REGULAR ELEMENTS IN SANDWICH SEMIGROUPS OF BINARY RELATIONS

Melvin C. THORNTON

Department of Mathematics and Statistics, University of Nebraska, Lincoln, NE 68588, USA

Received 15 April 1980
Revised 6 October 1981

This note gives a counterexample to a published characterization of regular elements in sandwich semigroups of binary relations. The method of that paper is used to characterize those elements having a right identity. A characterization of regular elements is obtained following the approach of Schein.

0. Introduction

Let R be a fixed binary relation on a set X. For any two relations A and B in \mathcal{B}_X, the set of all binary relations on X, define $A \ast B$ as ARB where juxtaposition is the usual composition of relations. Denote by $\mathcal{B}_X(R)$ the semigroup defined on \mathcal{B}_X by the \ast operation. $\mathcal{B}_X(R)$ is called the sandwich semigroup of binary relations with sandwich relation R. These semigroups were studied by K. Chase in [1-3] with some motivation towards applications to automata theory. Others (e.g. [8]) have used sandwich semigroups in other contexts.

The main result of [3] characterizes regular elements of $\mathcal{B}_X(R)$ in terms of two functions from $\mathcal{B}_X(R)$. Unfortunately the conditions as stated are sufficient but not necessary. The methods used by Chase can be modified to characterize those elements of $\mathcal{B}_X(R)$ which have a right identity and for finding an algorithm to determine the maximal right identity.

In the final section of this paper a single necessary and sufficient condition for the regularity of an element in $\mathcal{B}_X(R)$ is found. The method here is a slight modification of that due to Schein [10] and produces the maximal inverse for each regular element. Many of the results here apply with minor changes to the semigroups of closed relations considered in [5-7]. The author thanks the referees for helpful comments.

1. Preliminaries

Binary Boolean matrices can be used to represent binary relations on X. For $A \in \mathcal{B}_X(R)$ the matrix corresponding to A has a one in the (x, y) position iff...
Then the composition of relations is the same as binary Boolean matrix multiplication. The converse of Λ,
\[A^{-1} = \{(y, x) \mid (x, y) \in A\} \]
as a matrix is the transpose. For any $x \in X$,
\[xA = \{y \mid (x, y) \in A\} \]
is called the xth row of A. The xth column is similarly defined as
\[Ax = \{y \mid (y, x) \in A\} = xA^{-1}. \]
For any subset $S \subseteq X$,
\[[S]A = \bigcup \{sA \mid s \in S\} \quad \text{and} \quad A[S] = \bigcup \{As \mid s \in S\} = [S]A^{-1}. \]
Then the range of A is $[X]A$ and the domain is $A[X]$. The collection $\{[S]A \mid S \subseteq X\}$ is called the row space of A and forms a lattice $\mathcal{Y}(A)$ under inclusion. The column space lattice is $\mathcal{Y}(A^{-1}) = \{A[S] \mid S \subseteq X\}$ under inclusion. Equality and isomorphisms of these lattices determine the Green's relations in \mathcal{B}_X but not in $\mathcal{B}_X(R)$, (see [2, 9, 11]).

For each $A \in \mathcal{B}_X(R)$ two other relations may be defined as follows:
\[W(A) = \{(x, y) \mid \text{for some } v \in X, x \in ARv \text{ and } ARv \subseteq Ay\}, \]
\[B(A) = \{(x, y) \mid ARx \subseteq Ay\}. \]
It is easy to check that $W(A)$ has the property that for each x, $xW(A)$ is W_{xAR} as defined in [3, Proposition 2.3]. The definition of $B(A)$ here is close to how B was defined in [3, Proposition 2.3]. Note that in contrast to how B was defined it is not required that $xB(A) = \emptyset$ when $xA = \emptyset$. If this were required, then
\[
A = \begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix} \quad \text{and} \quad R = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\]
gives a counterexample to $A * B = A$ which is claimed in the proof of [3, Proposition 2.3]. Because of [3, Example 2.6] it appears that requirement was not really intended.

In terms of the relations $W(A)$ and $B(A)$, Theorem 2.5 of [3] becomes: A is regular in $\mathcal{B}_X(R)$ if and only if $A = W(A)$ and for each $x \in X$ there is a $K_x \subseteq X$ with $[K_x]RA = xB(A)$. This last condition is equivalent to $B(A) = C * A$ for some C. Because $W(A) = A$ implies $A * B(A) = A$ by Proposition 2.2, this is just that A and $B(A)$ are L-related. Let
\[
A = \begin{pmatrix}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix} \quad \text{and} \quad R = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix},
\]
then

\[B(A) = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad W(A) = \mathcal{A}, \quad A \ast B(A) = A \]

yet \(B(A) \neq C \ast A \) for any \(C \) in \(\mathcal{B}_x(R) \). If

\[D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \]

then \(A \ast D \ast A = A \) so \(A \) is regular in \(\mathcal{B}_x(R) \). This contradicts \([3, \text{Theorem 2.5}]\) and shows the condition there is not necessary, although it is sufficient.

2. Right identities in \(\mathcal{B}_x(R) \)

A right identity for \(A \in \mathcal{B}_x(R) \) is an element \(C \) so that \(A \ast C = A \). In this section the relations \(W(A) \) and \(B(A) \) will be used to determine the existence of right identities and to find the largest such identity.

Lemma 2.1. For all \(A \in \mathcal{B}_x(R), \ W(A) \subseteq A. \)

Proof. If \((x, y) \in W(A) \), then \(x \in AR_\mathcal{U} \subseteq A y \) for some \(\mathcal{U} \). Hence \(x \in A y \) or \((x, y) \in A \).

Proposition 2.2. \(A \ast B(A) = W(A) \) for all \(A \) in \(\mathcal{B}_xR \).

Proof. For \((x, y) \in W(A) \) choose \(\mathcal{U} \) so that \(x \in A \mathcal{U} R_v \) and \(A \mathcal{U} R_v \subseteq A y \). Thus \((x, \mathcal{U}) \in AR \). Therefore \((x, y) \in B(A) \). Hence \((x, y) \in A \mathcal{R} B(A) = A \ast B(A) \). Conversely, let \((x, y) \in A \ast B(A) = A \mathcal{R} B(A) \). Then for some \(v, (x, v) \in A R \) and \((v, y) \in B(A). \) Hence \(x \in A \mathcal{U} R_v \) and \(A \mathcal{U} R_v \subseteq A y \). Therefore \((x, y) \in W(A). \)

Lemma 2.3. Let \(A \) and \(C \) be in \(\mathcal{B}_R(X) \). If \(A \ast C \subseteq A \), then \(C \subseteq B(A). \)

Proof. Let \((x, y) \in C \). If \(A \mathcal{R} x = \emptyset \), then \((x, y) \in B(A) \). Suppose \(s \in A \mathcal{R} x \), i.e. \((s, x) \in AR \). Then \((s, y) \in A RC = A \ast C \subseteq A \). Thus \((s, y) \in A \) or \(s \in A y \). Hence \(A \mathcal{R} x \subseteq A y \) and \((x, y) \in B(A) \).

Corollary 2.4. \(B(A) = \bigcup \{ C \mid A \ast C \subseteq W(A) \}. \)

Proof. \(B(A) \) is included in the union by Proposition 2.2. The opposite inclusion follows from Lemmas 2.1 and 2.3.
Theorem 2.5. An element A has a right identity in $\mathcal{B}_X(R)$ if and only if $W(A) = A$. In this case $B(A)$ is the largest right identity.

Proof. If C is a right identity let $(x, y) \in A = A * C = ARC$. Then choose v so $(x, v) \in AR$ and $(v, y) \in C$. Then $x \in ARv$. Suppose $u \in ARv$, then $(u, v) \in AR$, so $(u, y) \in ARC = A$ or $u \in Ay$. Hence $ARv \subset Ay$, $(x, y) \in W(A)$ and $A \subset W(A)$. By Lemma 2.1, $W(A) = A$. Conversely, if $W(A) = A$, then by Proposition 2.2 $A * B(A) = A$, so A has a right identity. By Lemma 2.3 $B(A)$ contains any right identity.

The following additional facts relating A, $W(A)$, and $B(A)$ are fairly easy to derive from the previous results and definitions.

Proposition 2.6. Let A and C be any elements in $\mathcal{B}_X(R)$.

(a) $W(A) * B(A) \subset W(A)$.
(b) $B(A) * B(A) \subset B(A) \subset B(B(A))$.
(c) If $R = 1$ equality holds in (b).
(d) A and C L-related implies $B(A) = B(C)$ and $W(A)$ is L-related to $W(C)$.
(e) If $A = P \times Q$ is a product relation, then $B(A)$ is the relation $X \times Q \cup (X - [Q]R) \times X$.

3. Regular elements in $\mathcal{B}_X(R)$

Schein in [10] has characterized the regular elements of \mathcal{B}_X in a way which allows easy computation of both the regular elements and their largest inverses. His method can be applied to $\mathcal{B}_X(R)$ with slight modifications.

A subinverse of $A \in \mathcal{B}_X(R)$ is any element C with $A * C * A \subset A$. Since the empty relation is a subinverse and the union of subinverses is again a subinverse, a unique greatest subinverse $S(A)$ will always exist. For any relation C in $\mathcal{B}_X(R)$ let C' be the complimentary relation. Thus $C' = \{(x, y) | (x, y) \notin C\}$. Then the greatest subinverse $S(A)$ for A is computable as follows.

Theorem 3.1. For any $A \in \mathcal{B}_X(R)$, $S(A) = (R^{-1}A^{-1}A' A'^{-1}R^{-1})'$.

Proof. By the definition of $S(A)$, $(x, y) \in S(A)$ iff $A * (x \times y) * A \subset A$ iff $AR(x \times y)RA \subset A$ iff $(u, v) \in AR(x \times y)RA$ implies $(u, v) \in A$ iff $(u, s) \in A$, $(s, x) \in R$, $(y, t) \in R$ and $(t, v) \in A$ implies $(u, v) \in A$. Thus (x, y) not in $S(A)$ is equivalent to the existence of u, v, s, and t so that $(u, s) \in A$, $(s, x) \in R$, $(y, t) \in R$, $(t, v) \in A$ and $(u, v) \notin A$. This is the same as u, v, s, and t with $(x, s) \in R^{-1}$, $(s, u) \in A^{-1}$, $(u, v) \in A'$. $(v, t) \in A^{-1}$ and $(t, y) \in R^{-1}$, that is $(x, y) \in R^{-1}A^{-1}A'A'^{-1}R^{-1}$. Thus $(x, y) \in S(A)$ iff $(x, y) \in (R^{-1}A^{-1}A'A^{-1}R^{-1})'$.

Theorem 2 and its corollary from [10], translated to $B_X(R)$ now following using the same proofs.

Theorem 3.2. A relation A in $B_X(R)$ is regular iff $A \subset A \ast S(A) \ast A$.

Proof. If A is regular, then $A \ast C \ast A = A$ for some C. Thus $C \subset S(A)$. Hence $A = A \ast C \ast A \subset A \ast S(A) \ast A$. Conversely, if $A \subset A \ast S(A) \ast A$, then since $A \ast S(A) \ast A \subset A$, $A = A \ast S(A) \ast A$ and A is regular.

Corollary 3.3. If $A \in B_X(R)$ is regular, then its greatest inverse is $S(A) \ast A \ast S(A)$.

Proof. If A is regular, then by Theorem 3.2 $S(A) \ast A \ast S(A)$ is an inverse of A. If C' is any other inverse of A, then $C' \subset S(A)$ and so $C' \prec C \ast A \prec C \subset S(A) \ast A \ast S(A)$.

Zareckii [11] has characterized the regular elements in B_X in terms of the distributivity of the row and column space lattices. Using the methods and equation (3) of [4] the following characterization of regular elements in $B_X(R)$ in terms of lattices of row spaces can be obtained.

Theorem 3.4. $A \in B_X(R)$ is regular if and only if for every $U \subset X$,

$$[U]A = \bigcup \{[Y]RA \mid Y \subset X, [U]AR \notin [Z]A\}.$$

Note that when R is the identity the condition of Theorem 3.4 is just that the row space lattice $\mathcal{R}(A)$ is completely distributive.

References

