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The following two theorems are proven in this paper. 

Theorem. A Steinhaus graph is bipartite if and only if it has no triangles. 

Theorem. If G is a bipartite Steinhaus graph (G ~ - ~ )  with partitions X and Y, where Ixl-< IYI, 
then G has an X-saturated matching. 

1. Introduction 

L e t  a l , . . . ,  an_ 1 be a sequence of zeros and ones. Using addition mod2 ,  

a I + a2, a 2 + a3, . . . , an_  2 + an_ 1 is an (n - 2)-long sequence of zeroes and ones. 
From this sequence, a third sequence can be formed of length n - 3. Continuing 
this process, we have n - 1 sequences of zeroes and ones, which we can display in 
a triangle of side n -  1, called a S t e i n h a u s  t r iangle .  In Fig. l (a) ,  we show the 
Steinhaus triangle generated by the sequence 001100. 

0 0 1 1 0 0  
0 1 0 1 0  

1 1 1 1  
0 0 0  

O 0  
0 

(a) 

0 1 2  n - 1  

1 1 0 0  
0 1 0  

1 1  

0 0 1 0 0 0 0  
(b) 

Fig. 1 

To create graphs from these triangles, we form an n x n symmetric matrix with 
a diagonal of zeroes and with a Steinhaus triangle as the upper  triangular part of 
the matrix. The matrix generated by 001100 is shown in Fig. l (b) ,  with the 
triangle outlined, and the columns numbered from 0 to n - 1. If A = (at, j )  is such 

a S t e i n h a u s  m a t r i x  then it has the S t e i n h a u s  p r o p e r t y ,  

a~,j = a i _ l , j _  1 + a i - l , j  (mod 2) for 0 < i < j  < n. 
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Of course a symmetric matrix of zeroes and ones is the adjacency matrix of a 
graph. In Fig. 2, we have drawn in two different ways the Steinhaus graph on 
n = 7 vertices generate d by the 6-long sequence 001100. 

4 
0 

Fig. 2 

Steinhaus triangles were first studied by Harborth [5] and later by Chang [1]. 
Molluzzo [6] made graphs from these triangles although his graphs are the 
complements of the Steinhaus graphs in this paper. The complements of 
Steinhaus graphs were further studied in [2] and [4]. Theorem 2 of this paper was 
proven in [2]. 

We use n to denote the number of vertices of a Steinhaus graph G. Note that 
there a r e  2 n-1 Steinhaus graphs on n vertices. If we consider the ( n -  1)-long 
sequence which generates G as a binary number then we use k to denote the 
decimal representation of that binary number. Usually we label the vertices of a 
Steinhaus graph from 0 to n - 1 (as in Fig. 2) and we denote the degree of vertex 
i by di. If v is a vertex of a graph G then G/{v}  is the graph G except that vertex 
v and all edges of G incident to v are deleted from G. Note that if G is a 
Steinhaus graph, then both G/{0} and G/{n - 1} are Steinhaus graphs with n - 1 
vertices, a situation ideal for induction. Also, we use the notation j = a(b)[c] to 
mean that the index variable j has the values a, a + b, a + 2 b , . . . ,  c. 

The following three theorems about Steinhaus graphs and their proofs may be 
found in [3] along with information on eulerian Steinhaus graphs. 

Theorem A. All Steinhaus graphs are connected except for K,, which is generated 
by the all zero sequence. 

Theorem, B. For n >I 5, the only Steinhaus trees are the star KI,,_ 1, generated by 
k = 1 and k = 2 "-1 , 1, and the path P, generated by k = 2 "-1. 

Theorem C. Let A ( G )  be the adjacency matrix o f  a Steinhaus graph G. Then the 
Steinhaus graph generated by the sequence an-2,n-1, an--3,n--1,''', ao, n-1  is 
isomorphic to G and the correspondence is vertex j to vertex n -  1 - j ,  for 
j = 0(1)[(n - 1)/2], where [x] is the greatest integer in x. 

This graph is called the partner of  G. For example, the partner of the graph 
generated by 001100 is the graph generated by 000100. 
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2. The number of bipartite Steinhaus graphs 

Since all t rees and forests  are biparti te,  Kn, K1,,-1, and P,  are bipart i te  
Steinhaus graphs.  We now show that  there are o ther  bipart i te  Steinhaus graphs.  

Theorem 1. There are at least n + 1 sequences of  length n -  1 that generate 
bipartite Steinhaus graphs on n vertices. Of these, [n/2] + 1 are not isomorphic. 

Proof .  First we exhibit the adjacency matrix for a bipart i te  Steinhaus graph,  G, 
with {0, 1 , . . . ,  r - 1 }  as the  vertices in one part i t ion,  for 1 < r < n -  1, and 

(r, r + 1 , . . . ,  n - 1} in the o ther  parti t ion. To do this we set 

ai, r = 1, for i = 0(1) ( r  - 1), and 

a r _ l j  = 1, for j = 0 ( 1 ) ( r -  1) 

in the adjacency matr ix  A ( G ) =  (ai,j) of G. In Fig. 3(a) this is shown for r = 4, 
n = 8. (The diagonal  e lements  of  A(G)  are bold.)  Using the Steinhaus p roper ty  

(ai, 1 = a i_ l , j _  1 d- a i_ l , j )  it is easily seen that  the columns to the left of  column r and 
the rows below row r -  1 are  all zeroes. Hence ,  G must  be bipar t i te  with 

part i t ions as described above.  This gives n -  2 sequences  of which the  ones for 

r = s and r = n - 1 - s are isomorphic.  The  others  are not  isomorphic because  the 
number  of  vertices in the  part i t ions differ. The o ther  three sequences  are 

k = 0, 1, 2 "-1 - 1, yielding K ,  and  Kl,n_ 1. 

0 r n - 1  

0 . . . 1 . . -  
0 - - 1  

0 - 1  

row r - 1 0 1 111 row r - 1 

0 
0 

0 
0 

(a) 

0 r n - 1  

00001000 
0001100 

001010 

01111 

[DO0 

000 

O0 

0 
(b) 

Fig. 3 

These  sequences are not  the  only ones that  genera te  bipart i te  Ste inhaus  graphs 

but  there  seems to be no easy  way  to characterize the others.  A n  example  is for 
n = 4 m and  k = 2 "-5. O n e  par t i t ion contains all vert ices r for  which r = 0, 1, 2, 3 

(mod 8). 
The  n u m b e r  b(n) of sequences  that  genera te  bipar t i te  Steinhaus graphs  on n 

vertices for  n = 3(1)(24) is given in Table  I .  It  seems f rom this l imited data  tha t  
b(n) is approximate ly  2n. A crude upper  bound  can be ob ta ined  for  b(n) by 
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Table 1 

n b(n) n b(n) n b(n) 

3 4 11 21 19 39 
4 6 12 23 20 40 
5 9 13 27 21 43 
6 10 14 28 22 44 
7 13 15 31 23 47 
8 15 16 34 24 50 
9 19 17 39 

.10 19 18 38 

noting the following two facts. First, if G is a bipartite Steinhaus graph on n + 1 
vertices, then G / { n }  is a bipartite Steinhaus graph on n vertices. Second, if G 
is a bipartite Steinhaus graph with vertices {0, 1 , . . .  , n -  1) then it can be 
extended to a Steinhaus graph (not necessarily bipartite) with n + 1 vertices 
{0, 1 , . . . ,  n - 1, n } in only two ways, depending on whether 0 and n are or are 
not adjacent. Therefore, b(n + 1) ~< 2 x b(n). Hence b(n) <- 50 x 2 n-24 for n > 23. 

3. Triangle free implies bipartite 

It is known that a graph is bipartite if and only if it has no cycles of odd length. 
A non-bipartite graph with no triangles is (75. But for Steinhaus graphs we have 

Theorem 2. I f  G is a Steinhaus graph with no triangles then G is bipartite. 

Proof. First, if G is bipartite and connected, its partitions are unique. Let n be 
the least integer such that there is a non-bipartite triangle free Steinhaus graph on 
n vertices. Obviously n/> 5. 

Let G be a Steinhaus graph on n vertices with no triangles. The graphs 
GA = G/A ,  A ~ {0, n -  1}, A ~ 0 are triangle free Steinhaus graphs on n -  1 or 
n -  2 vertices. Hence, these are all bipartite. If GA is not connected then G is 
either Kn, K2,n-2, or K1,,,-1 and hence bipartite. Consequently, if G is to be a 
counterexample to the theorem, GA must be connected. 

Let X and Y be the unique partitions of G/{O, n - 1}, and let X o, Y0 be the 
unique partitions of Go = G/{0}. The vertex n -  1 is either in X 0 or Yo- Since 
G/{O, n - 1} = Go/{n - 1} then either X = Xo and Y = Yo/{n - 1}, or X = Xo/ 
{n - 1} and Y = Yo- Similarly either X U {0} and Y, or X and Y t.J {0} are the 
partitions of G / { n -  1}. Without loss of generality, we can assume either 
{0, n - 1} ~_ X, or 0 is in X and n - 1 is in Y. In the latter case G is bipartite. In 
the former case G is bipartite unless 0 and n - 1 are adjacent. Therefore, for G to 
be a counterexample to the theorem, vertices 0 and n -  1 are adjacent and 
{0, n -  1} ~_X. 
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If  do = 1 or  d , _ l  = 1, then  G is the  star KI, ,_~ and hence bipart i te .  So let r be 

the smallest  ver tex  ad jacen t  to ver tex  0. Then A ( G )  would be as in Fig. 4. 

rOW r 

0 r n - 1  

0 0 0 1 - - . 1  

0 " "  

0 "  

. 1 . .  

~ g .  4 

Since 0 is in X, then  r is in Y and so for ver tex j, 0 ~< j < r, we have  that  j is in 

X. H e n c e  ver tex j, 0 < j  < r, is not  adjacent  to ver tex n - 1 because  n - 1 is also 

in X. Thus in A(G) ,  ai, n-1 = 1, i = l ( 1 ) ( r -  1). Also  vertex r is not  adjacent  to 

ver tex  n -  1 for  then  (0, r, n -  1) is a triangle. Hence ,  A ( G )  is as depicted in 

Fig. 5. 

0 r n - 1  

0001 • • • 1 

001 0 

01 0 

row r 0 "  ' • 0 

Fig. 5 

Using the Ste inhaus  proper ty ,  it is evident that  vertex 0 is ad jacen t  to vertices 

n - 2 - j ,  j = 0(1)(r  - 1). Aga in ,  since G has no triangles, ver tex r is not  adjacent  

to vert ices n - 2 - j ,  j = 0(1)(r  - 1). (See Fig. 6(a) . )  Thus ver tex 0 is adjacent  to 

vert ices n - 2 - r - ] ,  j = 0(1)(r  - 1). (See Fig. 6(b) .)  Continuing this process we 

find tha t  r = 1 and G = KI,,_~. If  this is not the case, ar--~,r = 1, ar-~,,+l = 0 and 

ar, r+~ = O, which violates the  Steinhaus proper ty  of  A(G) .  Hence  we cannot  find a 
coun te rexample  on n vertices.  Therefore ,  if G has no triangles then G is biparti te.  

0 r n - 1  0 r n - 1  

0001- - .  1111 00011111111 

001 • 000 001-  000000 

O1 . .  O0 0 1 - .  00000 

row r 0 "  • • 0 0 0 0  row r 0 " "  0 0 0 0  

(a) (b) 

Fig. 6 

4.  M a t c h i n g s  in b ipart i te  S t e i n h a u s  graphs 

Let  G be a bipar t i te  g raph  with parti t ions X and  Y where  [X[ ~< [YI. A set of  
edges  in G with no c o m m o n  endpoints  is called independent. A set of  pairwise 
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nonadjacent vertices is also called independent. A matching in G is a set of 
independent edges, and an X-saturated matching is a matching that involves all 
the vertices in X. A perfect matching of G is a matching that includes all the 
vertices of G, and hence I s l -  IYI. Finally, a vertex cover of G is a set S of 
vertices of G for which any vertex in G/S is adjacent to a vertex in S. 

In Fig. 7 we show a bipartite graph without a perfect matching. Note that 
S = {0, 1, 2, 7, 8, 9} is an independent set of vertices and ISl> IYI- Also, 
T = (3, 4, 5, 6} is a vertex cover of G with I TI < Isl. Such graphs cannot be 
Steinhaus graphs because of Theorem 3. 

X Y 
0 5 

4 ~ - - - - ~ 9  

Fig. 7 

Theorem 3. I f  G is a bipartite Steinhaus graph (G ~ Kn) with partitions X and Y, 
where IXl ~<IYI, then G has an X-saturated matching. 

From this theorem there are two immediate corollaries. 

Corollary 4. A connected bipartite Steinhaus graph with partitions X and Y has a 
perfect matching if and only if ISl = I YI. 

Corollary 5. Let X and Y, Ixl ~ IYI, be the partitions in a connected bipartite 
Steinhaus graph G. Then X is a minimal vertex cover of the edges of G and Y is a 
maximal independent set of the vertices of G. 

Proof of Theorem 3. Let n be the least integer for which a graph on n vertices 
can be found as a counterexample to the statement of Theorem 3. By inspection, 
the theorem is true for all Steinhaus graphs with less than 11 vertices and so 
n~>l l .  

Let G be a connected bipartite Steinhaus graph on n vertices with partitions X 
and Y, IXI<-IYI. Let a e { 0 ,  n - 1 } .  If [Xl<[Y [ and a is in Y, then G/{a} is 
bipartite and is either connected or Kn-1. In the first case, G/{a} has an 
X-saturated matching and hence G also does. In the latter case, G = Kl,n-1. Thus 
G is not a counterexample to the theorem, unless Ixl - I YI or {0, n - 1} ~_ X. 

If I x l -  IYl we always choose X to be the partition containing vertex 0. Note 
that if vertices 0 and n - 1 are in different partitions, then Ixl -- I YI. 

We denote by r (s) the smallest (largest) vertex adjacent to vertex 0. Since 0 is 
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in X, then r is in Y and,  as can be seen in Fig. 8, ver tex  j is in X for 

j = 0 ( 1 ) ( r - 1 ) .  H e n c e  if r>[n/2] ,  Ixl>]YI. Consequent ly ,  for G to be a 
coun te rexample ,  we can assume that  r ~< [n/2]. There  are  two cases: r > n - s and 
r<~n - s .  

r o w  r 

0 r n - 1  

0 0 0 1 - - - 1  

01 

0 o . o .  

Fig. 8 

Case 1. r > n - s .  

First ,  r ~: s ( i .e . ,  do :P 1) for if so, r > n/2. By the Ste inhaus  proper ty ,  see Fig. 9, 

ai, r = 1 and ai.s+i = 1 for  i = 0(1)(r  - 1). Since n - s < r, then  n - 1 - s < r - 1. 
The re fo re ,  ver tex  n -  1 - s  is adjacent  to vertex r. Also  ver tex n -  1 - s  is 

ad jacen t  to ver tex  n - 1 and so {r, n - 1} c Y. As  previously noted ,  0 is in X. 

Since n -  1 is in Y we have  that  Isl- I YI. 
Consider  H = G / { 0 , 1 , . . . , n - l - s ,  s , s + l , . . . , n - 1 } .  (In Fig. 9, H is 

out l ined. )  Now ( r -  1, r)  is an edge in H and n - s  vert ices were  dele ted  f rom 

b o t h X a n d  Y t o  g i v e X / { 0 , . . . , n - l - s }  and Y / { s , s + l , . . . , n - 1 }  as the 

part i t ions of H.  So H is a connected  bipart i te Steinhaus graph on less than n 

vert ices.  There fo re ,  H has a perfect  matching.  This par t ia l  matching of  G can be 

comple ted  to a perfect  matching for  G by adding the edges (i, s + i) for 

i = 0(1)(n - l - s ) .  

row r 

0 r s n - 1  

00000001 . . -  10000 

0 O1 1000 
0 O1 100 

0 O1 10 
0 01 1 

001 

01 H 
0 

0 

r o w  s 

0 
0 

0 
0 

0 
0 

0 
0 

Fig. 9 
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Case 2. r<-n-s .  
As before  vertex r - I is ad jacent  to vertex r and since r is in Y, then  r - 1 is in 

X. Also r - 1 is ad jacent  to s + (r - 1) and so s + (r - 1) is in Y. (If s + (r - 1) > 

n -  1, then  r > n - s . )  He nc e  r is not  adjacent  to s + ( r - 1 ) .  By  the  Steinhaus 

proper ty ,  this implies that  r - 1 is adjacent  to s + (r - 2), which in turns implies 

tha t  r is no t  adjacent  to s + (r - 2). Cont inuing this process, we no te  that  vertices 

r - 1 and s + r are ad jacen t  to vertices r + i for i = 0(1)(s - 1). 

Suppose ( n -  r)/s ~< 2. In this case X and Y are as in Fig. 10, where  r = 3, 

s = 1 2 ,  n = 1 8 ,  X = { 0 , 1 , 2 , 1 5 , 1 6 , 1 7 }  and the matching is (0 ,12) ,  (1 ,13) ,  

(2, 14), (15 ,3) ,  (16, 4), (17 ,5) .  

0 r s n - 1  0 r s n - 1  

0001 . - .  100000 0001 - . - 100000 

001 10000 001 10000 

0 1  i0(0) 011111111000 

r o w  r 0 • • • 1 0 0  r o w  • 110000000100 

11000000110 

000000101 

(a)  (b)  

Fig .  10 

If  2s ~< n - 1 then  iX[ > I YI. Therefore ,  a graph with such a par t i t ion  is no t  a 

coun te rexample  to the  theorem.  So 2s > n -  1 and the fol lowing X-sa tura ted  

matching is indicated in Figs. 10 and 11, 

(a,a+s), O<~a~r-1,  and 

(a ,a-s ) ,  s+r<-a<~n-1,  f o r a i n X .  

X Y 

r O l ~ s r l  
s+. s.. 

2s - 1¢" "~s + ( r -  1) 
2s 

2s + ( r -  1) 

Fig .  11 

F r o m  th is  w e  c a n  n o w  a s s u m e  (n - r ) / s  > 2. W e  first s h o w  t h a t  s = 2 m for  s o m e  

m >I 1. S i n c e  n - r > 2s,  v e r t e x  s + r is ad jacent  to  ver tex  2s + r. H e n c e  2s  + r is in  

Y. 
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It is not  difficult to see f rom Fig. 12 that  if ver tex s + r is ad jacen t  to vertex 

s + r + i, for  i = 2(1)(s - 2) then  (s + r, s + r + i, r + i) is a t r iangle  in G. But  G 

has  no t r iangles  and so as+r,s+r+ i = 0, for i = 0 ( 1 ) ( s -  1). H e n c e  we have  by the 

Ste inhaus  proper ty  tha t  as+r_l,s+r+ i = 1 for i = 0(1)(s -- 1). 

0 r s 2 s + r  

0 0 0 1 - . .  100000000000 

001 100 0 
0111111110 0 

000000001 0 

0 011 0 
0 01 1 0 

0 01 1 0 
0 01 1 0 

0 0 1  1 0 
0(}1 1 0 

O1 10 

row s + r 1} • • • 1 

Fig. 12 

In fact,  in A(G) rows r to s + r - 1 and columns s + r to 2s + r - 1 are the  first s 

rows of Pascal ' s  t r iangle modu lo  two. Hence ,  row r of A(G) cor responds  to row 0 

of Pascal 's  t r iangle and  row s + r - 1 of A(G) corresponds to row s - 1 of Pascal 's  

tr iangle.  Bu t  the only rows of Pascal 's  t r iangle tha t  are all odd  are the  rows of 

b inomial  coefficients C(2 m -  1, ]). Therefore  s -  1 = 2 m - 1  or s = 2 m for some 

m I> 1. Thus  A(G) is ma in ly  copies of the first s rows of Pascal 's  t r iangle  as shown 

in Fig. 13. It  is easy to see tha t  X and Y are as depicted in Fig. 14. 

Ver tex  n - 1 is e i ther  in X or Y. If n - 1 is in X, then  q = [(n - r - 1)/s] is odd. 

The re  are two possibilities. First ,  if n - 1/> (q + 1)s, then  Ixl > I YI and G is not  a 

counterexample .  Second,  if n - 1 < (q 4- 1)s, then  for a in X, 

(a,a+s), 2js<~a<-2js+(r-1), forO<_j<~(q-1)/2, . 
and 

(a ,a-s ) ,  (2j-1)s4-r<--.a<2js, for l ~ < j ~ ( q +  1)/2 

is an X-sa tu ra t ed  match ing  for G. 

If n - 1  is in Y, t hen  q = [ ( n - r - 1 ) / s ]  is even. Aga in  there  are two 

possibili t ies.  First, if (qs 4-2r)>n, then  IXI > I YI and G canno t  be a coun- 

te rexample .  Second, if (qs + 2r) ~< n then  a par t ia l  matching for  G is, for  a in X, 

and 
(a,a+s), 2 j s ~ a < 2 j s + ( r - 1 ) ,  O<-j~(q-2)/2,  

(a ,a -s ) ,  (2j-1)s+r<~a<2js, l<.j<.q/2. 

To comple te  this ma tch ing  we must  find a match ing  of {qs , . . . ,  qs + (r - 1)} into 
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0 r s ~ + r  ~ + r  ~ + r  

00011001100 00000000 00000000 00000000 000 000 
001010101 0 0 0 

011111111 0 0 0 
1 0 
11 0 
101 0 
1111 0 
10001 0 
110011 0 
1010101 0 
11111111 0 

0 
0 

0 
0 

0 
0 

0 
0 

row 2s + r 

0 
0 

1 0 
11 0 
101 0 
1111 0 
10001 0 
110011 0 
1010101 0 
11111111 0 

0 1 
0 
0 

0 
0 
0 

0 
0 

r o w  3s + r 

row 4s 

row 4s + r 

Fig.  13. r=3, s=8. 

00000000 
0 0 

0 0 
0 0 

0 0 
O0 

O0 
0 

row s + r 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

0 
11 0 
101 0 
1111 0 
10001 0 
110011 0 
101O101 0 
11111111 0 

0 1 
0 11 
0 101 

O 111 1 
0 100 O1 
0 ~ 0 1 1  

0 ° 010 
111 

000 000 
00000 
0000  

000 
O0 

0 
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X Y 

r O l ~ ~ x ~ s r l  

s + r , C ~ ' ~  s 

 s÷ir-l  
..2S ~ /  2s .+r  

2 s + ' r - l ~  3 s - 1  : 
3 s + r  ¢ y 5 ,  3s " 

4s  - 1 / ~ ' 3 s  +" ( r -  1) 
4s 4s + r 

4s + (r - 1) 5s - 1 
5s 

Fig. 14 

{qs + r , . . . ,  n -- 1}. Columns qs + r to qs + 2r - 1 and rows qs to qs + (r - 1), 
(outlined in Fig. 13), are an inverted form of Pascal's triangle modulo two, i.e. 
leftmost bottom entry corresponds to C(0, 0) and the row and column of ones are 
C(b, 0) and C(b, b). From this r x r square we must pick exactly one '1' from 
each row and column. This is easy for r = 3. For r > 3, choose the highest 
diagonal of ones in the upper part of the square. The remaining rows and 
columns form another of these squares of smaller order and hence we can choose 
exactly one '1' from each remaining row and column. (See Fig. 15.) 

remaining 
square 

1 0 ~ , x 0  0 0_ 
1 1 0 
1 0 0 

1 001 
~ 1  0 1 0 

[1 111  1 1 1 

Fig. 15 

----diagonal of ones 

Thus, we have completed the matching for G. Finally, if r = s, then A ( G )  is as 
depicted in Fig. 13 if the first three rows are ignored. For a in X, (a, a + s), 2is <- 
a < (2j + 1)s in an X-saturated matching where 2] ~< [(n - 1)/s]. 

In each case we have shown that all bipartite Steinhaus graphs on n vertices 
have an X-saturated matching. Hence the theorem is true. [] 
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