A high colony count of anaerobic bacteria is related to lung clearance index in cystic fibrosis

K. O’Neill1, E. Johnston1, S.J. McGrath1, L. McIlreavey1, J.M. Bradley2, S. Rowan1, A. Reid1, I. Bradbury3, M. Tunney1, J.S. Elborn1. 1CF and Airways Microbiology Research Group, Queen’s University Belfast, Belfast, United Kingdom; 2Centre for Health and Rehabilitation Technologies (CHART), University of Ulster, Belfast, United Kingdom; 3Belfast Health and Social Care Trust, Belfast, United Kingdom; 4Frontier Science Ltd, Scotland, United Kingdom

Introduction: Although anaerobic bacteria have been detected in abundance in the CF airways, the impact their presence and abundance has on lung function and inflammation is unclear.

Objectives: To investigate the relationship between aerobic and anaerobic bacterial colony counts (CC), lung clearance index (LCI), FEV1 and systemic inflammation in clinically stable CF child and adult patients.

Methods: Sputum was collected from CF patients and community composition and bacterial abundance was analysed using extended aerobic and anaerobic culture. All subjects completed spirometry and multiple breath washout using 0.2% SF6 and a modified Innocor™ device to obtain LCI. Blood C-reactive protein, (CRP) was measured by turbidimetric immunoassay. Spearman’s rank correlation coefficient was used to assess relationships.

Results: Aerobic and anaerobic bacteria were detected in sputum samples from all 29 CF patients studied. A significant negative correlation between total anaerobic CC and LCI (r = −0.54, p = 0.002) was observed. The relationship between total anaerobic CC and FEV1 % predicted (r = 0.29; p = 0.13) was not significant. Similarly, the relationship between total aerobic CC, LCI (r = −0.32; p = 0.09) and FEV1 % predicted (r = 0.27; p = 0.16) was not significant. In a subgroup of patients (15/29; 52%), a significant negative correlation was observed between total anaerobic CC and CRP levels (r = −0.56, p = 0.03).

Conclusions: A higher CC of anaerobic bacteria resulted in a better LCI and lower CRP, indicating that a lower load of anaerobic bacteria may reflect microbiota disruption and disease progression in the CF lung.

Funded by a US–Ireland Project Partnership Grant.

The use of LCI as an effective tool for monitoring clinical response to ivacaftor therapy in CF patients with at least one G551D-allele

L.E. Jenkins1, A. Reid2, D.G. Downey3, J.S. Elborn3, J.C. Rendall3. 1Royal Belfast Hospital for Sick Children, Allen Ward, Belfast, United Kingdom; 2Royal Belfast Hospital for Sick Children, Belfast, United Kingdom; 3Belfast Adult CF Centre, Belfast City Hospital, Belfast, United Kingdom

Objectives: To assess the use of Lung Clearance Index (LCI) as a tool for monitoring pulmonary response to ivacaftor therapy.

Methods: Ivacaftor therapy became standard in NI in 2013 for CF patients with one G551D-CFTR allele, positive sweat chloride and/or evidence of sino-pulmonary disease. Data were collected retrospectively on all adults and children on ivacaftor in NI. LCI measurements had been recorded pre-treatment, at 1 and 6 months on treatment, along with FEV1.

Results: 22 patients were eligible for inclusion, 15 adults and 8 children. Data were complete on 7 children and 7 adults at baseline and at 1 month. Due to lack of sufficient data, analysis was not carried out in the adults at 6 months. Mean baseline LCI: adults 11.15 (range 8–15.8); children 9.07 (range 6.54–10.8). Mean LCI after 1 month of treatment: adults 10.93 (range 8–13.77); children 7.68 (range 6.57–8.76). Mean LCI after 6 months of treatment: children 7.8 (range 6.12–10.73).

Conclusion: Mean LCI improved in adults and children after 1 month of ivacaftor therapy and was sustained in children at 6 months. LCI may be a useful tool for monitoring the effectiveness of ivacaftor therapy especially in those with normal FEV1.