢; (o) vanish, so oy o ¢ = det(p;,) vanishes to
order 2 at . On the other hand,

det(—¢x(2)) =det(Aly — @(0)) ="+ > _(=1)/A"I;(0),

j=1
and since the derivative of the left-hand side vanishes at &, the same holds for the right-hand side. It remains to let & — «
and to use that G, is a taut domain, providing the desired v. O

Lemma 3. We have a™ < J; furthermore if m = 1 and n > 3, then a®/3 < A. So in all cases o« < A.

Proof. Note that there is an & > 0 such that for A < & the map ¢ — (0, ..., 0, k(et)%, (k—1)r(e£)%,0,...,0) is a competitor
for hg, (A, B). So (ga)% < A%~ that is, a™ < .
If m=1 and n >k = 3, then considering the map ¢ — (0, 3A1/2g¢,2(£)2,0, ...,0) we see that (ea)? <A3. O

Setting v(¢) = ¢4i6(z), the condition in Lemma 2 becomes

(=0)"
a

+S=0, (2)

where a = (k — 1)dy — kdy_1 and S = Z?:] adfe}(a)(—k)”‘f. Note that a # 0. Indeed, if m < 1, then d, = d_1 and hence
a=—dy; ifm=1,thena=(k—1)(k—1) — k(k — 2) = 1. Since G, is bounded, |91/.(oc)| <1
By Lemma 3 and the choice of k, for any j,

Oldf S )L(k—'l)dj/dk g )"]—1 < )\'n—l.

Thus S <A™ 1. By Lemma 3 again, o < A, a contradiction with (2). O
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