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Abstract

We address the near-collinear expansion of NMHV six-particle scattering amplitudes at strong value 
of the ’t Hooft coupling in planar maximally supersymmetric Yang–Mills theory. We complement recent 
studies of this observable within the context of the Pentagon Operator Product Expansion, via the dual 
superWilson loop description, by studying effects of multiple scalar exchanges that accompany (or not) 
massive flux-tube excitations. Due to the fact that holes have a very small, nonperturbatively generated 
mass mh which is exponentially suppressed in the ’t Hooft coupling, their exchanges must be resummed in 
the ultraviolet limit, τ � 1/mh. This procedure yields a contribution to the expectation value of the super-
loop which enters on equal footing with the classical area — a phenomenon which was earlier observed for 
MHV amplitudes. In all components, the near-massless scalar exchanges factorize from the ones of massive 
particles, at leading order in strong coupling.
© 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The equivalence between N -gluon maximally helicity-violating (MHV) scattering amplitudes 
in planar maximally supersymmetric gauge theory and the expectation value of the Wilson loop 
on a null polygonal contour CN was first established at strong coupling via the analysis of the 
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minimal area in anti-de Sitter space ending on CN [1] through the lens of gauge/string corre-
spondence [2–4]. This was further solidified through the Thermodynamic Bethe Ansatz [5,6]. 
Simultaneously, extensive perturbative checks verified this duality at weak coupling as well for 
the MHV case [7,8]. The language suitable for analysis in both regimes of weak and strong cou-
pling was recently suggested through the Pentagon Operator Product Expansion [9] based on 
an earlier version [10]. All-order expressions in ’t Hooft coupling for the main ingredients of 
the framework, i.e., the pentagon transitions for all single-particle excitations, including “flavor” 
changing ones, were constructed in a series of papers [11–20] and confronted with “data” accu-
mulated in other frameworks to scattering amplitudes at several loop orders [21–31]. While the 
MHV amplitude at strong coupling was addressed in this Operator Product Expansion frame-
work1 in Refs. [9,13,32,33] and went beyond the area paradigm in Ref. [32], quantitatively not 
much is known to date about the strong coupling behavior of amplitudes at non-MHV level. The 
latter are dual to a supersymmetric Wilson loop on a null polygonal contour [34–36]. In a recent 
publication [20], we had a first glimpse into certain components of NMHV hexagon by deriving 
the inverse-coupling expansion for the pentagons involving gauge fields and fermions. However, 
we have ignored completely contributions due to scalars accompanying any given tree-level ex-
change that encodes quantum numbers of the transition under study. In the present study we will 
lift this limitation and address the fate of scalar exchanges in NMHV amplitudes. Echoing an 
earlier work on MHV scattering [32], we will observe nonperturbative enhancement of various 
components due to the nonperturbatively generated hole mass. In fact, we will find that at lead-
ing order in the inverse coupling expansion, any given component factorizes into the product of 
terms, one corresponding to the exchange of a massive excitation and the other one due to an 
infinite number of hole exchanges. Of course, the purely scalar components do not admit this 
factorization. In the current paper, we will focus on the hexagon superloop.

Our subsequent presentation is organized as follows. In the next section, we address the phases 
of the direct and mirror hole–hole S-matrices and recover their recursive structure in the non-
perturbative scale that allows one to fix the form of the leading contribution to the even and 
odd parity flux-tube functions. In Sect. 3, we turn to the calculation of the first nonperturbative 
corrections to the latter. Using the hole flux-tube functions, we determine pentagon transitions in-
volving at least one scalar in Sect. 4. Then we shift our attention to the application of these results 
to components of the NMHV hexagon that can accommodate scalars, as the only or an accom-
panying excitation of some transitions. We start with fermionic exchanges and demonstrate the 
factorizability alluded to above. The same is applicable to the gluonic NMHV exchange as well. 
We perform a resummation of scalar exchanges using numerical studies and a form governed by 
the interpretation in terms of correlation function of twist operators in O(6) sigma model as was 
done in Ref. [32] for MHV amplitudes. Along these lines, we find a contribution of the same 
order as the classical area. Finally we conclude. A couple of appendices contain results used in 
the main text.

2. Strong-coupling expansion of hole phases

Let us start our discussion of the strong-coupling regime recalling that the leading contribution 
of the hole excitation to the expectation value of the Wilson loop arises from its nonperturbative 
regime, i.e., when its rapidity scales as u ∼ O(g0). The solution to the corresponding flux-tube 

1 Recently scattering matrices that define pentagon transitions were independently computed at strong coupling from 
the perspective of the two-dimensional world-sheet sigma-model in Ref. [37].
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equations, which are quoted for completeness in Appendix A, were found in Ref. [38]. Here we 
present an (alternative) indirect way of deducing them. The flux-tube function will not enjoy cor-
rect properties — it will possess an infinite number of poles rather than being an entire function
— however, the terms which restore its proper analytical structure turn out to be exponentially 
suppressed in the ’t Hooft coupling. The first correction in this infinite series will be recovered 
in the following section.

The indirect method of finding the flux-tube function is based on an iterative structure of scat-
tering phases. It was previously applied in Ref. [39] to the problem of nonperturbative corrections 
to the cusp anomalous dimension. The latter is the vacuum of the flux tube so it should not be 
surprising that the same formalism is applicable in the current circumstances of a hole excitation 
created on top of the vacuum.

The direct Shh and mirror S∗hh hole–hole S-matrices, building up the corresponding pentagon 
transition Ph|h [11], are determined by the dynamical scattering phases f (i)

hh [38,14] which are 
integrals of flux-tube hole functions,

Shh(u1, u2) = exp
(

2iσhh(u1, u2) − 2if
(1)
hh (u1, u2) + 2if

(2)
hh (u1, u2)

)
, (2.1)

S∗hh(u1, u2) = exp
(

2σ̂hh(u1, u2) + 2f
(3)
hh (u1, u2) − 2f

(4)
hh (u1, u2)

)
, (2.2)

and explicit phases σhh and σ̂hh that are quoted below in Eqs. (2.18). The strong coupling ex-
pansion of f (i)

hh will allow us to kill two birds with one stone: we will determine the sought after 
nonperturbative expansion as well as find the leading order flux-tube functions.

Let us start with f (1)
hh that can be cast in the form

f
(1)
hh (u1, u2) = 1

2

∞∫
0

dt

t

sin(u1t)

sinh t
2

γ h
u2

(2gt) (2.3)

= 1

2

∞∫
0

dt

t
sin(u1t)

cosh t
2

cosh t

[
�h

u2,−(2gt) − �h
u2,+(2gt)

]

+ 1

2

∞∫
0

dt

t
sin(u1t)

sinh t
2

cosh t

[
�h

u2,−(2gt) + �h
u2,+(2gt)

]
,

making use of a functional transformation [39,40], see Eq. (A.6), that eliminates explicit de-
pendence on the coupling constant from the flux-tube equations. Performing the inverse Fourier 
transformation for the product of hyperbolic and trigonometric functions,

sin(ut)
cosh t

2

cosh t
= −√

2g

∞∫
−∞

dw sin(2gtw)
cosh(gπw + uπ/2)

cosh(2gπw + uπ)
, (2.4)

sin(ut)
sinh t

2

cosh t
= +√

2g

∞∫
−∞

dw cos(2gtw)
sinh(gπw + uπ/2)

cosh(2gπw + uπ)
, (2.5)

we can rewrite the phase in the form

f
(1)
hh (u1, u2) = − g√

2

∞∫
dw

cosh(gπw + u1π/2)

cosh(2gπw + uπ)

−∞
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×
∞∫

0

dt

t
sin(2gtw)

[
�h

u2,−(2gt) − �h
u2,+(2gt)

]

+ g√
2

∞∫
−∞

dw
sinh(gπw + u1π/2)

cosh(2gπw + uπ)

×
∞∫

0

dt

t
[cos(2gtw) − 1]

[
�h

u2,−(2gt) + �h
u2,+(2gt)

]
. (2.6)

Here in the second line, we subtracted 1 without any consequences by virtue of Eq. (2.5) for 
t = 0. Next, splitting the integration range for w into the interval [−1, 1] and the rest, we can use 
the flux-tube equations (A.9) and (A.8) for the former interval, while safely expand integrands at 
large coupling in the latter. After the flux-tube equations had been applied, it remains to evaluate 
the integrals over the region [−1, 1] of w,

1∫
−1

dw sin(2gtw)
cosh(gπw + πu/2)

cosh(2gπw + πu)

= − 1

g
√

2
sin(ut)

cosh t
2

cosh t
+ e−πg

g
sinh

uπ

2
�e

[
e2igt

t + iπ/2

]
+ O(e−3πg) ,

1∫
−1

dw[cos(2gtw) − 1] sinh(gπw + πu/2)

cosh(2gπw + πu)

= 1

g
√

2
sin(ut)

sinh t
2

cosh t
+ e−πg

g
sinh

uπ

2
�e

[
ie2igt

t + iπ/2
− 2

π

]
+ O(e−3πg) .

Adding all of these contributions together, we get

f
(1)
hh (u1, u2) = 1

2

∞∫
0

dt

t

sin(u1t)

sinh t
2

(
J0(2gt) − et/2 cos(u2t)

cosh t

)
(2.7)

− e−πg sinh
u1π

2
�e

{
eiπ/4

∞∫
0

dt

t

[
e2igt

t + iπ/2
+ 2i

π

][
i
cos(u2t)

sinh t
2

+
(

1 + i coth
t

2

)(
γ h+,u2

(2gt) + iγ h−,u2
(2gt) − J0(2gt)

)]}
+ O(e−3gπ ) .

Comparing this result with Eq. (2.3), we can immediately extract the parity-even flux-tube func-
tion of the hole

γ h
u (2gt) ≡ γ h

u,+(2gt) + iγ h
u,−(2gt) = J0(2gt) − et/2 cos(ut)

cosh t
+ O(e−πg) , (2.8)

up to exponentially-suppressed contributions. Substituting this expression into the O(e−πg) term 
in the above equation, we find that it vanishes at this order. So the first nontrivial correction to 
the scattering phase will come at order e−2πg from the first nonperturbative term to the flux-tube 
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function. As we pointed out earlier and as it is obvious from Eq. (2.8), γ h
u (2gt) possesses an 

infinite number of fixed poles on the imaginary axis. These are canceled against the ones in 
nonperturbative terms that we have just mentioned. The first one in this infinite series will be 
determined in the following section.

To determine ̃γ h
u , we will analyze f (3)

hh in the same fashion as above by first changing the basis 
functions (A.7),

f
(3)
hh (u1, u2) = 1

2

∞∫
0

dt

t

sin(u1t)

sinh t
2

γ̃ h
u2

(−2gt) (2.9)

= 1

2

∞∫
0

dt

t
sin(u1t)

sinh t
2

cosh t

[
�̃h

u2,+(2gt) − �̃h
u2,−(2gt)

]

− 1

2

∞∫
0

dt

t
sin(u1t)

cosh t
2

cosh t

[
�̃h

u2,+(2gt) + �̃h
u2,−(2gt)

]
,

and then applying the Fourier transforms (2.4), (2.5) with subsequent use of the flux-tube equa-
tions (A.11) and (A.10). Then we obtain

f
(3)
hh (u1, u2) = 1

2

∞∫
0

dt

t

sin(u1t)

sinh t
2

(
e−t/2 sin(u2t)

cosh t

)
(2.10)

− e−πg sinh
u1π

2
�e

{
eiπ/4

∞∫
0

dt

t

[
e2igt

t + iπ/2
+ 2i

π

][
− i

sin(u2t)

sinh t
2

+
(

1 + i coth
t

2

)(
γ̃ h+,u2

(2gt) − iγ̃ h−,u2
(2gt)

)]}
+ O(e−3gπ ) .

Comparing its right-hand side with Eq. (2.9), we immediately see that this equation defines an 
iteration for γ̃ h

u in the perturbative parameter set by e−gπ . Therefore, we find at leading order

γ̃ h
u (2gt) ≡ γ̃ h+,u2

(2gt) − iγ̃ h−,u2
(2gt) = − sin(ut)et/2

cosh t
+ O(e−gπ ) . (2.11)

Both results for γ h
u and γ̃ h

u were announced before in Ref. [38]. Here we obtained them in a 
rather indirect way as well as fixed the form of the first nonperturbative correction to scattering 
phases. To complete the list of contributing phases, we have to find f (2)

hh ,

f
(2)
hh (u1, u2) =

∞∫
0

dt

t
(et/2 cos(u1t) − J0(2gt))γ̃ h

u2
(2gt) , (2.12)

and f (4)
hh ,

f
(4)
hh (u1, u2) =

∞∫
0

dt

t
(et/2 cos(u1t) − J0(2gt))γ h

u2
(−2gt) . (2.13)
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The derivation follows the same footsteps. The only difference from the above calculation is the 
form of the Fourier transform for the integrands, namely, we need

cos(ut)
cosh t

2

cosh t
= √

2g

∞∫
−∞

dw cos(2gwt)
cosh(gπw + uπ/2)

cosh(2gπw + uπ)
, (2.14)

cos(ut)
sinh t

2

cosh t
= √

2g

∞∫
−∞

dw sin(2gwt)
sinh(gπw + uπ/2)

cosh(2gπw + uπ)
. (2.15)

Repeating the analysis, we deduce for

f
(2)
hh (u1, u2) +

∞∫
0

dt

t
(1 − J0(2gt))

et/2 sin(u2t)

et − 1

= −
∞∫

0

dt

t

et/2 sin(u2t)

et − 1

(
cos(u1t)et/2

cosh t
− 1

)

+ e−πg cosh
u1π

2
�e

{
eiπ/4

∞∫
0

dt

t

[
e2igt

t + iπ/2
+ 2i

π

][
sin(u2t)

sinh t
2

(2.16)

+
(

1 + i coth
t

2

)(
γ̃ h+,u2

(2gt) − iγ̃ h−,u2
(2gt)

)]}
+ O(e−3gπ ) ,

and

f
(4)
hh (u1, u2) +

∞∫
0

dt

t
(1 − J0(2gt))

et/2 cos(u2t) − J0(2gt)

et − 1
(2.17)

=
∞∫

0

dt

t (et − 1)

[
et/2 cos(u1t)

(
J0(2gt) − e−t/2 cos(u2t)

cosh t

)
+

(
et/2 cos(u2t) − et

)
J0(2gt)

]
+ e−πg cosh

u1π

2
�e

{
eiπ/4

∞∫
0

dt

t

[
e2igt

t + iπ/2
+ 2i

π

][
i
cos(u2t)

sinh t
2

+
(

1 + i coth
t

2

)(
γ h+,u2

(2gt) + iγ h−,u2
(2gt) − J0(2gt)

)]}
+ O(e−3gπ ) ,

respectively.
Taking the leading order solutions, and adding the explicit phases σhh and ̂σhh,

σhh(u1, u2)

=
∞∫

0

dt

t (et − 1)

[
et/2J0(2gt) sin(u1t) − et/2J0(2gt) sin(u2t) − et sin((u1 − u2)t)

]
,

(2.18)
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σ̂hh(u1, u2)

=
∞∫

0

dt

t (et − 1)

[
et/2 (cos(u1t) + cos(u2t)) J0(2gt) − cos((u1 − u2)t) − et J 2

0 (2gt)
]

,

(2.19)

the first term in the strong coupling expansion of the hole–hole pentagon reads2

Ph|h(u1|u2) =
�

(
1
4 − i

4 (u1 − u2)
)

�
(

i
4 (u1 − u2)

)
4�

(
3
4 − i

4 (u1 − u2)
)

�
(

1
2 + i

4 (u1 − u2)
) + . . . (2.20)

while the measure

μh =
√

2π3

�2( 1
4 )

+ . . . (2.21)

is a transcendental constant, with the ellipsis standing for nonperturbative corrections in cou-
pling. The latter can be evaluated with results obtained in the next section. The above expressions 
coincide with the ones derived in Ref. [13].

3. Nonperturbative corrections

Let us now turn to the determination of the exponentially suppressed effects in the flux-tube 
functions of the hole. As we established in the previous section, the leading order solutions 
yielded functions with incorrect analytical properties. From the point of view of the flux-tube 
equations with hole inhomogeneities, these generate their particular solutions. We can always add 
homogeneous solutions to the above functions in order to restore analyticity and thus produce an 
entire function of t . As we will find below, these addenda are actually exponentially suppressed 
in the ’t Hooft coupling. Below we will provide a recipe for their calculation and construct an 
explicit first correction to both even and odd parity functions.

3.1. Even parity

We start with even parity. Let us add a solution of the homogeneous equation to Eq. (2.8), 
such that the resulting flux-tube function becomes an entire function in the complex t -plane,

γ h
u,+(2gt) + iγ h

u,−(2gt)

= J0(2gt) + sinh t
2√

2 sinh
(

t
2 + i π

4

) [
�

h, hom
u,+ (2gt) + i�

h, hom
u,− (2gt) − i cos(ut)

sinh t
2

]
. (3.1)

Presently, we will focus on the cancellation of the leading singularity at t = −iπ/2, however, our 
consideration can be easily extended to subleading terms as well. This will produce solutions to 
the homogeneous flux-tube equation which induce leading exponential corrections. That is, we 
impose the following quantization conditions

2 To avoid cluttering the formulas which follow with powers of the ’t Hooft coupling, we normalized the hole–hole 
pentagon transition, and as a consequence the measure, to coupling independent function at leading order at strong 
coupling.



432 A.V. Belitsky / Nuclear Physics B 911 (2016) 425–446
�
h, hom
u,+ (4πix�) + i�

h, hom
u,− (4πix�) = −δ�,0

√
2 cosh

uπ

2
, (3.2)

where x� ≡ � − 1
4 . A general solution to the homogeneous flux-tube equations was constructed 

in studies of the flux-tube vacuum [40] and reads

�
h,hom
u,+ (τ ) + i�

h,hom
u,− (τ )

=
∑
n≥1

c−
u (n, g)

4πgn − iτ

[−iτV0(−iτ )U−
1 (4πgn) + 4πgnV1(−iτ )U−

0 (4πgn)
]

+
∑
n≥1

c+
u (n, g)

4πgn + iτ

[−iτV0(−iτ )U+
1 (4πgn) + 4πgnV1(−iτ )U+

0 (4πgn)
]

, (3.3)

where the special functions involved admit the following integral representation

Vn(z) =
√

2

π

1∫
−1

dk

(
1 + k

1 − k

)1/4 ekz

(1 + k)n
,

U±
n (z) = 1

2

∞∫
1

dk

(
k + 1

k − 1

)∓1/4 e−k(z−1)

(k ∓ 1)n
,

and can be related to the confluent hypergeometric function. Substituting these into the quantiza-
tion conditions and taking the limit g → ∞, making use of their asymptotic expansions, which 
can be found in Refs. [40,20], the above quantization conditions can be solved with the result

c+
u (n, g) = − 	(u,g)

(8πgn)3/4

2�(n + 1
4 )

�2( 1
4 )�(n)

, c−
u (n, g) = 	(u,g)

(8πgn)1/4

�(n − 1
4 )

2�2( 3
4 )�(n)

, (3.4)

at leading order in the inverse coupling. Here, we introduced a nonperturbative scale

	(u,g) = −√
2 cosh

uπ

2

e−πg(2πg)5/4

�( 5
4 )

. (3.5)

Substituting these results into Eq. (3.3), we deduce, after summing the infinite series up, the 
leading order contribution to the homogeneous solution of the parity-even flux-tube equation

�
h,hom
u,+ (2gt) + i�

h,hom
u,− (2gt)

= 	(u,g)

8πg

[
V0(−2igt)

�( 3
4 )�(1 − it

2π
)

�( 3
4 − it

2π
)

(3.6)

+ (2V1(−2igt) − V0(−2igt))
�( 5

4 )�(1 − it
2π

)

�( 5
4 − it

2π
)

]
+ O(e−2πg) .

This expression can be also recovered from the analysis of Ref. [40] after appropriate rescaling 
of nonperturbative vacuum solution.

3.2. Odd parity

Let us now turn to odd parity, where the flux-tube function with restored analytical properties 
is built from (2.11) by adding again a homogeneous solution to it,
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γ̃ h
u,+(2gt) − iγ̃ h

u,−(2gt) = sinh t
2√

2 sinh
(

t
2 + i π

4

) [
�̃

h, hom
u,+ (2gt) − i�̃

h, hom
u,− (2gt) − sin(ut)

sinh t
2

]
.

(3.7)

As above, we will discuss the cancellation of the leading singularity at t = −iπ/2 only. In other 
words, we impose the following quantization conditions

�̃
h, hom
u,+ (4πix�) − i�̃

h, hom
u,− (4πix�) = δ�,0

√
2 sinh

uπ

2
, (3.8)

where x� ≡ � − 1
4 . Since the homogeneous �̃’s admit the same representation in terms of the 

infinite series (3.3), deviating in minor details like certain relative signs, and differ only by the 
form of the quantization condition, there is no need to redo the analysis anew. We can simply 
obtain the final expression by replacing cosh → − sinh in the even parity solution constructed 
earlier. The result reads

�̃
h,hom
u,+ (2gt) − i�̃

h,hom
u,− (2gt)

= 	̃(u, g)

8πg

[
V0(−2igt)

�( 3
4 )�(1 − it

2π
)

�( 3
4 − it

2π
)

(3.9)

+ (2V1(−2igt) − V0(−2igt))
�( 5

4 )�(1 − it
2π

)

�( 5
4 − it

2π
)

]
+ O(e−2πg) ,

with

	̃(u, g) = √
2 sinh

uπ

2

e−πg(2πg)5/4

�( 5
4 )

. (3.10)

We can verify the correctness of these expressions by substituting them into Eq. (3.1) and 
calculating the energy and momentum of the hole excitation (B.6). We find

Eh(u) = −	(u,g)

2πg
= mh cosh

uπ

2
, ph(u) = 	̃(u, g)

2πg
= mh sinh

uπ

2
, (3.11)

which is in agreement with the well-known leading order result [41] when expressed in terms of 
the nonperturbatively generated mass of the O(6) sigma model [42,39]

mh = e−πg (8πg)1/4

�( 5
4 )

+ O(e−2πg) . (3.12)

The above consideration can be extended to higher orders without facing conceptual difficulties.

4. Mixed pentagons

With the found explicit expressions for the hole flux-tube functions in the previous two sec-
tions, we can determine the mixed hole-fermion and hole-gluon scattering phases at strong 
coupling. The only integral that one needs for the leading order solution is the following one

∞∫
0

dt

t

eiαt − 1

et + 1
= ln

�
(

1
2 − i α

2

)
√

π�(1 − i α
2 )

.
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Notice that while hole’s rapidity will stay in the nonperturbative domain uh ∼ O(g0), the ones 
for the fermion and gauge field should belong to the perturbative strong coupling scaling regime, 
where their energy and momentum are of order g0,

E� = m� cosh θ , p� = m� sinh θ (4.1)

with mf = 1 and mg = √
2 [42], to bestow amplitudes with leading contributions. Thus, the 

fermion belongs to the small fermion sheet with rapidity uf = 2gûf where |̂uf| = | coth(2θ)| > 1, 
while the gluon one scales as ug = 2gûg with |̂ug| = | tanh(2θ)| < 1.

The hole-small fermion phases are

f
(1)
hf (u, v) = − 1

16g2

u

v̂2
+ . . . , f

(2)
hf (u, v) = 1

8g

1

v̂
+ . . . , (4.2)

f
(3)
hf (u, v) = − 1

4g

u

v̂
+ . . . ,

f
(4)
hf (u, v) = −1

2
ln

(
2̂vx̂f[v]) + 1

4g2

(
3

16
+ u2

4

)
1

v̂2
+ . . . ,

where the rescaled small-fermion Zhukowski variable in the hyperbolic parametrization reads 
x̂f = tanh(θ). Such that the hole-small fermion pentagon in the regime in question takes the form 
at leading order

Ph|f(u|v) = 1√
2gv̂

exp

(
u−

2gv̂
+ . . .

)
. (4.3)

We can immediately test this form by employing constraints stemming from the Q̄-equation [43,
44], namely, as demonstrated in Ref. [45], it enters the following integral equation∫

dv μf(v)e−τ(Ef(v)−1)x
3/2
f [v]δ (pf(v))Pf̄|f(−u + 3i

2 |v)Ph|f(−u|v) = 2g3

�(g)
, (4.4)

where �(g) is the cusp anomalous dimension. Rescaling the small-fermion rapidity and re-
expressing it in terms of the Zhukowski variable ûf = x̂f + 1/x̂f, one can immediately confirm 
the leading order expression for the hole-small fermion pentagon (4.3) making use of the known 
expressions for the small fermion measure and fermion–antifermion pentagon [13]

μf(u) = −
(

1 − x̂2
f [u]

)−1/2 + . . . , Pf̄|f(u|v) = (1 − x̂f[u]̂xf[v])−1/2 + . . . . (4.5)

For the gluon-hole case, it is more instructive to discuss the entire direct and mirror S-matrices 
rather than individual phases. Then one finds by substituting the leading order hole solutions 
(2.8) and (2.11) to the dynamical phases that they cancel exactly the σ -phases on the level of 
integrands and thus both S-matrices are trivial

Shg = 1 , S∗hg = 1 , (4.6)

up to nonperturbative effects in coupling. Consequently, the hole-gluon pentagon is

Ph|g(u|v) = 1 + O(e−πg) . (4.7)

With these results at our disposal, we are now ready to move onto explicit analyses of different 
components of the NMHV hexagon at strong coupling.
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5. Hexagon superloop

Let us decompose the hexagon superloop at the NMHV level in terms of Grassmann compo-
nents that receive leading contribution from single particle exchanges,

W6(τ, σ,φ) = χ4
1 eiφW(4,0)(τ, σ ) + χ3

1 χ4

(
eiφ/2Wodd

(3,1)(τ, σ ) + e−iφ/2Weven
(3,1)(τ, σ )

)
+ χ2

1 χ2
4W(2,2)(τ, σ ) + . . . . (5.1)

Here we adopted a conventional twistor parametrization via the three variables τ , σ and φ which 
are equivalent to the three conformal cross-ratios u, v and w of the six-point remainder function. 
We will start below with the second contribution W(3,1) in the Grassmann series, the one that is 
induced by the (anti)fermion production on the bottom and absorption at the top along with an 
infinite number of scalars. We divided their effect in the above sum in two classes, an antifermion 
along with an even number of scalars and a fermion with an odd number of scalars. As a conse-
quence, Wodd

(3,1) starts with two-particle exchanges compared to Weven
(3,1). Both of them transform 

in the 4̄ of SU(4), however, possess different helicities as exhibited by accompanying phases in 
the above equation.

5.1. Antifermion-scalars

The leading contribution to Weven
(3,1)

comes from the single-particle exchange with the quantum 
numbers of the antifermion

Wf̄ =
∫

dμf(v)xf[v] , (5.2)

with the NMHV helicity form factor determined by the small-fermion Zhukowski variable 
xf[v] = 1

2 (v − √
v2 − (2g)2). Here and below the single particle measure includes the propa-

gating phases

dμ�(v) = dv

2π
μ�(v)e−τE�(v)+iσp�(v) (5.3)

that are determined by all-order energies E� and momenta p� [41]. Next in the infinite series 
comes the antifermion accompanied by two scalars

W 4̄
hhf̄

= 1

2!
∫

dμh(u1)dμh(u2)

∫
dμf(v)xf[v] 1

|Ph|f(u1|v)Ph|f(u2|v)|2
�4̄

hhf(u1, u2, v)

|Ph|h(u1|u2)|2 ,

(5.4)

where the matrix part reads

�4̄
hhf(u1, u2, v) = 3

2

45 + 6u2
1 − 8u1u2 + 6u2

2 − 4(u1 + u2)v + 4v2

[1 + (u1 − u2)2][4 + (u1 − u2)2][ 9
4 + (u1 − v)2][ 9

4 + (u2 − v)2] .

(5.5)

In the scaling limit v = 2gv̂ with g → ∞ and ̂v = fixed, we get

�4̄
hhf(u1, u2, v) = 1

v2
�1

hh(u1, u2) + O(1/v) , (5.6)

with �1
hh being the singlet two-scalar matrix part (which defines one of the twist-two contribu-

tions in the MHV amplitude [13])
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�1
hh(u1, u2) = 6

[1 + (u1 − u2)2][4 + (u1 − u2)2] . (5.7)

This immediately yields a factorized form of the three-particle contribution in terms of the 
fermion, on the one hand, and the two-scalar pair in the singlet representation, on the other, 
i.e.,

W 4̄
hhf̄

=Wf̄W1
hh (5.8)

where

W1
hh = 1

2!
∫

dμh(u1)dμh(u2)
�1

hh(u1, u2)

|Ph|h(u1|u2)|2 . (5.9)

A simple counting of the powers of the ’t Hooft coupling demonstrates that W1
hh is of order g0 and 

contributes on equal footing with Eq. (5.2). The same phenomenon persists for all multi-scalar 
exchanges such that all scalar pairs have to be accounted for,

Weven
(3,1) =Wf̄

∞∑
n=0

W1
(hh)n , (5.10)

with W1
(hh)0 = 1 and W1

(hh)n having the form analogous to the two-scalar contribution

W1
(hh)n = 1

(2n)!
∫

dμh(u1) . . . dμh(u2n)
�1

h...h(u1, . . . , u2n)∏2n
i<j |Ph|h(ui |uj )|2

(5.11)

with the matrix part �1
h...h(u1, . . . , u2n) that can be read off from the integral representation given 

in Refs. [32,46].

5.2. Singlet multi-scalar exchanges

In spite of the fact that the singlet multi-scalar resummation was analyzed in Ref. [32], in 
preparation for the sextet case that is addressed next, we will repeat numerical computations here 
and confront them against twist-operator correlation functions. We start with the two-particle 
contribution. In the ultraviolet regime, it has the following asymptotic form

W1
hh|mhξ�1 = μ2

h

[
α1

hh ln
1

mhξ
+ β1

hh ln ln
1

mhξ
+ γ 1

hh

]
+ O

(
(mhξ)0

)
, (5.12)

where the relativistic invariance of the contributions is exhibited through the dependence on a 
single variable ξ = √

τ 2 + σ 2. The coefficients accompanying functional dependence on ξ can 
be partially determined analytically

α1
hh = �4( 1

4 )

84π5

[
56 + 5 4F3

(
1,1, 5

4 , 9
4

2, 7
4 , 11

4

∣∣∣∣∣1

)]
− 1

5π3

[
40 + 3π 3F2

(
1
2 , 5

4 , 3
2

2, 9
4

∣∣∣∣∣1

)]
� 0.087 , (5.13)

β1
hh � −0.137 ± 0.001 , (5.14)

γ 1
hh � −0.044 ± 0.014 . (5.15)

The effects of subleading terms in the expansion were analyzed numerically. In Fig. 1 (a), we 
demonstrate the result of successive additions of more and more scalar exchanges in Eq. (5.10). 
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Fig. 1. Plots of the truncated at Nmax series of hole contributions to the singlet (5.16) and sextet (5.33) Wilson loops, 
shown in (a) and (b) panels, respectively. Panel (a) displays the effect of adding successive terms for Nmax = 0, 2, 4, 
while panel (b) shows it for Nmax = 1, 3, 5. The resummed curves correspond to the right-hand sides of Eqs. (5.16)
and (5.33), respectively. All curves were obtained by averaging Monte Carlo computations of integrals at points 
mhξ = 10−3, 10−6, 10−10, 10−14, 10−18, 10−25, 10−40 and fitting the outcomes. The thickness of the curves shows 
one standard deviation of Monte Carlo data.

In these estimates, we computed the multifold integrals (5.11) making use of an adaptive Monte 
Carlo method and then averaged over multiple samples. The standard deviation from the mean 
is shown in above formulas, while it is stripped off the graphs as not to obscure effects from 
multi-hole exchanges. We confirmed quick convergence of the Operator Product Expansion in the 
range of mhξ < 10−18 in this channel with the resulting functional fit inspired by the two-point 
correlation function of twist operators φ�, whose matrix elements correspond to the pentagon 
transitions as was pointed out in [32],

W1∞ ≡
∞∑

n=0

W1
(hh)n |mhξ�1 = C1

h (mhξ)−1/36 ln−1/24 1

mhξ
, (5.16)

and C1
h � 0.99. This is indeed the result of Ref. [32]. We will take it below as a basis for our 

analysis of the sextet component in the hexagonal Wilson loop.

5.3. Fermion-scalars

The even-scalar exchanges do not have 6 in their product, e.g., 6 × 6 = 1 + 15 + 20, so they 
do not contribute to the component Wodd

(3,1) in question. However, any odd number of holes does 
contribute. The first term in the fermion-scalar series is the one with a fermion and a hole in the 
4̄ of SU(4), emerging from the product 4 × 6 = 4̄ + 20,

W 4̄
hf =

∫
dμh(u)

∫
dμf(v)

�4̄
hf(u, v)

|Ph|f(u|v)|2 , (5.17)

with
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�4̄
hf(u, v) = 3

[(u − v)2 + 9
4 ] . (5.18)

The leading contribution at strong coupling emerges from the scaling limit of the small fermion 
rapidity v = 2gv̂ with ̂v ∼ O(g0) and nonperturbative one for the hole, i.e., u ∼ O(g0). Then the 
matrix part immediately simplifies and we get

W 4̄
fh = 3WfW

6
h (5.19)

with

Wf =
∫

dμf(̂v)
x̂f[v]

(1 + x̂2
f [v]) , W 6

h = g

∫
dμh(u) . (5.20)

We pulled out the factor of 3 stemming from SU(4) tensor contraction as an overall coefficient. 
The next term arises from the four-particle hhhf-state

W 4̄
hhhf̄

= 1

3!
∫

dμh(u1)dμh(u2)dμh(u3)

∫
dμf(v)

1

|Ph|f(u1|v)Ph|f(u2|v)Ph|f(u3|v)|2

× �4̄
hhhf(u1, u2, u3, v)

|Ph|h(u1|u2)Ph|h(u1|u3)Ph|h(u2|u3)|2 , (5.21)

where �4̄
hhhf is too cumbersome to be displayed here. However, in the scaling limit, it reduces to

�4̄
hhhf(u1, u2, u3, v) = 3

v4
�6

hhh(u1, u2, u3) + O(v−5) , (5.22)

where the matrix part of the three-hole state in the 6 of SU(4) reads

�6
hhh(u1, u2, u3) (5.23)

= 6
[7 + u2

1 + u2
2 + u2

3 − (u1u2 + u1u3 + u2u3)][12 + u2
1 + u2

2 + u2
3 − (u1u2 + u1u3 + u2u3)]

[1 + (u1 − u2)2][4 + (u1 − u2)2][1 + (u1 − u3)2][4 + (u1 − u3)2][1 + (u2 − u3)2][4 + (u2 − u3)2] .

Therefore, the expression factorizes again yielding

W 4̄
hhhf̄

= 3WfW
6
hhh (5.24)

with

W 6
hhh = g

3!
∫

dμh(u1)dμh(u2)dμh(u3)
�6

hhh(u1, u2, u3)

|Ph|h(u1|u2)Ph|h(u1|u3)Ph|h(u2|u3)|2 . (5.25)

Using the integral representation of the matrix part of the pentagon transitions [46], one can 
convince oneself that the above property (5.22) persists for any odd number of hole excitations, 
such that any number of scalars accompanying the fermion needs to be resumed

Wodd
(3,1) = 3Wf

∞∑
n=0

W6
h(hh)n , (5.26)

where similarly to Eq. (5.11)

W6
h(hh)n = g

(2n + 1)!
∫

dμh(u1) . . . dμh(u2n+1)
�6

h...h(u1, . . . , u2n+1)∏2n+1
i<j |Ph|h(ui |uj )|2

(5.27)

with the matrix part of sextet hole exchanges that can be read off from the integral representation 
given in Refs. [32,46].
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5.4. Sextet multi-scalar exchanges

The one-particle contribution with sextet quantum numbers arises from the single hole ex-
change

W6
h = g

∫
dμh(u) = g

2μh

π2
K0(mhξ) ,

where after the second equality sign we displayed its leading behavior from nonperturbative 
domain of rapidities. In the infrared regime mhξ  1, it displays the expected exponentially 
suppressed behavior

W6
h |mhξ1 = g

√
2μh

π3/2

e−mhξ

√
mhξ

(
1 + O

(
1/(mhξ)

))
, (5.28)

while in the ultraviolet region mhξ � 1, it shows logarithmic enhancement,

W6
h |mhξ�1 = g

2μh

π2
ln

1

mhξ
+ O

(
(mhξ)0) . (5.29)

The enhancement of the ultraviolet regime persists and amplifies in multi-hole exchanges. For 
instance, in the three-particle term that reads

W 6
hhh = g

3!
∫

dμh(u1)dμh(u2)dμh(u3)
�6

hhh(u1, u2, u3)

|Ph|h(u1|u2)Ph|h(u1|u3)Ph|h(u2|u3)|2 , (5.30)

the analysis of the z → 0 limit unravels the following behavior

W6
hhh|mhξ�1 = gμ3

h ln
1

mhξ

[
α6

hhh ln
1

mhξ
+ β6

hhh ln ln
1

mhξ
+ γ 6

hhh

]
+ O

(
(mhξ)0

)
,

(5.31)

where

α6
hhh � 0.0173 ± 0.0001 , β6

hhh � −0.0453 ± 0.0081 , γ 6
hhh � −0.0141 ± 0.0202 .

(5.32)

We observe that as compared to the singlet case, there is an overall power of the logarithm ac-
companying the familiar ξ -dependence. Thus we anticipate the resummation to produce the same 
functional dependence on ξ up to an extra logarithmic factor which stems from the anomalous di-
mension3 of the two-dimensional bosonic fields Xi (i = 1, . . . , 6) on the five-sphere which build 
up the sextet pentagon twist operator φi� ∼ Xiφ� which in turn defines the scalar component 

of the hexagon Wilson loop in question δijW6 ∼ 〈φi�(ξ)φ
j�(0)〉. However, the overall normal-

ization will be different and its proper extraction requires resummation. Due to complexity of 
the asymptotic analysis of multifold integrals and, as a consequence, the lack of explicit analyt-
ical expressions, we performed it numerically. The result of successive additions of multi-scalar 
exchanges up to five holes in shown in Fig. 1 (b). The result is fitted by the following formula

W6∞ ≡
∞∑

n=0

W6
h(hh)n |mhξ�1 = gC6

h (mhξ)−1/36 ln23/24 1

mhξ
(5.33)

with C6
h � 0.11. This analysis is in agreement4 with results announced in Ref. [47].

3 Notice that Xi has a vanishing canonical dimension and therefore does not affect the power-law behavior of the 
amplitude.

4 We would like to thank Benjamin Basso for bringing the talk [47] to our attention and useful discussion.
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Notice that W(2,2) in the superloop (5.1) does not require a dedicated study since it is deter-
mined by the sextet multi-scalar exchanges we have just discussed,

W(2,2) =
∞∑

n=0

W6
h(hh)n . (5.34)

5.5. Gluon-scalars

Finally, we address the component W(4,0). Making use of Eq. (4.7), it becomes obvious that 
as in the previous cases of heavy excitations accompanying an infinite tower of scalar exchanges, 
the contribution in question falls into the product of two terms

W(4,0) =Wg

∞∑
n=0

W1
(hh)n (5.35)

with

Wg =
∫

dμg(u)
x+[u]x−[u]

g2
, (5.36)

where the NMHV gluon helicity form factor is given by the product of shifted x±[u] = x[u ± i
2 ]

Zhukowski variables x[u] = 1
2 (u +√

u2 − (2g)2) and the infinite sum governed in the ultraviolet 
regime by the right-hand side of Eq. (5.16).

5.6. Asymptotic form of heavy-particle exchanges

Let us wrap up our discussion by determining the functional form of the heavy flux-tube 
exchanges at asymptotic values of τ . Starting with the antifermion integral, we can use the saddle 
point approximation that immediately yields

Wf̄ = −g2
∫

R+i0

dθ

π sinh(θ) sinh(2θ)
e−τ cosh(θ)+iσ sinh(θ)

� g2e−τ

√
τ

2π
e−σ 2/(2τ)

[
1 + σ√

2τ
eσ 2/(2τ)

(
erf

(
σ√
2τ

)
− 1

)
+ 5

6

1

τ
+ O

(
1

τ 3/2

)]
.

(5.37)

The leading behavior for the fermion contribution, that arises along with the odd number of 
accompanying scalars, differs from the above at subleading order in τ only, namely,

Wf = −
∫

R+i0

dθ

2π sinh(θ) sinh(2θ)
e−τ cosh(θ)+iσ sinh(θ) 1

(1 + tanh2(θ))

� e−τ

√
τ

8π
e−σ 2/(2τ)

[
1 + σ√

2τ
eσ 2/(2τ)

(
erf

(
σ√
2τ

)
− 1

)
+ 11

6

1

τ
+ O

(
1

τ 3/2

)]
.

(5.38)

Finally, as explained in Ref. [20], to properly take the strong coupling limit of gluons, first one 
has to pass to the Goldstone sheet u → uG + i/2 → u with �m[u] ≥ 1/2 and then, after rescaling 
the rapidity u = 2gû, send g → ∞,
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WG =
∫

dμG(u)
x+[u]
x−[u] �

∫
dμG(u) = −2g

∫
dθ

π cosh2(2θ)
e−√

2τ cosh(θ)+i
√

2σ sinh(θ)

� 2ge−√
2τ

√√
2τ

π
e−σ 2/(

√
2τ)

[
1 −

√
8

τ
+ 4(σ 2 + 4)

τ 2
+ O(τ−3)

]
. (5.39)

Here the first line exhibits the helicity-independence of the gauge transition at strong coupling 
as the NMHV helicity form factor is 1 to leading order in 1/g expansion. The same applies to 
bound states of � gauge fields, whose contribution differs from the above consideration by the 
introducing the shifts ±i�/2 in Zhukowski variables compared to � = 1 for a single gluon. The 
leading order expression is unaffected by these.

6. Conclusions

In this work we extended the strong coupling analysis of NMHV hexagon to include hole 
excitations. The latter develop a nonperturbative regime compared to all other excitations with 
their mass gap being exponentially suppressed in strong coupling. Each individual contribution 
develops logarithmic dependence on the dimensionless scale mhz which calls for an all-order 
resummation of all multi-hole exchanges. In all NMHV components the latter factorize into a 
multiplier that can be addressed separately from the accompanying heavy flux-tube excitation at 
leading order in strong coupling. There are two of these with either singlet or sextet quantum 
numbers with respect to the internal symmetry group of the parent theory. While the one cor-
responding to the singlet was addressed before, presently we added the latter to complete the 
consideration. The resumed expression was inspired by the reinterpretation of the pentagon form 
factor series in terms of the correlation functions of twist operators in the O(6) sigma model. 
Like in the MHV case [32], we observed a nonperturbative enhancement of the classical area 
prediction exp(−2gA6) by multiplicative factors

Wr∞ =
[
8−1/4�( 5

4 )
]1/36

ξ−1/36eπg/36
[
C1

h(πg)−7/144δr,1 + 1

π
C6

h(πg)281/144δr,6

]
, (6.1)

depending on the representation of the exchanged scalars.
It is important to find a way to predict the normalization constants in the ultraviolet limit 

analytically. The fact that the coefficients of the ξ -dependence in individual multi-hole exchanges 
are given by transcendental numbers suggests that direct resummation is presumably not the 
right way to approach this problem and therefore begs for more efficient techniques. It would 
be interesting to rephrase these results in a form of Thermodynamic Bethe Ansatz equations 
similar to the ones developed for the MHV amplitudes in Refs. [5,6]. Apart from that, the overall 
normalization receives corrections from heavy modes and inverse coupling expansion. One can 
extend our current considerations to higher polygons and establish constraints that follow from 
the Descent Equation [43,44] along the lines of Ref. [45] for subleading corrections.
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Appendix A. Flux-tube equations

Let us rewrite the flux-tube equations in a form suitable for analysis at strong coupling. Their 
generic representation for the parity-even and parity-odd cases read [41,38,14]

∞∫
0

dt

t
J2n(2gt)

[
γ �
u,+(2gt)

1 − e−t
− γ �

u,−(2gt)

et − 1

]
= κ�

2n(u) , (A.1)

∞∫
0

dt

t
J2n−1(2gt)

[
γ �
u,−(2gt)

1 − e−t
+ γ �

u,+(2gt)

et − 1

]
= κ�

2n−1(u) , (A.2)

and
∞∫

0

dt

t
J2n(2gt)

[
γ̃ �
u,+(2gt)

1 − e−t
+ γ̃ �

u,−(2gt)

et − 1

]
= κ̃�

2n(u) , (A.3)

∞∫
0

dt

t
J2n−1(2gt)

[
γ̃ �
u,−(2gt)

1 − e−t
− γ̃ �

u,+(2gt)

et − 1

]
= κ̃�

2n−1(u) , (A.4)

respectively. Here the sources depend on the �-type of excitations under consideration. In what 
follows, we only need the ones corresponding to scalars. However, since they will be defined 
implicitly in our subsequent formulas, we will not display the explicit form in order to save 
space. In addition, for future reference, we recall the form of inhomogeneities for the flux-tube 
vacuum which read

κø
n = 2gδn,0 , κ̃ø

n = 0 . (A.5)

Following [40], we introduce a functional transformation

�f
u(τ ) ≡ �f+,u(τ ) + i�f−,u(τ ) =

(
1 + i coth

τ

4g

)
γ f
u(τ ) , (A.6)

�̃f
u(τ ) ≡ �̃f+,u(τ ) − i�̃f−,u(τ ) =

(
1 + i coth

τ

4g

)
γ̃ f
u(τ ) , (A.7)

that has the advantage of removing the explicit dependence on the coupling constant from the 
Eqs. (A.1)–(A.4). Further, using the Jacobi–Anger summation formula and the identity

∞∫
0

dt

t
J0(2gt)(cos(u1t) − 1) = 0

(|u1| < 2g) for �, we can cast flux-tube equations for the hole into the form

∞∫
dt

t
(cos(u1t) − 1)

[
�h−,u2

(2gt) + �h+,u2
(2gt)

]

0
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= −
∞∫

0

dt

t
(cos(u1t) − 1)

cos(u2t) − et/2J0(2gt)

sinh t
2

, (A.8)

∞∫
0

dt

t
sin(u1t)

[
�h−,u2

(2gt) − �h+,u2
(2gt)

]

= −
∞∫

0

dt

t
sin(u1t)

cos(u2t) − e−t/2J0(2gt)

sinh t
2

, (A.9)

and
∞∫

0

dt

t
(cos(u1t) − 1)

[
�̃h+,u2

(2gt) − �̃h−,u2
(2gt)

]
= −

∞∫
0

dt

t
(cos(u1t) − 1)

sin(u2t)

sinh t
2

,

(A.10)
∞∫

0

dt

t
sin(u1t)

[
�̃h+,u2

(2gt) + �̃h−,u2
(2gt)

]
= −

∞∫
0

dt

t
sin(u1t)

sin(u2t)

sinh t
2

. (A.11)

These results are used in the main text.

Appendix B. Exchange relations

To partially verify our findings for nonperturbative corrections derived in the main text, we 
will rewrite the energy and momentum of the hole, which are conventionally expressed via the 
vacuum flux-tube function γ ø(t) [41]

Eh(u) = 1 +
∞∫

0

dt

t

γ ø(−2gt)

et − 1

(
et/2 cos(ut) − J0(2gt)

)
, (B.1)

ph(u) = 2u −
∞∫

0

dt

t

γ ø(2gt)

et − 1
et/2 sin(ut) , (B.2)

in terms of the hole flux-tube functions γ h
u and γ̃ h

u . Let us demonstrate it for the momentum and 
just quote the final answer for the energy.

To start with, let us recall that the even and odd components of the flux-tube functions are 
entire functions and admit convergent Neumann expansions in terms of Bessel functions. Then 
one can write the above formula in the form of an infinite series representation

ph(u) = 2u + 2
∑
n≥1

(2n)γ
ø
2nκ̃

h
2n(u) + 2

∑
n≥1

(2n − 1)γ
ø
2n−1κ̃

h
2n−1(u) , (B.3)

making use of the sources defining inhomogeneities in the flux-tube equations for scalars. Mul-
tiplying Eqs. (A.3) and (A.4) by 2(2n)J2n(2gt) and 2(2n − 1)J2n−1(2gt), respectively, and 
summing over positive values of n, we find for their sum
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2
∑
n≥1

(2n)γ
ø
2nκ̃

h
2n(u) + 2

∑
n≥1

(2n − 1)γ
ø
2n−1κ̃

h
2n−1(u)

=
∞∫

0

dt

t

[
γ

ø
+(2gt)γ̃ h+,u(2gt) + γ

ø
−(2gt)γ̃ h−,u(2gt)

1 − e−t

+ γ
ø
+(2gt)γ̃ h−,u(2gt) − γ

ø
−(2gt)γ̃ h+,u(2gt)

et − 1

]
. (B.4)

Now, expanding the hole flux-tube functions in the Neumann series provides gives a very concise 
representation of the right-hand side

2
∑
n≥1

(2n)γ̃ h
2n(u)κ

ø
2n + 2

∑
n≥1

(2n − 1)γ̃ h
2n−1(u)κ

ø
2n−1 = 4gγ̃ h

1 (u) , (B.5)

where we employed the explicit form of the sources for the vacuum (A.5).
Analogous consideration can be done for the energy such that one can rewrite the dispersion 

relation in the form

Eh(u) = 1 + 2 lim
t→0

γ h
u (2gt)

t
, ph(u) = 2u + 2 lim

t→0

γ̃ h
u (2gt)

t
. (B.6)

Here we relied on the fact that only the leading term in the Neumann expansion induces a non-
trivial contribution (with subleading ones scaling as powers of t which vanish in the limit in 
question). These agree with Ref. [38].

References

[1] L.F. Alday, J.M. Maldacena, Gluon scattering amplitudes at strong coupling, J. High Energy Phys. 0706 (2007) 064, 
arXiv:0705.0303 [hep-th].

[2] J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 
(1998) 231, arXiv:hep-th/9711200.

[3] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253, arXiv:hep-th/9802150.
[4] S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 

428 (1998) 105, arXiv:hep-th/9802109.
[5] L.F. Alday, D. Gaiotto, J. Maldacena, Thermodynamic bubble ansatz, J. High Energy Phys. 1109 (2011) 032, 

arXiv:0911.4708 [hep-th].
[6] L.F. Alday, J. Maldacena, A. Sever, P. Vieira, Y-system for scattering amplitudes, J. Phys. A 43 (2010) 485401, 

arXiv:1002.2459 [hep-th].
[7] J.M. Drummond, J. Henn, G.P. Korchemsky, E. Sokatchev, On planar gluon amplitudes/Wilson loops duality, Nucl. 

Phys. B 795 (2008) 52, arXiv:0709.2368 [hep-th];
J.M. Drummond, J. Henn, G.P. Korchemsky, E. Sokatchev, Hexagon Wilson loop = six-gluon MHV amplitude, 
Nucl. Phys. B 815 (2009) 142, arXiv:0803.1466 [hep-th].

[8] A. Brandhuber, P. Heslop, G. Travaglini, MHV amplitudes in N=4 super Yang–Mills and Wilson loops, Nucl. Phys. 
B 794 (2008) 231, arXiv:0707.1153 [hep-th].

[9] B. Basso, A. Sever, P. Vieira, Spacetime and flux tube S-matrices at finite coupling for N=4 supersymmetric Yang–
Mills theory, Phys. Rev. Lett. 111 (9) (2013) 091602, arXiv:1303.1396 [hep-th].

[10] L.F. Alday, D. Gaiotto, J. Maldacena, A. Sever, P. Vieira, An operator product expansion for polygonal null Wilson 
loops, J. High Energy Phys. 1104 (2011) 088, arXiv:1006.2788 [hep-th].

[11] B. Basso, A. Sever, P. Vieira, Space-time S-matrix and flux tube S-matrix II. Extracting and matching data, J. High 
Energy Phys. 1401 (2014) 008, arXiv:1306.2058 [hep-th].

[12] A.V. Belitsky, S.E. Derkachov, A.N. Manashov, Quantum mechanics of null polygonal Wilson loops, Nucl. Phys. B 
882 (2014) 303, arXiv:1401.7307 [hep-th].

[13] B. Basso, A. Sever, P. Vieira, Space-time S-matrix and flux-tube S-matrix III. The two-particle contributions, J. High 
Energy Phys. 1408 (2014) 085, arXiv:1402.3307 [hep-th].

http://refhub.elsevier.com/S0550-3213(16)30247-4/bib416C6461793A323030376872s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib416C6461793A323030376872s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib4D616C646163656E613A313939377265s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib4D616C646163656E613A313939377265s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib57697474656E3A31393938716As1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib4775627365723A313939386263s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib4775627365723A313939386263s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib416C6461793A323030396476s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib416C6461793A323030396476s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib416C6461793A323031307668s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib416C6461793A323031307668s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib4472756D6D6F6E643A323030376366s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib4472756D6D6F6E643A323030376366s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib4472756D6D6F6E643A323030376366s2
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib4472756D6D6F6E643A323030376366s2
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib4272616E6468756265723A323030377978s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib4272616E6468756265723A323030377978s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib426173736F3A32303133767361s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib426173736F3A32303133767361s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib416C6461793A323031306B75s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib416C6461793A323031306B75s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib426173736F3A32303133616861s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib426173736F3A32303133616861s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib42656C6974736B793A32303134726261s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib42656C6974736B793A32303134726261s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib426173736F3A323031346B6F61s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib426173736F3A323031346B6F61s1


A.V. Belitsky / Nuclear Physics B 911 (2016) 425–446 445
[14] A.V. Belitsky, Nonsinglet pentagons and NHMV amplitudes, Nucl. Phys. B 896 (2015) 493, arXiv:1407.2853 [hep-
th].

[15] B. Basso, A. Sever, P. Vieira, Space-time S-matrix and flux-tube S-matrix IV. Gluons and fusion, J. High Energy 
Phys. 1409 (2014) 149, arXiv:1407.1736 [hep-th].

[16] A.V. Belitsky, Fermionic pentagons and NMHV hexagon, Nucl. Phys. B 894 (2015) 108, arXiv:1410.2534 [hep-th].
[17] A.V. Belitsky, On factorization of multiparticle pentagons, Nucl. Phys. B 897 (2015) 346, arXiv:1501.06860 [hep-

th].
[18] B. Basso, J. Caetano, L. Cordova, A. Sever, P. Vieira, OPE for all helicity amplitudes, arXiv:1412.1132 [hep-th].
[19] B. Basso, J. Caetano, L. Cordova, A. Sever, P. Vieira, OPE for all helicity amplitudes II. Form factors and data 

analysis, arXiv:1508.02987 [hep-th].
[20] A.V. Belitsky, Towards NMHV amplitudes at strong coupling, arXiv:1509.06054 [hep-th].
[21] Z. Bern, L.J. Dixon, D.A. Kosower, R. Roiban, M. Spradlin, C. Vergu, A. Volovich, The two-loop six-gluon MHV 

amplitude in maximally supersymmetric Yang–Mills theory, Phys. Rev. D 78 (2008) 045007, arXiv:0803.1465 
[hep-th].

[22] V. Del Duca, C. Duhr, V.A. Smirnov, An analytic result for the two-loop hexagon Wilson loop in N = 4 SYM, 
J. High Energy Phys. 1003 (2010) 099, arXiv:0911.5332 [hep-ph].

[23] A.B. Goncharov, M. Spradlin, C. Vergu, A. Volovich, Classical polylogarithms for amplitudes and Wilson loops, 
Phys. Rev. Lett. 105 (2010) 151605, arXiv:1006.5703 [hep-th].

[24] L.J. Dixon, J.M. Drummond, M. von Hippel, J. Pennington, Hexagon functions and the three-loop remainder func-
tion, J. High Energy Phys. 1312 (2013) 049, arXiv:1308.2276 [hep-th].

[25] L.J. Dixon, J.M. Drummond, J.M. Henn, Analytic result for the two-loop six-point NMHV amplitude in N=4 super 
Yang–Mills theory, J. High Energy Phys. 1201 (2012) 024, arXiv:1111.1704 [hep-th].

[26] L.J. Dixon, M. von Hippel, Bootstrapping an NMHV amplitude through three loops, J. High Energy Phys. 1410 
(2014) 65, arXiv:1408.1505 [hep-th].

[27] J. Golden, M.F. Paulos, M. Spradlin, A. Volovich, Cluster polylogarithms for scattering amplitudes, J. Phys. A 47 
(2014) 47 474005, arXiv:1401.6446 [hep-th].

[28] J. Golden, M. Spradlin, An analytic result for the two-loop seven-point MHV amplitude in N = 4 SYM, J. High 
Energy Phys. 1408 (2014) 154, arXiv:1406.2055 [hep-th].

[29] J. Golden, M. Spradlin, A cluster bootstrap for two-loop MHV amplitudes, J. High Energy Phys. 1502 (2015) 002, 
arXiv:1411.3289 [hep-th].

[30] J.M. Drummond, G. Papathanasiou, M. Spradlin, A symbol of uniqueness: the cluster bootstrap for the 3-loop MHV 
heptagon, J. High Energy Phys. 1503 (2015) 072, arXiv:1412.3763 [hep-th].

[31] L.J. Dixon, M. von Hippel, A.J. McLeod, The four-loop six-gluon NMHV ratio function, arXiv:1509.08127 [hep-
th].

[32] B. Basso, A. Sever, P. Vieira, Collinear limit of scattering amplitudes at strong coupling, Phys. Rev. Lett. 113 (26) 
(2014) 261604, arXiv:1405.6350 [hep-th].

[33] D. Fioravanti, S. Piscaglia, M. Rossi, Asymptotic Bethe Ansatz on the GKP vacuum as a defect spin chain: scatter-
ing, particles and minimal area Wilson loops, Nucl. Phys. B 898 (2015) 301, arXiv:1503.08795 [hep-th].

[34] S. Caron-Huot, Notes on the scattering amplitude/Wilson loop duality, J. High Energy Phys. 1107 (2011) 058, 
arXiv:1010.1167 [hep-th].

[35] L.J. Mason, D. Skinner, The complete planar S-matrix of N=4 SYM as a Wilson loop in twistor space, J. High 
Energy Phys. 1012 (2010) 018, arXiv:1009.2225 [hep-th].

[36] A.V. Belitsky, G.P. Korchemsky, E. Sokatchev, Are scattering amplitudes dual to super Wilson loops?, Nucl. Phys. 
B 855 (2012) 333, arXiv:1103.3008 [hep-th].

[37] L. Bianchi, M.S. Bianchi, Worldsheet scattering for the GKP string, arXiv:1508.07331 [hep-th];
L. Bianchi, M.S. Bianchi, On the scattering of gluons in the GKP string, arXiv:1511.01091 [hep-th].

[38] B. Basso, A. Rej, Bethe ansatze for GKP strings, Nucl. Phys. B 879 (2014) 162, arXiv:1306.1741 [hep-th].
[39] B. Basso, G.P. Korchemsky, Embedding nonlinear O(6) sigma model into N=4 super-Yang–Mills theory, Nucl. 

Phys. B 807 (2009) 397, arXiv:0805.4194 [hep-th].
[40] B. Basso, G.P. Korchemsky, Nonperturbative scales in AdS/CFT, J. Phys. A 42 (2009) 254005, arXiv:0901.4945 

[hep-th].
[41] B. Basso, Exciting the GKP string at any coupling, Nucl. Phys. B 857 (2012) 254, arXiv:1010.5237 [hep-th].
[42] L.F. Alday, J.M. Maldacena, Comments on operators with large spin, J. High Energy Phys. 0711 (2007) 019, 

arXiv:0708.0672 [hep-th].
[43] S. Caron-Huot, S. He, Jumpstarting the all-loop S-Matrix of planar N=4 super Yang–Mills, J. High Energy Phys. 

1207 (2012) 174, arXiv:1112.1060 [hep-th].

http://refhub.elsevier.com/S0550-3213(16)30247-4/bib42656C6974736B793A32303134736C61s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib42656C6974736B793A32303134736C61s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib426173736F3A323031346E7261s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib426173736F3A323031346E7261s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib42656C6974736B793A323031346C7461s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib42656C6974736B793A32303135656661s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib42656C6974736B793A32303135656661s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib426173736F3A32303134686661s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib426173736F3A32303135727461s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib426173736F3A32303135727461s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib42656C6974736B793A32303135716C61s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib4265726E3A323030386170s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib4265726E3A323030386170s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib4265726E3A323030386170s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib44656C447563613A323030396175s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib44656C447563613A323030396175s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib476F6E636861726F763A323031306A66s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib476F6E636861726F763A323031306A66s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib4469786F6E3A32303133656B61s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib4469786F6E3A32303133656B61s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib4469786F6E3A323031316E6As1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib4469786F6E3A323031316E6As1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib4469786F6E3A32303134696261s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib4469786F6E3A32303134696261s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib476F6C64656E3A32303134787161s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib476F6C64656E3A32303134787161s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib476F6C64656E3A32303134787166s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib476F6C64656E3A32303134787166s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib476F6C64656E3A32303134707561s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib476F6C64656E3A32303134707561s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib4472756D6D6F6E643A32303134666661s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib4472756D6D6F6E643A32303134666661s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib4469786F6E3A32303135697661s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib4469786F6E3A32303135697661s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib426173736F3A323031346A6661s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib426173736F3A323031346A6661s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib46696F726176616E74693A32303135646D61s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib46696F726176616E74693A32303135646D61s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib4361726F6E48756F743A32303130656Bs1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib4361726F6E48756F743A32303130656Bs1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib4D61736F6E3A32303130796Bs1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib4D61736F6E3A32303130796Bs1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib42656C6974736B793A323031317A6Ds1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib42656C6974736B793A323031317A6Ds1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib4269616E6368693A32303135766777s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib4269616E6368693A32303135766777s2
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib426173736F3A32303133707861s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib426173736F3A323030387478s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib426173736F3A323030387478s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib426173736F3A32303038747831s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib426173736F3A32303038747831s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib426173736F3A32303130696Es1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib416C6461793A323030376D66s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib416C6461793A323030376D66s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib4361726F6E48756F743A323031316B6Bs1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib4361726F6E48756F743A323031316B6Bs1


446 A.V. Belitsky / Nuclear Physics B 911 (2016) 425–446
[44] M. Bullimore, D. Skinner, Descent equations for superamplitudes, arXiv:1112.1056 [hep-th].
[45] A.V. Belitsky, Descent equation for superloop and cyclicity of OPE, arXiv:1506.02598 [hep-th].
[46] B. Basso, A. Sever, P. Vieira, Hexagonal Wilson loops in planar N = 4 SYM theory at finite coupling, arXiv:1508.

03045 [hep-th].
[47] B. Basso, A. Sever, P. Vieira, Amplitudes as a flux-tube gas: scalars, http://people.maths.ox.ac.uk/lmason/NGSA14/

Slides/Benjamin-Basso.pdf, in press.

http://refhub.elsevier.com/S0550-3213(16)30247-4/bib42756C6C696D6F72653A323031316B67s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib42656C6974736B793A323031356B6461s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib426173736F3A32303135757861s1
http://refhub.elsevier.com/S0550-3213(16)30247-4/bib426173736F3A32303135757861s1
http://people.maths.ox.ac.uk/lmason/NGSA14/Slides/Benjamin-Basso.pdf
http://people.maths.ox.ac.uk/lmason/NGSA14/Slides/Benjamin-Basso.pdf

	Nonperturbative enhancement of superloop  at strong coupling
	1 Introduction
	2 Strong-coupling expansion of hole phases
	3 Nonperturbative corrections
	3.1 Even parity
	3.2 Odd parity

	4 Mixed pentagons
	5 Hexagon superloop
	5.1 Antifermion-scalars
	5.2 Singlet multi-scalar exchanges
	5.3 Fermion-scalars
	5.4 Sextet multi-scalar exchanges
	5.5 Gluon-scalars
	5.6 Asymptotic form of heavy-particle exchanges

	6 Conclusions
	Acknowledgements
	Appendix A Flux-tube equations
	Appendix B Exchange relations
	References


