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We further develop a classical geometric construction of V. Klee and show, typically, that if
X is a nonreflexive Banach space with separable dual, then X admits an equivalent norm
| · | which is Fréchet differentiable, locally uniformly rotund, its dual norm | · |∗ is uniformly
Gâteaux differentiable, the weak∗ and the norm topologies coincide on the sphere of
(X∗, | · |∗) and, yet, | · |∗ is not rotund. This proves (a stronger form of) a conjecture of
V. Klee.
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1. Introduction

Differentiable norms on Banach spaces are most often obtained by constructing dual norms with rotundity prop-
erties. Indeed, a classical result of Šmulyan [14] implies that if (X,‖ · ‖) is a Banach space and its dual norm ‖ · ‖∗ on
X∗ is rotund, then ‖ · ‖ is Gâteaux differentiable (see also, e.g., [3, Corollary 7.23]). For sufficient conditions on a Banach
space to have an equivalent norm such that its dual norm is rotund, and for characterizations of this property, see, e.g.,
[9,13,12,10].

The contribution of this note goes somehow in the opposite direction, exploring the failure of the converse to Šmulyan’s
result.

The first construction of a Gâteaux differentiable norm whose dual norm is not rotund was given in [7] and, indepen-
dently, in [16]. Klee found, in [16], a geometric construction that, in the nonreflexive case, gave an application of Šmulyan’s
weak compactness result to the geometry of quotient spaces, providing in every nonreflexive separable Banach space an equiva-
lent norm that is Gâteaux differentiable and such that its dual norm is not rotund ([7, Proposition 3.3], see also [3, Exercise 8.63].
The precise statement of Klee’s result is slightly different. It reads: suppose that X is a separable normed linear space and L
is a nonreflexive closed subspace of X , of deficiency � 2; then X admits a norm under which X is smooth and X/L is not smooth.)
This in fact means that a separable Banach space X is reflexive if and only if every equivalent Gâteaux differentiable norm on X has
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rotund dual norm. We extend Klee’s result to spaces that admit an equivalent Gâteaux differentiable norm (Corollary 2) (note
that every separable Banach space has this property [8], see, e.g., [3, Theorem 8.2]). A modification of Klee’s construction is
needed, as special “smooth” compact sets in X used by him are no longer available in the new setting.

In this note we develop this construction further, extending the range of its use in several directions – and proving,
as a consequence, a stronger form of a conjecture of V. Klee in [3] (Klee conjectures there that its construction “can be
sharpened to produce an admissible norm under which X is both smooth and rotund while X/L is neither”.)

The Fréchet version of Šmulyan’s result above says that a dual locally uniformly rotund norm forces the predual norm on X
to be Fréchet differentiable (see, e.g., [3, Corollary 7.23]). Again, the converse fails, even up to renorming and asking only for
the rotundity instead of local uniform rotundity of the dual norm: indeed, in [15] it was proved that, for any uncountable
ordinal μ, the (nonseparable) Banach space C[0,μ] admits a Fréchet differentiable norm but admits no norm whose dual norm
is rotund (see, e.g., [1, Theorems VII.5.2(ii) and VII.5.4]).

Recently, it was proved in [4] that C[0,μ] admits an equivalent locally uniformly rotund norm that is Fréchet differentiable. It
seems to be unknown if the set of such norms is dense in the set of all equivalent norms on this space.

Our results include, too, a discussion of the failure of the Fréchet version of Šmulyan’s result for separable spaces: it gives
a relatively easy construction of a Fréchet differentiable and locally uniformly rotund norm on a separable space whose dual
norm is not rotund.

Overall, we believe that the results in this note may help in providing some more insight in renorming theory, in the
duality of smooth and rotund norms, and in the geometry of quotient spaces in general, in the case of nonreflexive spaces.
For example, a natural byproduct is that, even in the class of separable Asplund spaces, the rotundity of the dual norm of X∗
is a relatively quite strong notion, in the sense that it is not implied, in general, even by combined Fréchet differentiability,
local uniform rotundity and weak uniform rotundity of its predual norm of X . This should be compared with the fact that
every separable Asplund space admits an equivalent norm that is Fréchet differentiable, locally uniformly rotund, weakly
uniformly rotund and whose dual norm is locally uniformly rotund (see, e.g., [3, Chapter 8]).

As the main result of this paper we formulate the following theorem, that shows the main practical applications of the
construction. Later we shall discuss how to obtain further variants of this result.

Theorem 1. Let X be a subspace of a weakly compactly generated nonreflexive Banach space. Then:

(a) There exists an equivalent locally uniformly rotund and Gâteaux differentiable norm on X such that its dual norm on X∗ is not
rotund.

(b) If X is moreover an Asplund space, then there exists an equivalent Fréchet differentiable and locally uniformly rotund norm on X
such that its dual norm on X∗ is not rotund but the weak∗ and the norm topology on its dual unit sphere coincide.

(c) If X∗ is separable, then there exists a Fréchet differentiable, locally uniformly rotund and weakly uniformly rotund equivalent norm
on X whose dual norm is not rotund but the weak∗ and the norm topologies on its dual unit sphere coincide.

As we mentioned above, part (a) of Theorem 1 solves Klee’s conjecture positively. The following corollary extends the
result of the same author in [7, Proposition 3.3], who proved it for separable spaces.

Corollary 2. A Banach space X with a Gâteaux differentiable norm is reflexive if and only if any equivalent Gâteaux differentiable norm
on X has rotund dual norm.

Our notation is standard. Given a Banach space X , we denote by B X and S X the closed unit ball and unit sphere of X ,
respectively. The action of an element x∗ ∈ X∗ on an element x ∈ X will be denoted, indistinctly, by 〈x∗, x〉 or by x∗(x). If ‖ ·‖
is the norm of a Banach space X , we denote by ‖·‖∗ the corresponding dual norm on X∗ . Put Γ (S) for the absolutely convex
hull (i.e., the convex and symmetric hull) of a set S ⊂ X , and Γ (S) for the closed absolutely convex hull of S . Recall that the
Minkowski functional pB of a symmetric convex body B ⊂ X is defined by pB(x) = inf{λ > 0: x ∈ λB}, for x ∈ X . The convex
body B is said to be Gâteaux (Fréchet) smooth whenever pB is Gâteaux (respectively, Fréchet) differentiable in X \ {0}. Given
a set S ⊂ X , the (absolute) polar set S◦ is the subset of X∗ defined by S◦ = {x∗ ∈ X∗: |〈x∗, x〉| � 1, for all x ∈ S}. Observe
that pS◦ (x∗) = sup{|x∗(s)|: s ∈ S}. A Banach space X is called weakly compactly generated (WCG, in short) if there is a weakly
compact set K ⊂ X so that the closed linear hull of K equals X . Let (X,‖ · ‖) be a Banach space. The norm ‖ · ‖ is called
rotund (also called strictly convex) if x = y whenever ‖x‖ = ‖y‖ = ‖(x + y)/2‖ = 1. The norm ‖ · ‖ is called locally uniformly
rotund (in short LUR) if ‖xn −x‖ → 0 whenever xn, x ∈ S X are such that ‖xn +x‖ → 2. The norm ‖·‖ is called weakly uniformly
rotund (in short WUR) if xn − yn → 0 in the weak topology of X whenever xn, yn ∈ S X are such that ‖xn + yn‖ → 2. Note
that it follows from Šmulyan’s lemma that a norm is WUR if, and only if, its dual norm is uniformly Gâteaux differentiable
(see, e.g., [1, Theorem II.6.7]). A Banach space X is called an Asplund space if every separable subspace of X has separable
dual. For other concepts not defined here, we refer, e.g., to [3].

2. A modification of Klee’s construction

Let (X, | · |0) be a Banach space such that | · |∗0 is rotund. Fix x0 ∈ X such that |x0|0 = 1 and let x∗
0 be the (unique) element

in X∗ such that |x∗|∗ = 1 and 〈x∗, x0〉 = 1. (See Fig. 1.)
0 0 0
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Fig. 1. Construction of the set A.

Let H := {x ∈ X: 〈x∗
0, x〉 = 0} (a closed hyperplane of X ), and let Y be a closed hyperplane of H . Observe that X =

H ⊕ span{x0} (both algebraically and topologically). Let P : X → H and Q : X → span{x0} be the corresponding canonical
projections onto H and span{x0}, respectively, associated to the decomposition X = H ⊕ span{x0}.

The norm ‖ · ‖
We may define an equivalent norm ‖ · ‖ on X by the formula

‖x‖2 := |P x|20 + |Q x|20, for all x ∈ X . (1)

Observe that ‖·‖ agrees with | · |0 both on H and on span{x0}. This new norm is introduced to make some of the forthcoming
computations easier. It is simple to check that

(∥∥x∗∥∥∗)2 := (∣∣x∗�H
∣∣∗
0

)2 + (∣∣x∗�span{x0}
∣∣∗
0

)2
, for all x∗ ∈ X∗. (2)

The sets A and B, and the norm ||| · |||
Let p ∈ H be such that dist(p, Y ) � 2. Denote by x∗

1 and x∗
2 the continuous linear functionals in Y ⊥ (⊂ X∗) defined by

〈
x∗

1, x0
〉 = 〈

x∗
1, p

〉 = 1, and
〈
x∗

2, x0
〉 = 〈

x∗
2,−p

〉 = 1. (3)

By using (2), it is simple to prove that

(∥∥x∗
1

∥∥∗)2 = (∥∥x∗
2

∥∥∗)2 = 1

dist(p, Y )2
+ 1 =: M2. (4)

The set x0 + Y together with the point p define a translate of a hyperplane, precisely (x∗
1)

−1(1). Put W1 := (x∗
1)

−1(−∞,1].
Analogously, x0 + Y together with −p define a translate of a hyperplane, precisely (x∗

2)
−1(1). Put W2 := (x∗

2)
−1(−∞,1].

Proposition 3. There exists a bounded symmetric closed convex body B in X such that B ⊂ W1 ∩ W2 , dist(x0 + Y , B) = 0, and
(x0 + Y ) ∩ B = ∅.

Proof. The construction of B is done in two steps. First, since Y is not reflexive, we may find, by James’ weak compactness
theorem, an element

y∗
0 ∈ S(Y ∗,‖·‖∗) (5)

not attaining its norm on B(Y ,‖·‖) . For n ∈ N let Cn := {y ∈ B(Y ,‖·‖): 〈y∗
0, y〉 � 1 − 1/n}. We obtain in this way a decreasing

sequence {Cn} of closed convex subsets of B(Y ,‖·‖) with the property that
⋂∞

n=1 Cn = ∅.
Put C0 := B(H,‖·‖) and let (see Fig. 1)

A := Γ

( ∞⋃
n=0

(
Cn + (

1 − 2−n)x0
))

.

This set is bounded, closed and absolutely convex. It is clear that A has a nonempty interior. Moreover, (x0 + Y ) ∩ A = ∅.
This can be seen as follows. Assume that for some y ∈ Y we have x := x0 + y ∈ A. Then 〈x∗

0, x〉 = 1. Find a sequence {xn}
in Γ (

⋃∞
n=0(Cn + (1 − 2−n)x0)) that converges to x. For n ∈ N, put xn = ∑mn γn,i(cn,i + (1 − 2−i)x0), where cn,i ∈ Ci for all
i=0
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Fig. 2. Construction of the set B .

i = 0,1,2, . . . ,mn and
∑mn

i=0 |γn,i | � 1. Note that

〈
x∗

0, xn
〉 = mn∑

i=0

γn,i
(
1 − 2−i)〈x∗

0, x0
〉 = mn∑

i=0

γn,i
(
1 − 2−i) → 1, as n → ∞. (6)

Fix k ∈ N and observe that, due to (6),∑
{i�mn: i�k or γn,i<0}

|γn,i| → 0, as n → ∞.

This allows us to introduce small perturbations γ ′
n,i of the coefficients γn,i in such a way that we have γ ′

n,i � 0 for all

i = 0,1,2, . . . ,mn , n ∈ N,
∑mn

i=0 γ ′
n,i = 1, and, by passing eventually to a subsequence, dn ∈ Cn and {dn}∞n=1 converges, where

dn := ∑mn
i=0 γ ′

n,icn,i for all n ∈ N. This contradicts the fact that
⋂∞

n=1 Cn = ∅.

For the second step, let At := A ∩ (x∗
0)

−1(t) for t ∈ (−1,1). Let

B0 := 1

2M
B(X,‖·‖), (7)

where M was defined in (4).
Put (see Fig. 2)

B :=
⋃

t∈(−1,1)

At + (
1 − |t|)B0, (8)

where B0 was defined in (7).
We claim that B ⊂ W1 ∩ W2.
In order to prove the claim, observe first that ker(x∗

1�H ) = Y , hence 2 � dist(p, Y ) = |x∗
1(p)|/‖x∗

1�H‖ = 1/‖x∗
1�H‖, and so

∥∥x∗
1�H

∥∥ � 1/2. (9)

Let x = ∑m
i=0 γi(ci + (1 − 2−i)x0), where ci ∈ Ci for i = 0,1, . . . ,m. Fix t ∈ (0,1). Assume that t = x∗

0(x). Then t =∑m
i=0 γi(1 − 2−i) = ∑m

i=1 γi(1 − 2−i).
Let y ∈ (1 − |t|)B0. Note that |x∗

1(y)| � 1
2 (1 − |t|). Moreover, in view of (9), we have |x∗

1(c0)| � 1
2 .

Additionally, |γ0| + |t| � |γ0| + ∑m
i=1 |γi | = ∑m

i=0 |γi | � 1. Thus

∣∣x∗
1(x + y)

∣∣ �
∣∣γ0x∗

1(c0) + t
∣∣ + 1

2

(
1 − |t|) � 1

2

(
1 − |t|) + |t| + 1

2

(
1 − |t|) = 1.

To finish, we pass to closures. This shows that B ⊂ W1. The same argument applies to x∗
2 and so B ⊂ W2. This proves the

claim.
That B has a nonempty interior is clear, since it contains A. To check that B is convex and symmetric is easy; it is

enough to deal with elements in sets of the form At + (1 − |t|)B0, t ∈ (−1,1).
Let us prove now that B is indeed closed. To this end, let x ∈ B , and let {xn} be a sequence in B that converges to x.

For n ∈ N, let tn ∈ (−1,1) be such that xn ∈ Atn + (1 − |tn|)B0. Without loss of generality we may assume that xn ∈ Atn +
(1 −|tn|)B0, say xn = atn + (1 −|tn|)bn , where atn ∈ Atn and bn ∈ B0 for all n ∈ N, and that {tn} converges to some t ∈ [−1,1].
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We shall consider two cases.

1. Suppose first that t ∈ (−1,1). If tn � t infinitely often, we may assume that tn � t for all n ∈ N, and we fix z ∈ A such
that 〈x∗

0, z〉 > t . Otherwise, we may assume that tn > t for all n ∈ N, and we fix z ∈ A such that 〈x∗
0, z〉 < t . For n ∈ N

and λn ∈ [0,1], put yn := λnatn + (1 − λn)z in such a way that 〈x∗
0, yn〉 = t . This implies that λntn + (1 − λn)x∗

0(z) = t for
all n ∈ N, so λn → 1. The element yn , as a convex combination of two elements in A, belongs to A, too, so it belongs
to At . It follows that yn + (1 − |t|)bn ∈ At + (1 − |t|)B0 for n ∈ N. As it is easy to show, the sequence {yn + (1 − |t|)bn}
converges to x, so x ∈ At + (1 − |t|)B0(⊂ B).

2. Suppose now that t ∈ {−1,1}, say t = 1. It follows that atn → x, so x ∈ A, and 〈x∗
0,atn 〉 → 〈x∗

0, x〉, hence 〈x∗
0, x〉 = 1. By

the first part of the proof, this is a contradiction with the fact that
⋂∞

n=1 Cn = ∅. The argument for t = −1 is similar. �
Define an equivalent norm ||| · ||| on X by

||| · ||| := pB , (10)

where pB is the Minkowski functional of the set B defined in (8).

Some more constructions
The norm ||| · ||| on X defined in (10) has the property that x∗

1 and x∗
2 introduced in (3) define two distinct supporting

hyperplanes to B(X/Y ,|||·|||) at x0 + Y , hence the dual norm ||| · |||∗ is not rotund. This was the conclusion reached in [7,
Proposition 3.3]. To be a little bit more precise, observe that[

x∗
1, x∗

2

] ⊂ S(X∗,|||·|||∗). (11)

This can be seen as follows:

(i) Since B ⊂ W1 ∩ W2, we get |||x∗
i |||∗ � 1, i = 1,2.

(ii) x∗
0 = 1

2 (x∗
1 + x∗

2)(∈ B(X∗,|||·|||∗)).
(iii) For n ∈ N, put

wn := cn + (
1 − 2−n)x0, (12)

where cn ∈ Cn . Then wn ∈ A ⊂ B , hence |||wn||| � 1, for all n ∈ N, and x∗
0(wn) = 1 − 2−n → 1 as n → ∞. This shows that

|||x∗
0||| � 1. All together, we have proved (11).

The norm | · |
Our last step in the construction of the sought norm is to use the equation

| · |2 = ||| · |||2 + ‖ · ‖2 (13)

to define a new equivalent norm | · | on X . This is the norm with which we will test the announced result and its variants.

3. Proof of Theorem 1 (and of Corollary 2)

We prove here the main result of this note.

Proof of Theorem 1, part (a). First of all, every weakly compactly generated space admits an equivalent norm that is LUR
and its dual norm is rotund (see, e.g., [1, Theorems II.4.1, VII.I.16 and Corollary VII.1.11]). This will be the norm | · |0 to start
with in the construction done in Section 2.

From (2) it follows, by a standard convexity argument, that ‖ · ‖ is LUR and that ‖ · ‖∗ is rotund. By Šmulyan’s lemma,
‖ · ‖ is Gâteaux differentiable.

Let us show that ||| · ||| defined in (10) is Gâteaux differentiable, too. To this end, assume that x∗ and y∗ are two non-
zero functionals in X∗ that support B at some point x ∈ B . By the definition of B in (8), there exists t ∈ (−1,1) such that
x ∈ At + (1 − |t|)B0. Then x∗ and y∗ support At + (1 − |t|)B0 at x. Since

(pt :=) p(At+(1−|t|)B0)◦ = p(At )◦ + p((1−|t|)B0)◦ , (14)

and p((1−|t|)B0)◦ is rotund, so is pt , and we get x∗ = y∗ . This proves that ||| · ||| is Gâteaux differentiable.
It is straightforward then that | · |, defined in (13), is Gâteaux differentiable, too. It is also LUR (see, e.g., [1, Fact II.2.3]).
In order to prove that | · |∗ is not rotund we need some basic facts and some (easy) computations, that we record below

for the sake of completeness. First of all, if (X1,‖ · ‖1) and (X2,‖ · ‖2) are two Banach spaces, and(
X,‖ · ‖) := (

X1,‖ · ‖1
) ⊕2

(
X2,‖ · ‖2

)
,
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then (X∗,‖ · ‖∗) is isometric to (X∗
1,‖ · ‖∗

1) ⊕2 (X∗
2,‖ · ‖∗

2). The isometry

ϕ : (X∗
1,‖ · ‖∗

1

) ⊕2
(

X∗
2,‖ · ‖∗

2

) → (
X∗,‖ · ‖∗)

is given by

ϕ
(
x∗

1, x∗
2

)
(x1, x2) = 〈

x∗
1, x1

〉 + 〈
x∗

2, x2
〉
, for x1 ∈ X1, x2 ∈ X2, x∗

1 ∈ X∗
1, x∗

2 ∈ X∗
2 .

We shall identify from now on the two spaces (X∗
1,‖ · ‖∗

1) ⊕2 (X∗
2,‖ · ‖∗

2) and (X∗,‖ · ‖∗).
Consider, as a particular case, the two Banach spaces (X, ||| · |||) and (X,‖·‖) defined above, and let (Z ,‖·‖2) := (X,‖·‖)⊕2

(X, ||| · |||). Denote by � the diagonal of X × X . Certainly, the space (�,‖ · ‖2) is isometric, via the mapping D : � → X given
by D(x, x) = x for all x ∈ X , to the space (X, | · |), where | · | has been defined in (13); thus, D∗ : (X∗, | · |∗) → (Z∗,‖ · ‖∗

2)/�
⊥

is again an isometry. Note that (Z∗,‖ · ‖∗
2) = (X∗, ||| · |||∗)⊕2 (X∗,‖ · ‖∗). For x∗ ∈ X∗ , and being D∗x∗ an element of a quotient

space, we have∣∣x∗∣∣∗ = ∥∥D∗x∗∥∥∗
2 = inf

{∥∥(
z∗

1, z∗
2

)∥∥∗
2: z∗

1, z∗
2 ∈ Z∗, q

(
z∗

1, z∗
2

) = D∗x∗}, (15)

where q : Z∗ → Z∗/�⊥ is the canonical quotient mapping. Observe, too, that q(z∗
1, z∗

2) = D∗x∗ if, and only if, z∗
1 + z∗

2 = x∗ .
So, (15) becomes∣∣x∗∣∣∗ = inf

{((∥∥z∗
1

∥∥∗)2 + (∣∣∣∣∣∣z∗
2

∣∣∣∣∣∣∗)2)1/2
: z∗

1, z∗
2 ∈ Z∗, z∗

1 + z∗
2 = x∗}. (16)

Let h∗
0(∈ H∗) be a Hahn–Banach extension of y∗

0 (recall that y∗
0 was introduced in (5)) to H (this extension is unique,

by a result of Phelps [11], although this is irrelevant here). Define an extension z∗
0 ∈ X∗ of h∗

0 to X by letting 〈z∗
0, x0〉 = 0.

Observe that ‖z∗
0‖∗ = 1. Put

u∗ := 1√
2

(
x∗

0 + z∗
0

)
. (17)

By using (2), we get∥∥u∗∥∥∗ = 1. (18)

Put

v∗
i := x∗

i + √
2u∗

√
3

(
= x∗

i + x∗
0 + z∗

0√
3

)
, for i = 1,2. (19)

We shall show that[
v∗

1, v∗
2

] ⊂ S(X∗,|·|∗). (20)

This is a consequence of the following three observations:

(i) According to (11), (16), (18), and (19), we have

(∣∣v∗
i

∣∣∗)2 �
(|||x∗

i |||∗)2

3
+ 2(‖u∗‖∗)2

3
= 1, i = 1,2,

so [v∗
1, v∗

2] ⊂ B(X∗,|·|∗) .
(ii) For wn as in (12), note that

|wn|2 = |||wn|||2 + ‖wn‖2

� 1 + ‖cn‖2 + ∥∥(
1 − 2−n)x0

∥∥2 � 1 + 1 + (
1 − 2−n)2 � 3,

hence |wn| � √
3 for all n ∈ N.

(iii) Observe, too, that 1
2 (v∗

1 + v∗
2) = 2x∗

0 + z∗
0. Thus,

1

2

(
v∗

1 + v∗
2

)
(wn) = 1√

3

(
2x∗

0 + z∗
0

)(
cn + (

1 − 2−n)x0
)

= 1√
3

((
1 − 2−n)2x∗

0(x0) + z∗
0(cn)

)
� 1√

3

(
2
(
1 − 2−n) + (

1 − n−1)) → √
3.

All together, we get (20), showing that | · |∗ is not rotund. �
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Proof of Theorem 1, part (b). First of all, any Asplund weakly compactly generated Banach space admits an equivalent norm
that is, together with its dual norm, LUR ([2], see also, e.g., [1, Theorem VII.1.14]). This will be now the norm | · |0 to start
with in the construction done in Section 2.

By (2) and a standard convexity argument, it follows that both norms ‖ · ‖ and ‖ · ‖∗ are also LUR (in particular, ‖ · ‖ is
Fréchet differentiable).

Let us show that ||| · ||| is Fréchet differentiable, too. Observe first that the rotund dual norm pt on X∗ defined in (14) has
the property that w∗ and the pt -topology coincide on the unit sphere defined by pt . Indeed, since At is bounded, p A◦

t
is a

‖ · ‖∗-continuous seminorm on X∗ and, by assumption, p((1−|t|)B0)◦ is an equivalent LUR norm on X∗ . It is routine to check

that any net {x∗
α} ⊂ S(X∗, pt ) such that x∗

α
ω∗−−→ x∗ ∈ S(X∗,pt ) , will satisfy p((1−|t|)B0)◦ (x∗

α − x∗) → 0. Therefore, pt(x∗
α − x∗) → 0.

Behind is the fact that, if the dual norm of a Banach space X is LUR, then X∗ has the so-called w∗-Kadec–Klee property
(see, e.g., [3, Exercise 8.45]).

Now, take x ∈ B such that |||x||| = 1. Let x∗ ∈ X∗ be such that |||x∗|||∗ = 1 and x∗(x) = 1. For n ∈ N, let x∗
n ∈ X∗ be

such that |||x∗
n|||∗ = 1 and x∗

n(x) → 1. There exists t ∈ (−1,1) such that x ∈ At + (1 − |t|)B0. By convexity, we deduce that
pt(x∗

n) → 1. Since pt is rotund, its predual norm is Gâteaux differentiable and, by Šmulyan’s lemma (see, e.g., [1, The-

orem 1.4]), (x∗ − x∗
n)

w∗−−→ 0. Since w∗ and the pt -topology coincide on the unit sphere defined by pt , we deduce that
pt(x∗ − x∗

n) → 0, so |||x∗
n − x∗|||∗ → 0. The Fréchet differentiability of ||| · ||| at x follows by using Šmulyan’s lemma again.

Since ‖ · ‖ and ||| · ||| are Fréchet differentiable, we may assert that | · | defined in (13) is also Fréchet differentiable. It is
also LUR, due to the way it was defined and the fact that ‖ · ‖ is LUR. That | · |∗ is not rotund was shown in the proof of
Theorem 1, part (a).

To prove the statement on coincidence of the topologies, let q : (Z∗,‖·‖∗
2) → (X∗, | · |∗) be the canonical quotient mapping

(see the construction at the fourth paragraph in the proof of part (a)). Assume that {x∗
i }i∈I is a net in S(X∗,|·|∗) that w∗-

converges to an element x∗ ∈ S(X∗,|·|∗) . Choose elements z∗
i ∈ S(Z∗,‖·‖∗

2) such that q(z∗
i ) = x∗

i for i ∈ I . Take an arbitrary subnet
{z∗

i j
} j∈ J of {z∗

i }i∈I ; it has a w∗-cluster point z∗ ∈ B(Z∗,‖·‖∗
2) . Since q(z∗) = x∗ , we get ‖z∗‖∗

2 � 1, hence ‖z∗‖∗
2 = 1 and so z∗

is a Hahn–Banach extension of x∗ to Z . Since (Z∗,‖ · ‖∗
2) is rotund (it is even LUR, see above in this proof), this extension

is unique ([11], see also, e.g., [3, Exercise 7.69]). It follows that the net {z∗
i }i∈I is w∗-convergent to z∗ . Due to the fact that

(Z∗,‖ · ‖∗
2) is LUR, we get ‖z∗

i − z∗‖∗
2 → 0 (see again, e.g., [3, Exercise 8.45]), hence |x∗

i − x∗|∗ → 0. �
Proof of Theorem 1, part (c). This follows from the fact (see, e.g., [1, Theorem II.7.1 (ii)]) that every Banach space with a
separable dual has an equivalent LUR and WUR norm | · |0 such that | · |∗0 is LUR.

Then the desired properties are possessed by the norm | · | defined in (13) thanks to the way ‖ · ‖, ||| · |||, and | · |, were de-
fined, the use of [1, Propositions II.1.2 and II.1.3] for the LUR and rotundity properties respectively, and [1, Proposition II.6.2]
for the WUR property. �
Proof of Corollary 2. If X is reflexive and | · |0 is an equivalent Gâteaux differentiable norm on X , then its dual norm is
rotund by Šmulyan’s lemma. Assume now that X is not reflexive. If | · |0 is a Gâteaux differentiable norm on X whose dual
norm is not rotund, we are done. If, on the contrary, | · |∗0 is rotund, then (following the notation in the proof of Theorem 1),
the norm ‖ · ‖∗ is also rotund, hence ‖ · ‖ is Gâteaux differentiable. The rest is the same as the proof of Theorem 1. �
Remarks.

1. By using the same method of proof, the following extension of Theorem 1 can be proved:

Let (X, | · |0) be a nonreflexive Banach space.
(a) If | · |∗0 is rotund, then there exists an equivalent Gâteaux differentiable norm | · | on X such that its dual norm on X∗ is not

rotund. If, in addition, X has a norm that is rotund, then | · | can even be taken to be rotund.
(b) If | · |∗0 is LUR, then there exists an equivalent Fréchet differentiable and LUR norm | · | on X such that | · |∗ is not rotund.

Moreover, the norm and w∗ topologies agree on S(X∗,|·|∗) .

To show (a), note that (i) in case the Banach space X has a dual rotund norm, then the set of all equivalent norms on X
having a rotund dual norm is residual in the space of all equivalent norms on X (endowed with the metric of uniform
convergence on the unit ball of X , a Baire space, see, e.g., [1, Section II.4]), and (ii) if X has a rotund norm, then the
set of all rotund equivalent norms on X is residual in the space of all equivalent norms on X (for both results, see, e.g.,
[1, Theorem II.4.1]). Therefore, we may start the construction of the norm | · | from a norm | · |0 that is, simultaneously,
rotund and having a rotund dual norm. It is clear that | · | so constructed is, also, rotund.
Part (b) follows from the result of Haydon quoted in Remark 2. Indeed, we may assume then that both norms | · |0 and
| · |∗0 are LUR. By (2) and a standard convexity argument, it follows that both norms ‖ · ‖ and ‖ · ‖∗ are also LUR (in
particular, ‖ · ‖ is Fréchet differentiable). The rest of the proof is the same as to the proof of Theorem 1.
Part (a) of the extension stated above applies, for example, to the class of weakly countably determined Banach spaces
(see, e.g., [1, Theorems VII.1.16 and II.4.1]), since those spaces have always an equivalent norm that is LUR and such that
its dual norm is rotund.
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2. Note that Haydon showed in [6] that a Banach space X admits an equivalent LUR norm such that its dual norm is again
LUR whenever X admits an equivalent norm whose dual is LUR. In [5], it is also proved that there exists a Banach space
X such that the dual norm is rotund although no rotund equivalent norm can be found on X .

3. Observe that, by modifying the basic construction slightly, we may conclude that, in a nonreflexive Banach space X
which admits an equivalent LUR (rotund) dual norm, the set of norms on X that are simultaneously Fréchet (respectively
Gâteaux) differentiable, and that have a dual non-rotund norm, is dense in the set of all equivalent norms on X .
Indeed, assume first that (X, | · |0) is a nonreflexive Banach space such that | · |∗0 is rotund. As it was mentioned in
Remark 1, the set of equivalent norms on X whose dual norms are rotund is residual in the set of all equivalent norms
on X endowed with the metric ρ of uniform convergence on the unit ball of the space. In particular, given an arbitrary
equivalent norm | · |1 on X and ε > 0, we may find an equivalent norm (call it again | · |0) such that ρ(| · |0, | · |1) < ε
and that its dual norm is rotund. This time, instead of defining the norm ‖ · ‖ by using the projections P and Q (see
Section 2), we just put ‖ · ‖ := | · |0. Now we can build, instead of B , a set Bε with the same properties there and such
that (1 − ε)B(X,‖·‖) ⊂ Bε ⊂ (1 + ε)B(X,‖·‖) . For this, Bε should be constructed (we follow the notation in Section 2) by
letting Cn := {y ∈ (ε/2)B(Y ,‖·‖): 〈y∗

0, y〉 � (ε/2) − 1/n}, for n ∈ N big enough, putting

Aε := Γ
(

A ∪ (1 − ε)B(X,‖·‖)
)
,

and

Bε :=
⋃

t∈(−1,1)

Aε,t + ε
(
1 − |t|)B0,

where Aε,t = Aε ∩ (x∗
0)

−1(t), for t ∈ (−1,1).
Observe that Bε is not necessarily included in W1 ∩ W2. However, for ε > 0 there exists n ∈ N such that the continuous
functionals x∗

1,ε and x∗
2,ε in Y ⊥ , given by x∗

1,ε(x0) = x∗
2,ε(x0) = 1 and x∗

2,ε(−p) = x∗
1,ε(p) = n−1, define, analogously as on

p. 460, sets W ε
1 and W ε

2 such that Bε ⊂ W ε
1 ∩ W ε

2 .
This set Bε defines a norm ||| · |||ε := pBε . This is now the norm needed. The rest of the proof is similar to the former
one. This time we do not obtain rotundity of ||| · |||.
For the Fréchet case, let us recall that in case that (X∗, | · |∗0) is LUR, the set of equivalent norms in X that have a dual
LUR norm is residual (see [1, Theorem II.4.1]). Since X has an equivalent LUR norm [6], the set of equivalent LUR norms
in X is again residual [1, Theorem II.4.1]. An appeal to the Baire category theorem shows that the set of equivalent LUR
norms in X that have a dual LUR norm is residual, too. This allows to take, given any equivalent norm | · |1 in X , an
equivalent norm in this class (called again | · |0), as close to | · |1 as we wish, and start the construction above.

4. The results in this paper should be compared with the (simple) fact that if the norm ‖ · ‖ of X as well as its dual norm
are both Fréchet differentiable, then the norm ‖ · ‖ as well as its dual norm are both LUR (see, e.g., [3, Exercise 8.5]).

Open problem (S. Troyanski). For the class of Banach spaces with (uncountable) unconditional basis, a characterization of
those spaces admitting an equivalent norm whose dual norm is rotund was provided in [13]. It is not known whether a
Banach space with an uncountable unconditional basis such that its norm is Gâteaux differentiable has an equivalent norm
whose dual norm is rotund.
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