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In lots of practical multi-criteria decision making (MCDM) problems, there exist various
and changeable relations among the criteria which cannot be handled well by means of
the existing methods. Considering that graphic or netlike structures can be used to describe
the relationships among several individuals, we first introduce the graphic structure into
MCDM and formalize the relations among criteria. Then, we develop a new tool, called
graph-based multi-agent decision making (GMADM) model, to deal with a kind of MCDM
problems with the interrelated criteria. In the model, the graphic structure is paid sufficient
attention to in two main aspects: (1) how the graphic structure has influence on the ben-
efits of agents (or the criteria values); and (2) the relation between the graphic structure
and the importance weights of agents (criteria). In this case, we can select the best plan(s)
(or alternative(s)) according to the overall benefits (the overall criteria values) resulting
from the model. Moreover, a fuzzy graph-based multi-agent decision making (FGMADM)
method is developed to solve a common kind of situations where the graphic structure
of agents is uncertain (confidential or false). Three examples are used to illustrate the fea-
sibility of these two developed methods.

� 2011 Published by Elsevier Inc.
1. Introduction

When a hacker attacks a network, what he/she wants to do is to damage the network as serious as possible. The hacker
may have several attack plans, which are made by experts or formed according to current situations. Suppose that there are n
agents (a1,a2, . . . ,an) and a certain graphic structure in the network (see Fig. 1). Meanwhile, the hacker wants to pick out a
plan from the set of plans {p1,p2, . . . ,pm} so as to damage the network worst. In this purpose, the hacker needs to assess each
of plans and then select the best one. Undoubtedly, if a plan is selected and put into action, some or all agents will be dam-
aged, and the overall damage of the network can be calculated. But for different plans, the damage degrees of the network are
different which can be used to evaluate the plans.

We assume that the agents aj (j = 1,2, . . . ,n) will suffer some damage dij, if the hacker puts the plans pi (i = 1,2, . . . ,m) into
action. Thus, we can construct a damage matrix D = (dij)m�n of all plans based on which we try to pick out the best plan. Sim-
ilar to the multi-criteria aggregation methods, we derive the corresponding m overall damage degrees for all plans by uti-
lizing an aggregation method. In this case, we can aggregate each row of the damage matrix into an overall damage
degree for the corresponding plan, and the overall damage degrees can be used to assess the plans. But as differing from
multi-criteria decision making, there exist some relations among the agents in the network which are formalized as a gra-
phic structure. Therefore, if the hacker wants to select the best plan(s), he/she needs to take the graphic structure into
account.
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Fig. 1. A network with n agents.
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Like the above plan-selecting problem for attacking a network, how to make decision will be discussed in this paper when
the relations of multiple agents are figured by a graph. We call this kind of problems the graph-based multi-agents decision
making (GMADM) problems. The GMADM problems occur broadly in almost all fields, such as politics, economy and military,
and so on. For example, a situation of battlefield can be figured by a graph, where each combat unit is considered as a vertex
(i.e., an agent), and there exits an edge between two agents if the corresponding combat units are hostile or coordinative. Any
commander or command department wants to work out an operational plan so as to obtain as much benefit as possible. The
GMADM model, developed in this paper, can help the commander or the command department to judge several operational
plans and select the best one(s). The GMADM model can also be applied to assist a government in drawing up its policies or
an enterprise in making its sales strategies. Therefore, how to solve these kinds of GMADM problems is meaningful and shall
be discussed in detail in the following sections.

Generally speaking, the decision factors of a MCDM problem consist of decision makers, alternatives and criteria, etc., and
most of the MCDM methods are to serve a kind of problems that there exist no relations among any decision factors (it is
independent between any two decision makers, alternatives or criteria). However, the relations among these decision factors
are more or less existent in lots of the actual applications. Some authors have already paid attention to this issue. Fan and
Feng [1] proposed a MCDM method using the individual and collaborative attribute data so as to solve the actual MCDM
problems with both the individual attribute data of a single alternative and the collaborative attribute data of pairwise alter-
natives. In their contribution, the possible relations between two alternatives have been explored in some actual MCDM
problems. As mentioned in [1], when selecting a team leader, the decision maker (DM) usually uses the individual attribute
data of candidates such as leadership, management experience and professional expertise. Additionally, the DM should take
into consideration of the collaborative attribute data of each pair of candidates such as communication, knowledge sharing,
and temperament compatibility and so on. The method for depicting the relations between two alternatives with respect to
the collaborative attributes and handling the corresponding MCDM problems has been introduced firstly in [1], but more
general frame to establish various relations among alternatives has been not involved in the literature. Antuchevičiene
et al. [2] integrated the Mahalanobis distance instead of the Euclidean distance into the usual algorithm of TOPSIS in the pro-
cess of MCDM, which offers an option to take the correlations among the criteria into consideration. Generally speaking, the
taller a person is, the heavier he/she is. Thus if we assess several persons by using height and weight as the main criteria
independently, the result will be distorted. Antuchevičiene et al. [2] have added correlation coefficients into the similar
dependent criteria so as to eliminate the distortion. Besides, Xu [3] used the Choquet integral to propose some intuitionistic
fuzzy aggregation operators, which not only can consider the importance of the elements or their ordered positions, but also
can reflect the correlations of the elements or their ordered positions. The method in [3] is also used to deal with the MCDM
problems with the dependent criteria like height and weight aforementioned similar to the method in [2]. But differing from
the method in [2] that establishes the relations between the criteria by using the correlation coefficients, the method in [3]
uses the Choquet integral to calculate the weights of criteria or their ordered positions. The latter is more flexible but sub-
jective than that in [2] because of the more unrestricted fuzzy measure of the Choquet integral in [3]. By considering the
multi-criteria aggregation problems where there exists a prioritization relationship over the criteria, Yager [4,5] introduced
a number of prioritized aggregation operators which can be conveniently used in practical applications. For example, when
we expect to select a basketball player from several persons by considering their heights and weights, obviously the height is
a prioritized criterion rather than the weight, i.e., their heights are usually paid more attention than their weights. A stochas-
tic simulation model, which is based on decision variables and stochastic parameters with the given distributions, was con-
structed to solve the MCDM problems in [6]. The simulation model determines a joint probability distribution for the criteria
to quantify the uncertainties and their interrelations. The method in [6] can well handle the MCDM problems with the
dependent criteria, but sometimes the relevant joint probability distribution is not given and is hard to obtain similar to
the correlation coefficients in [2]. The above existing methods are aiming at the respective specific kinds of MCDM problems
with the relative decision factors. Thus, it is necessary to develop a common method in order to describe the relations among
the decision factors and solve the relevant MCDM problems. The GMADM model, which needs to be developed, can be a
common tool for solving a kind of MCDM problems with the relative criteria. Similar to the example that a person is selected



504 X. Yu, Z. Xu / International Journal of Approximate Reasoning 53 (2012) 502–512
to play basketball from several candidates by considering their heights and weights, the height is a prioritized criterion and
meanwhile there exists interrelation between the height and the weight. Therefore, we cannot deal with the MCDM problem
by using the method in the above literature. In this case, we can design a solution by means of the GMADM model because
the GMADM model can establish various relations among the criteria (such as the prioritization relationships, the correla-
tions, etc.) on the basis of changeable graphic structures. In order to do that, we organize the rest of the paper as follows. In
Section 2, we introduce some basic concepts and terminologies of multi-criteria decision making and graph theory. Then we
analyze how the graphic structure affects the results of decision making, and develop a method to solve the GMADM prob-
lems by discussing the relations between the graphic structure and the importance weights or the benefits of agents in Sec-
tion 3. In addition, fuzzy graph-based multi-agent decision making (FGMADM) is discussed in Section 4, and the
practicability of FGMADM is also explained. The final section ends the paper with conclusions.

2. Preliminaries

In this section, we introduce some basic concepts and terminologies which will be used in the following sections.

2.1. Graph theories

According to Diestel [7], a graph is a pair of sets, G = (V,E), satisfying E # [V]2, i.e., the elements of E are 2-element subsets
of V. The elements of V are the vertices of the graph G, and the elements of E are its edges. Especially in this paper, the vertices
can be the agents of multi-agent decision making problems. Besides, a useful concept of a graph is introduced as follows:

Definition 2.1 ([7]). Let G = (V,E) be a (non-empty) graph, then the degree d(v) of a vertex v 2 V is the number jE(v)j of edges
at v; by the definition of a graph, this is equal to the number of neighbors of v, where the set of the neighbors of v is denoted
as Nv in this paper.

It is quite well-known that a graph is a convenient way of representing information involving the relationship between
the objects which are represented by vertices and relations by edges. When there is fuzziness in the description of the
vertices or in their relations or in both, fuzzy graph model is put forward naturally.
Definition 2.2 ([8]). A fuzzy graph eG ¼ ðV ;l;qÞ is a non-empty set V together with a pair of functions l :V ? [0,1] and
q :V � V ? [0,1], such that q(x,y) 6 l(x) ^ l(y) for all x, y 2 V, where the symbol ^ stands for Min. We call l the fuzzy vertex
set of eG and q the fuzzy edge set of eG.

Similarly, there are the following concepts for a fuzzy graph:

Definition 2.3 ([8]). Let eG ¼ ðV ;l;qÞ be a fuzzy graph. Degree of a vertex v 2 V is defined as:
dðvÞ ¼
X

u2Vnfvg
qðu;vÞ ð1Þ
Definition 2.4 ([8]). Let eG ¼ ðV ;l;qÞ be a fuzzy graph. Then a path in the fuzzy graph is a sequence of distinct vertices
u0,u1, . . . ,un (except possibly u0 and un), such that q(ui�1,ui) > 0, 1 6 i 6 n. The strength of the path is defined as
^n

i¼1qðui�1;uiÞ, i.e., the strength of a path is defined as the degree of membership of a weakest edge of the path.
Note. In this paper, the fuzzy relation between the ith and jth vertices or agents, i.e., q(vi,vj) or q(ai,aj) can be denoted as

qij for convenience if it is not ambiguous.

Definition 2.5 ([9]). In a connected fuzzy graph eG ¼ ðV ;l;qÞ, the q-distance d(u,v) is the smallest q-length of a pathbP ¼ ðu ¼ u0;u1; . . . ;un�1;un ¼ vÞ:
l bP� �
¼
Xn

i¼1

1
qðui�1; uiÞ

ð2Þ� �

If n = 0, then we stipulate l bP ¼ 0. Thus, the eccentricity e(u) of a vertex u is:
eðuÞ ¼ maxv2Vfdðu;vÞg ð3Þ
2.2. Multi-criteria decision making

Suppose that there is a set of alternatives, X, and a set of criteria, C. How to choose an alternative in X, which satisfies these
criteria most, is called multi-criteria decision making (MCDM) [10]. Generally, a MCDM problem can be solved on the basis of
aggregation techniques, and the processes are modeled as follows (see Fig. 2):



Fig. 2. The MCDM model.
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In a MCDM problem, suppose that there are m alternatives xi (i = 1,2, . . . ,m) in X and n criteria cj (j = 1,2, . . . ,n) in C, and all
assessment information constitutes a matrix M = (aij)m�n, where aij denotes the criterion value of the alternative xi under the
criterion cj. Each alternative is depicted by n criteria values (assessment information), so it is hard to rank all alternatives
directly and a decision making method is needed. According to the main idea of MCDM, we can choose a proper aggregation
technique to aggregate the criteria values into an overall one for an alternative, and then rank the alternatives by means of all
overall criteria values. For example, for the alternatives xi (i = 1,2, . . . ,m), there are n criteria values (ai1,ai2, . . . ,ain). By using
an aggregation method [11–16] (such as the weighted averaging operator and the ordered weighted averaging operator, and
so on), we integrate the criteria values (ai1,ai2, . . . ,ain) into an overall one ai. We finally rank all alternatives and select the
most desirable one(s) by comparing the overall criteria values ai (i = 1,2, . . . ,m).

In what follows, we introduce a common aggregation operator which will be used in the next sections:

Definition 2.6 ([17]). Let WA : Rn ! R, where R is the set of all real numbers. If
WAwða1;a2; . . . ;anÞ ¼
Xn

i¼1

wiai ð4Þ
where w = (w1,w2, . . . ,wn)T is weight vector of (a1,a2, . . . ,an)T, wi 2 [0,1] (i = 1,2, . . . ,n) and
Pn

i¼1wi ¼ 1, then the function WA
is called a weighted averaging (WA) operator.
3. Graph-based multi-agent decision making

In some cases, there exist some relations (like cooperation and competition) among the criteria in a MCDM problem,
which cannot be solved well by means of the existing methods. When the graph theory is used to formalize the relations
among the criteria, this kind of MCDM problems are then called graph-based multi-agent decision making (GMADM) prob-
lems in this paper, and the criteria are just like vertices in a graph, nodes in a network or agents in a mission. Hence, suppose
that there are a set of plans P = {p1,p2, . . . ,pm} and a set of agents A = {a1,a2, . . . ,an} which is the set of vertices in a graph
G = (A,E), where E # [A]2 is the set of relations among agents in A. Then to choose the best plan(s) so as to produce the max-
imal benefit is what GMADM wants. Similar to MCDM in Fig. 2, we develop a GMADM model as follows (see Fig. 3):
Fig. 3. The GMADM model.
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According to the GMADM model, we shall choose a proper aggregation method to obtain the best plan(s). In GMADM, we
first must be clear that how these plans affect the benefits of agents. For example, in the case of network attack, when the
hacker attacks one of the agents, the neighbors of the agent will also be damaged. In this case, we shall calculate the benefit
of each agent under every plan in accordance with the graphic structure (i.e., the relations among the agents). But in some
problems, we need not to take the graph structure into account, when calculating the benefits. Thus, we shall take different
measures for different situations.

In this purpose, we can calculate the benefit of each agent for a plan by improving Galeotti et al.’s method [18]. Consider n
agents, each of them is identified with a vertex in a graph. For a plan, we are clear whether every agent takes an action or not
(just as being attacked by a hacker). When an agent ai take an action, we denote by ti = 1; otherwise, ti = 0. Then the benefit of
ai can be calculated by
bi ¼ ti þ �tNi
; for i ¼ 1;2; . . . ; n ð5Þ
where Ni is the set of the agent ai’s neighbors, and �tNi
¼
P

j2Ni
nijtjðnij 2 ½0;1� can be interpreted as the influence coefficient

between the relevant agents). If nij = 0, for j 2 Ni (i = 1,2, . . . ,n), then bi = ti, that is to say, the benefits of the agents have no
reference to their neighbors and it is not necessary to take the graphic structure into account.

Besides, the importance of agents may be different. If we can find the difference exactly, the results of the GMADM model
will be more worth being trusted. In the actual GMADM problems, how to determine the importance weights of agents is
usually relevant to the graphic structure, so we shall discuss how to calculate the weights of agents according to some basic
concepts of the graph theory.

In some cases, we take it for granted that the more neighbors an agent has, the more important it is. In other cases, if the
connectivity of the graph is reduced because of removal of an agent, we regard the agent as an important one. Thus, we can
analyze the degree or the connectivity of each vertex in order to obtain the importance weight of each agent. Taking the net-
work attacking as an example, the hacker prefers to attack a node with more neighbors so as to damage the network more
seriously. We assume that there are n vertices A = (a1,a2, . . . ,an) in a graph G = (A,E), and we can obtain the degree of each
vertex d(ai) according to Definition 2.1, then the weights of vertices can be calculated as:
wi ¼
dðaiÞPn
j¼1dðajÞ

; for i ¼ 1;2; . . . ; n ð6Þ
For example, in a graph G = (A,E), where A = {a1,a2,a3,a4,a5} and E = {(a1,a2), (a1,a3), (a1,a4), (a1,a5), (a2,a3), (a2,a4)} (see Fig. 4).
According to Definition 2.1, we have
dða1Þ ¼ 4; dða2Þ ¼ 3; dða3Þ ¼ 2; dða4Þ ¼ 2; dða5Þ ¼ 1
Then, we can calculate the weights of vertices by (6):
w1 ¼
1
3
; w2 ¼

1
4
; w3 ¼

1
6
; w4 ¼

1
6
; w5 ¼

1
12
Furthermore, during the solutions of some GMADM problems, we must take some subjective factors into account. For exam-
ple, the decision maker has already ranked the importance degrees of all agents. He/she considers that more benefit will be
produced if the agent (considered to be important) takes an action. Generally speaking, there exist the subjective differences
among the agents in a graph, and some agents usually are regarded as prior to others, such as the server in a network, the
command department in a battlefield, etc. In this case, some agents shall be considered as a matter of priority and the loss of
their benefit cannot be compensated by other agents’. In order to make a proper decision in this kind of problems, we can
first construct the prioritization relations among the agents, and then calculate the benefit of each plan by using the prior-
itized aggregation operators [4,5]. In what follows, we develop an operator by considering both the degrees of agents and
their prioritization relations in GMADM.

We assume that all agents A = {a1,a2, . . . ,an} can be partitioned into q distinct categories H1,H2, . . . ,Hq such that
Hi ¼ fai1; ai2; . . . ; aini

g
Pq

i¼1ni ¼ n
� �

in a graph G = (A,E), and there exists a prioritization among the categories
H1 � H2 � � � � � Hq where the symbol ‘‘�’’ denotes ‘‘prior to’’. According to the graphic structure, we can derive the degree
of each agent d(ai), which can be regularized by
Fig. 4. A graph with five vertices.
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�dðaiÞ ¼
dðaiÞ

maxjðdðajÞÞ
ð7Þ
and then for each category Hi we calculate
Si ¼
1; i ¼ 0
min

j
ð�dðaijÞÞ; otherwise

(
ð8Þ
based on which we calculate the importance weight of each category:
xi ¼
Yi

k¼1

Sk�1; for i ¼ 1;2; . . . ; q ð9Þ
By using the above weights, we can obtain the overall benefit of a plan, if we assume that the benefits of agents are bij

(i = 1,2, . . . ,q; j = 1,2, . . . ,ni):
b ¼
X

i;j

xibij ¼
Xq

i¼1

xi

Xni

j¼1

bij ð10Þ
We must note that
P

ixi–1 and it is unnecessary to normalize them. That is because that, according to [4], the results of (10)
will not satisfy monotonicity any longer if we normalize the weights. Therefore, for each plan, we can calculate its overall
benefit by using the above operator, and then rank these plans according to the overall benefits. In what follows, we take
a succinct example to illustrate the practicability of the above method:

Example 1. Suppose that there is a graph G = (A,E) with five agents ai (i = 1,2,3,4,5) and E = {(a1,a2), (a1,a3), (a1,a4), (a1,a5),
(a2,a3), (a2,a4)} (see Fig. 4). Then we can derive the degree of each agent:
dða1Þ ¼ 4; dða2Þ ¼ 3; dða3Þ ¼ 2; dða4Þ ¼ 2; dða5Þ ¼ 1
By (7), we have
�dða1Þ ¼ 1; �dða2Þ ¼ 0:75; �dða3Þ ¼ 0:5; �dða4Þ ¼ 0:5; �dða5Þ ¼ 0:25
Suppose that there exist the prioritization relations {a2,a3} � {a1} � {a4,a5}, then by (8) we have
S0 ¼ 1; S1 ¼ 0:5; S2 ¼ 1; S3 ¼ 0:25
and then by (9) we can calculate the weight of each category:
x1 ¼ 1; x2 ¼ 0:5; x3 ¼ 0:5
We also assume that there is a plan p, in which just a1 takes an action, then t1 = 1 and ti = 0 (i = 2,3,4,5). If all influence coef-
ficients are 0.5 (i.e., nij = 0.5, i – j and i, j = 1,2,3,4,5), then we can get the benefits of all agents according to (5):
bðpÞ1 ¼ t1 þ �tN1 ¼ 1; bðpÞ2 ¼ bðpÞ3 ¼ bðpÞ4 ¼ bðpÞ5 ¼ 0þ 0:5� 1 ¼ 0:5
By (10), we can calculate the overall benefit of p:
bðpÞ ¼ x1 � ðbðpÞ2 þ bðpÞ3 Þ þx2 � bðpÞ1 þx3 � ðbðpÞ4 þ bðpÞ5 Þ ¼ 2
4. Fuzzy graph-based multi-agent decision making

The first definition of fuzzy graph was proposed by Rosenfeld [19], from the fuzzy relations introduced by Zadeh [20].
Since then, it has been growing fast, and has numerous applications in various fields. Because the fuzzy graph can well de-
scribe the uncertainty of all kinds of networks, we analyze the decision making problems on the basis of fuzzy graphic struc-
tures in this section, and then deal with this new kind of decision making problems by a method called fuzzy graph-based
multi-agent decision making (FGMADM) method in this paper.

First of all, we define this kind of problems as follows:
Suppose that there is a set of n uncertain agents eA ¼ ~a1; ~a2; . . . ; ~anf g, which can be described by a fuzzy set

~ai;li

� �
ji ¼ 1;2; . . . ;n

� �
. li, which can be regarded as the possibility of existence and 0 6 li 6 1, is the membership degree

of ~ai. If there exists a fuzzy relation between two agents ~ai and ~aj, we denote the fuzzy relation as qij(0 < qij 6 li ^ lj; i,
j = 1,2, . . . ,n); otherwise, qij = 0. By means of the definition of fuzzy graphs in Definition 2.2, we formalize the agents and their
fuzzy relations as a fuzzy graph eG ¼ eA;l;q� �

. Let a set of plans, P = {p1,p2, . . . ,pm}, and the implementation of any plan will
force some or all agents to take actions, during which benefits will be produced. How to choose a best plan so as to derive the
maximal benefit is just a FGMADM problem.

We also can take the network attacking as an example. Sometimes, actual networks are confidential, such as internal net-
works, so a hacker has no idea to make this kind of netlike structures clear. In this case, the hacker can only describe the
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uncertain network structures by fuzzy graphs in accordance with partial reliable information. Thus, the hacker shall find a
method to solve the FGMADM problem so as to select a plan to damage the network as serious as possible.

In a fuzzy graph eG ¼ eA;l;q� �
, for a plan, suppose that if an agent ~ai 2 eA takes an action, we let ~ti ¼ 1; otherwise, ~ti ¼ 0.

Then we can calculate the benefit of each agent ~ai by using
~bi ¼ li
~ti þ �~tNi

; for i ¼ 1;2; . . . ;n ð11Þ
where Ni is the set of the agent ai’s neighbors, and �~tNi
¼
P

j2Ni
qijnij

~tj (nij 2 [0,1] can be interpreted as influence coefficient be-
tween relevant agents).

If the weights of all agents are given, we can obtain the overall benefit of the plan by using an aggregation operator. We
assume that the weighted averaging operator (see Definition 2.6) is chosen, and then the overall benefit of the plan can be
calculated by
~b ¼
Xn

i¼1

wi
~bi; for i ¼ 1;2; . . . ;n ð12Þ
where w = (w1,w2, . . . ,wn)T is the weight vector.
However, if the weights of agents are not given, we shall calculate them according to some known information, such as

fuzzy graphic structure, the benefits of agents, etc. In what follows, we develop a method to derive the weights by means of
the fuzzy graphic structure (the degrees of vertices in a fuzzy graph):
wi ¼
dð~aiÞPn
j¼1dð~ajÞ

; for i ¼ 1;2; . . . ; n ð13Þ
where dð~aiÞ ¼
P

~aj2Ni
qij indicates the degree of ~ai (see Definition 2.3). As putting the results of (13) into (12), we can obtain

the overall benefit of a plan which will help to select the best plan. In addition, we can use the other concepts of fuzzy graphs
to derive the weights. For example, if it is paid special attention to whether removing a vertex will reduce the connectivity of
a fuzzy graph, we can derive the weights by the concepts of cut-vertex.

Analogically, if there exist the prioritization relations among the agents in the FGMADM problems, we shall solve this
kind of problems by using the prioritized aggregation operators [4,5] together with the necessary fuzzy graph structure.

Suppose that, in a fuzzy graph eG ¼ eA;l;q� �
, there are q sets with a prioritization eH1 � eH2 � . . . � eHq which partitions the

set of agents, eA ¼ f~a1; ~a2; . . . ; ~ang, into q distinct categories, and each of the categorys eHi ¼ f~ai1; ~ai2; . . . ; ~aini
g ði ¼ 1;2; . . . ; qÞ. If

the degrees of agents are used to deal with the FGMADM problem, the solution is the same as the method for solving the
GMADM problems with the prioritized agents in the last section. Here, we develop a method to handle the FGMADM prob-
lems by means of the prioritized aggregation operators together with the eccentricities of agents if the corresponding fuzzy
graph is connected.

According to Definition 2.5, we first calculate the eccentricities of all agents eð~aiÞ ði ¼ 1;2; . . . ;nÞ, which can be regularized
by
�eð~aiÞ ¼
minjðe ~aj

� �
Þ

e ~aið Þ
ð14Þ
and then for each category eHi, we calculate
eSi ¼
1; i ¼ 0
minjð�eð~aijÞÞ; otherwise

�
ð15Þ
After that, we can calculate the importance weight of each category:
xi ¼
Yi

k¼1

eSk�1; for i ¼ 1;2; . . . ; q ð16Þ
By using the above weights, we then can obtain the overall benefit of a plan:
Fig. 5. A fuzzy graph with five vertices.
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~b ¼
X

i;j

xi
~bij ¼

Xq

i¼1

xi

Xni

j¼1

~bij ð17Þ
if the benefits of agents are ~bij ði ¼ 1;2; . . . ; q; j ¼ 1;2; . . . ;niÞ.
We can also illustrate the practicability of the above method by a brief example similar to Example 1.

Example 2. Suppose that there is a fuzzy graph eG ¼ eA;l;q� �
with five agents ~ai ði ¼ 1;2; . . . ;5Þ (see Fig. 5), where
l1 ¼ 0:9; l2 ¼ 0:7; l3 ¼ 0:9; l4 ¼ 0:8; l5 ¼ 0:7
and
q12 ¼ 0:7; q13 ¼ 0:5; q14 ¼ 0:6; q15 ¼ 0:7; q23 ¼ 0:6; q24 ¼ 0:7
Then according to Definition 2.5, we can derive the eccentricity of each agent:
eð~a1Þ ¼ 2; eð~a2Þ ¼ 2:86; eð~a3Þ ¼ 3:43; eð~a4Þ ¼ 3:10; eð~a5Þ ¼ 3:43
By (14), we have
�eð~a1Þ ¼ 1; �eð~a2Þ ¼ 0:699; �eð~a3Þ ¼ 0:583; �eð~a4Þ ¼ 0:645; �eð~a5Þ ¼ 0:583
Suppose that there exist the prioritization relations f~a2; ~a3g � f~a1; ~a4g � f~a5g, then by (15) we have
S0 ¼ 1; S1 ¼ 0:583; S2 ¼ 0:645; S3 ¼ 0:583
and then by (16), we can calculate the weights of each category:
x1 ¼ 1; x2 ¼ 0:583; x3 ¼ 0:376
We assume that there is a plan p, in which only ~a1 takes an action, and then ~t1 ¼ 1 and ~ti ¼ 0 ði ¼ 2;3;4;5Þ. If all influence
coefficients are 0.5, i.e., nij = 0.5 for i, j = 1,2, . . . ,5 and i – j, then we can get the benefits of all agents according to (11):
~bðpÞ1 ¼ l1
~t1 þ �~tN1 ¼ 0:9

~bðpÞ2 ¼ l2
~t2 þ �~tN2 ¼ q12n21

~t1 ¼ 0:35
~bðpÞ3 ¼ l3

~t3 þ �~tN3 ¼ q13n31
~t1 ¼ 0:25

~bðpÞ4 ¼ l4
~t4 þ �~tN4 ¼ q14n41

~t1 ¼ 0:3
~bðpÞ5 ¼ l5

~t5 þ �~tN5 ¼ q15n51
~t1 ¼ 0:35
By (17), we can calculate the overall benefit of p:
~bðpÞ ¼ x1 � ð~bðpÞ2 þ ~bðpÞ3 Þ þx2 � ð~bðpÞ1 þ bðpÞ4 Þ þx3 � bðpÞ5 ¼ 1:43
5. Illustrative example

A practical decision making problem involving the prioritization of 10 information technology improvement projects was
ever analyzed in [3,21]. In this section, we will take the problem as an example so as to illustrate the practicability of the
GMADM model.

The information management steering committee of Midwest American Manufacturing Corp. (MAMC) wants to prioritize
for development and implementation a set of ten information technology improvement projects S = {siji = 1,2, . . . ,10}: (1)
Quality Management Information (s1), (2) Inventory Control (s2), (3) Customer Order Tracking (s3), (4) Materials Purchasing
Management (s4), (5) Fleet Management (s5), (6) Design Change Management (s6), (7) Electronic Mail (s7), (8) Customer Re-
turns and Complaints (s8), (9) Employee Skills Tracking (s9), and (10) Budget Analysis (s10), which have been proposed by
area managers. The committee is concerned that the projects are prioritized from highest to lowest potential contribution
to the firm’s strategic goal of gaining competitive advantage in the industry. In assessing the potential contribution of each
project, a set of three factors are considered:
X ¼ fx1 : productivity; x2 : differentiation; x3 : managementg
where the productivity factor assesses the potential of a proposed project to increase the effectiveness and efficiency of the
firm’s manufacturing and service operations, the differentiation factor assesses the potential of a proposed project to funda-
mentally differentiate the firm’s products and services from its competitors’ and to make them more desirable to its custom-
ers, and the management factor assesses the potential of a proposed project to assist management in improving their
planning, controlling and decision-making activities.

The committee evaluates the projects si (i = 1,2, . . . ,10) in relation to the factors xj (j = 1,2,3), and gives more importance
to x1 and x2 than to x3, but, on the other hand, the committee gives some advantage to the projects that are good both in x3
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and in either of x1 and x2. In this case, we assume that the relationships among the factors xj (j = 1,2,3) can be described by a
complete graph G = (A,E), where A = X = {x1,x2,x3} (see Fig. 6). Similar to (5), we can design some influence coefficients to
quantify the relationships among the factors. For example, n12, n13 and n23 are used to denote the influence coefficients be-
tween corresponding two factors respectively, then the overall benefit of a certain project si can be calculated by
bsi
¼ w1 � ðbsi

ðx1Þ þ n12bsi
ðx2Þ þ n13bsi

ðx3ÞÞ þw2 � ðbsi
ðx2Þ þ n12bsi

ðx1Þ þ n23bsi
ðx3ÞÞ þw3 � ðbsi

ðx3Þ þ n13bsi
ðx1Þ

þ n23bsi
ðx2ÞÞ ð18Þ
where bsi
ðxjÞ denotes the benefit of the project si with respect to the factor xj if the weights of these factors are w1, w2 and w3

respectively. In (18), we call �bsi
ðx1Þ ¼ bsi

ðx1Þ þ n12bsi
ðx2Þ þ n13bsi

ðx3Þ; �bsi
ðx2Þ ¼ bsi

ðx2Þ þ n12bsi
ðx1Þ þ n23bsi

ðx3Þ and �bsi
ðx3Þ ¼

bsi
ðx3Þ þ n13bsi

ðx1Þ þ n23bsi
ðx2Þ the benefits of the project si with respect to the factors xj (j = 1,2,3) respectively after consid-

ering the influence from other factors.
In accordance with the committee’s opinion, x1 and x2 are more important than x3, and any project with the better ben-

efits concerning both x3 and either x1 or x2 has a higher priority, thus, we assume that the weights of these factors xj

(j = 1,2,3) are 0.4, 0.4 and 0.3 respectively, i.e.,
w ¼ ðw1;w2;w3ÞT ¼ ð0:4;0:4;0:3ÞT ð19Þ
and the influence coefficients are
n12 ¼ �0:1 � ðbsi
ðx1Þ þ bsi

ðx2ÞÞ; n13 ¼ 0:05 � ðbsi
ðx1Þ þ bsi

ðx3ÞÞ; n23 ¼ 0:05 � ðbsi
ðx2Þ þ bsi

ðx3ÞÞ ð20Þ
respectively, for the projects si (i = 1,2, . . . ,10). In this case, the larger both bsi
ðx1Þ (or bsi

ðx2ÞÞ and bsi
ðx3Þ, the larger n13 (or n23),

and thus the larger both �bsi
ðx1Þ and �bsi

ðx3Þ (or �bsi
ðx2ÞÞ. The projects si (i = 1,2, . . . ,10) will have a good overall benefit. Con-

trarily, if we have the larger bsi
ðx1Þ and bsi

ðx2Þ, we will have the smaller �bsi
ðx1Þ and �bsi

ðx2Þ because of the influence of the neg-
ative coefficient n12. The corresponding projects si (i = 1,2, . . . ,10) will not be considered as a good one according to its overall
benefit.

The evaluation information on the projects si (i = 1,2, . . . ,10) under the factors xj (j = 1,2,3) can be shown in Table 1.
Because of the limit of the contents, we will calculate the overall benefit of s1 in detail in the following, but leave out the

calculation processes for the other projects and only give final results.
We first calculate three influence coefficients by (20):
n12 ¼ �0:1 � ðbs1 ðx1Þ þ bs1 ðx2ÞÞ ¼ �0:1 � ð0:7þ 0:8Þ ¼ �0:15
n13 ¼ 0:05 � ðbs1 ðx1Þ þ bs1 ðx3ÞÞ ¼ 0:05 � ð0:7þ 0:9Þ ¼ 0:08
n23 ¼ 0:05 � ðbs1 ðx2Þ þ bs1 ðx3ÞÞ ¼ 0:05 � ð0:8þ 0:9Þ ¼ 0:085
and the benefits of the project s1 with respect to the factors xj (j = 1,2,3) respectively after considering the influences from
the other factors can be
Table 1
The evaluation information on the projects.

x1 x2 x3

s1 0.7 0.8 0.9
s2 0.6 0.8 0.8
s3 0.4 0.6 0.5
s4 0.7 0.8 0.6
s5 0.5 0.7 0.4
s6 0.4 0.6 0.8
s7 0.3 0.4 0.2
s8 0.6 0.5 0.8
s9 0.4 0.9 0.3
s10 0.3 0.6 0.4
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�bs1 ðx1Þ ¼ bs1 ðx1Þ þ n12bs1 ðx2Þ þ n13bs1 ðx3Þ ¼ 0:652
�bs1 ðx2Þ ¼ bs1 ðx2Þ þ n12bs1 ðx1Þ þ n23bs1 ðx3Þ ¼ 0:771
�bs1 ðx3Þ ¼ bs1 ðx3Þ þ n13bs1 ðx1Þ þ n23bs1 ðx2Þ ¼ 1:024
then by (18), we obtain the overall benefit of s1: bs1 ¼ 0:877.
Similarly, we can calculate the overall benefits of the other projects si (i = 2, . . . ,10):
bs2 ¼ 0:801; bs3 ¼ 0:545; bs4 ¼ 0:753; bs5 ¼ 0:577; bs6 ¼ 0:661

bs7 ¼ 0:331; bs8 ¼ 0:697; bs9 ¼ 0:574; bs10 ¼ 0:473
Therefore, according to the overall benefits of the projects si (i = 1,2, . . . ,10), we rank these projects as:
s1 � s2 � s4 � s8 � s6 � s5 � s9 � s3 � s10 � s7
where ‘‘�’’ denotes ‘‘prior to’’.
The result is similar to that in [3], and the best projects derived by the methods of both the papers are s1. Thus, the above

simple example illustrates the feasibility and practicability of the GMADM model. In addition, the GMADM model is more
practical to solve most of the decision making problems with the interrelated decision factors than the existing decision
making methods including the method in [3].

6. Concluding remarks

In this paper, we have used the graphic structure to describe the interrelated criteria in multi- criteria decision making,
and thus a GMADM model has been developed. We have properly solved the GMADM problems by analyzing how the gra-
phic structure of agents affects the benefits and the importance weights of agents. Furthermore, considering some situations
that the graphic structure is uncertain, we have developed another method called the fuzzy graph-based multi-agent deci-
sion making method. This kind of decision making methods are of worth being developed in further research, because they
can be well applied into the actual decision making problems.

The novelty of the paper is that a common model of multi-criteria decision making (MCDM) with the interrelated criteria
has been developed and various relationships among the criteria have been described by using the corresponding graphical
structures. Undoubtedly, some MCDM problems with the interrelated criteria have been solved by the existing methods (like
the methods in [2–6]), but these methods can be regarded as the special cases of the GMADM model. Meanwhile, aiming at
lots of the unsettled complex MCDM problems with the interrelated criteria, we can clearly depict the relationships among
the criteria and then derive a solution by means of the GMADM model.

However, we have just discussed a common process of graph-based multi-agent decision making. As we know, for any
practical decision making problems, there exist some larruping points that we need to attach importance to. Thus, there ex-
ists no approach that can be used to all decision making problems, and we need to design a concrete solution process for a
practical problem, involving the steps of the calculation of weights, the quantificational description of various relations
among the decision factors, and the selection of aggregation methods, etc. Therefore, in the next work, we shall try to utilize
our method to deal with some complex decision making problems, which cannot be well solved by the existing ones.
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