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Abstract

In this paper, we initiate the study of a variation of standard domination, namely restrained
domination. Let G = (V; E) be a graph. A restrained dominating set is a set S ⊆V where every
vertex in V − S is adjacent to a vertex in S as well as another vertex in V − S. The restrained
domination number of G, denoted by r(G), is the smallest cardinality of a restrained dominating
set of G. We determine best possible upper and lower bounds for r(G); characterize those graphs
achieving these bounds and �nd best possible upper and lower bounds for r(G) + r(G) where
G is a connected graph. Finally, we give a linear algorithm for determining r(T ) for any tree
and show that the decision problem for r(G) is NP-complete even for bipartite and chordal
graphs. c© 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

Graph theory terminology not presented here can be found in [1]. Let G = (V; E)
be a graph. For any vertex v ∈ V , the open neighborhood of v, denoted by N (v), is
de�ned by {u ∈ V | uv ∈ E}. A set S is a dominating set if for every vertex u ∈ V −S,
there exists v ∈ S such that uv ∈ E. The domination number of G, denoted by (G),
is the minimum cardinality of a dominating set of G.
A set S ⊆V is a restrained dominating set if every vertex in V − S is adjacent to

a vertex in S and another vertex in V − S. The concept of restrained domination was
introduced by Telle [6], albeit as a vertex partitioning problem. Note that every graph
has a restrained dominating set, since S=V is such a set. Let r(G) denote the size of
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a smallest restrained dominating set. We will call a set S a r-set if S is a restrained
dominating set of cardinality r(G).
One possible application of the concept of restrained domination is that of prisoners

and guards. Here, each vertex not in the restrained dominating set corresponds to a
position of a prisoner, and every vertex in the restrained dominating set corresponds
to a position of a guard. Note that each prisoner’s position is observed by a guard’s
position (to e�ect security) while each prisoner’s position is seen by at least one
other prisoner’s position (to protect the rights of prisoners). To be cost e�ective, it is
desirable to place as few guards as possible (in the sense above).
In Section 2, we determine this parameter for certain classes of graphs, obtain best

possible upper and lower bounds for r(G) and characterize those graphs achieving
these bounds. Then, in Section 3, we �nd best possible upper and lower bounds for
r(G) + r(G) where G is a connected graph. Finally, in Section 4, we give a linear
algorithm for determining r(T ) for any tree and show that the decision problem for
r(G) is NP-complete even for bipartite and chordal graphs.

2. De�nitions and results

Let Kn; Cn and Pn denote, respectively, the complete graph, the cycle and the path
of order n. Also, let Kn1 ;:::; nt denote the complete multipartite graph with vertex set
S1 ∪ · · · ∪ St where |Si| = ni for 16i6t. We call K1; n−1 a star. A subdivision of an
edge uv is obtained by introducing a new vertex w and replacing the edge uv with
the edges uw and wv. A spider is a tree obtained from K1; r ; r¿1, by subdividing all
of its edges. A wounded spider is a tree obtained from K1; r ; r¿1, by subdividing at
most r − 1 of its edges. Thus, the star, K1; r , is also a wounded spider. In a tree, a
stem is a vertex adjacent to a leaf (a vertex of degree one).
The following results are immediate.

Proposition 1. If n 6= 2 is a positive integer; then r(Kn) = 1.

Proposition 2. If n¿2 is an integer; then r(K1; n−1) = n.

Proposition 3. If n1 and n2 are integers such that min{n1; n2}¿2; then r(Kn1 ; n2 )= 2.

Proposition 4. If t¿3 is an integer; then

r(Kn1 ;:::;nt ) =
{
1 if min{n1; : : : ; nt}= 1;
2 otherwise:

It is clear from their de�nition that (G)6r(G). Suppose n¿1 and let k ∈ {1; : : : ;
n−2; n}. Let G be the graph obtained from Pn−k , the path on n−k vertices, by adding
a set of vertices {v; v1; : : : ; vk−1} and joining the vertex v to each of the vertices in
V (Pn−k)∪{v1; : : : ; vk−1}. Then G has order n, r(G)=k and (G)=1. Hence, we have
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Proposition 5. There exists a graph G for which r(G)−(G) can be made arbitrarily
large.

Proposition 6. If n¿1 is an integer; then r(Pn) = n− 2b(n− 1)=3c.

Proof. Suppose S is a restrained dominating set of Pn, whose vertex set is V =
{v1; : : : ; vn}. Note that v1; vn ∈ S. Moreover, any component of V −S is of size exactly
two. Suppose there are m such components. Then 2m+m+16n and so m6b(n−1)=3c.
Thus |S|= n− 2m¿n− 2b(n− 1)=3c.
On the other hand, V − {vi | 16i63b(n− 1)=3c; i ≡ 2 or 3 (mod 3)} is a restrained

dominating set of size n− 2b(n− 1)=3c.

We omit the proof of the following result as it is similar to that of Proposition 6.

Proposition 7. If n¿3; then r(Cn) = n− 2bn=3c.

It is clear that r(G)6n for any graph G of order n. The following result shows
that the star K1; n−1 is the only connected graph G of order n for which r(G)=n. We
omit the (easy) proof.

Proposition 8. Let G be a connected graph of order n. Then r(G)= n if and only if
G is a star.

If G is a connected graph of order n and G is not a star, then r(G)6n− 2. Recall
that a leaf in a graph is a vertex of degree one, while a stem is a vertex adjacent to
a leaf. The next two results will show for which graphs this upper bound is attained.

Theorem 9. If T is a tree of order n¿3; then r(T )=n−2 if and only if T is obtained
from P4; P5 or P6 by adding zero or more leaves to the stems of the path.

Proof. It is easy to verify that if T is obtained from P4; P5 or P6 by adding zero or
more leaves to the stems, then r(T ) = n− 2.
Conversely, let T be a tree of order n such that r(T ) = n − 2. If diam(T )¿6,

then T contains an induced P7, say v1; : : : ; v7. But then V (T ) − {v2; v3; v5; v6} is a
restrained dominating set of T of size n−4, which is a contradiction. Thus, diam(T )65.
Furthermore, since T is not a star and stars are the only trees having diameter 2,
diam(T )¿3. Consider the following three cases.
Case 1: diam(T ) = 3. Then T has an induced P4, say 〈{v1; v2; v3; v4}〉. But then

neither v2 nor v3 can have neighbors not on the path that have other neighbors. Thus,
any other vertex must be adjacent to v2 or v3.
Case 2: diam(T )=4. Then T has an induced P5, say 〈{v1; v2; v3; v4; v5}〉. Any neigh-

bor of v2 or v4 not on the path cannot have another neighbor not on the path. Also,
if v3 has neighbors not on the path, then V (T )−{v2; v3; v4} is a restrained dominating
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set of T , so that r(T )6n− 3, which is a contradiction. Thus, every vertex not on the
path must be adjacent to v2 or v4.
Case 3: diam(T )=5. Let the induced path of order 6 have vertices v1; v2; v3; v4; v5 and

v6. Certainly, v2 and v5 can have leaves attached to them. If v3 (v4, respectively) have
any neighbors not on the path, then V (T )−{v2; v3; v4} (V (T )−{v3; v4; v5}, respectively)
is a restrained dominating set of size n− 3, which is a contradiction. Thus, any other
vertex is adjacent to v2 or v5.

Theorem 10. Let G be a connected graph of order n containing a cycle. Then r(G)=
n − 2 if and only if G is C4 or C5 or G can be obtained from C3 by attaching zero
or more leaves to at most two of the vertices of the cycle.

Proof. If G is C4 or C5 or can be obtained from C3 by attaching zero or more leaves
to at most two of the vertices of the cycle, then it is easy to verify that r(G)= n− 2.
Suppose, conversely, that r(G) = n − 2. Then G cannot have a cycle of length at

least 6, since if v1; v2; v3; v4; v5; v6 are consecutive vertices on a cycle of length at least
6 in G, then V (G) − {v1; v2; v4; v5} is a restrained dominating set for G, which is a
contradiction.
Case 1: G contains either a 5-cycle, or a 4-cycle, containing the consecutive vertices

v1; v2; v3 and v4. If one of the vertices, say v2, has a neighbor other than v1 and v3,
then V (G)− {v1; v2; v3} is a restrained dominating set of G, which is a contradiction.
Hence, G∼=C4 or G∼=C5.
Case 2: G contains the triangle, v1; v2; v3; v1. If each of v1; v2 and v3 has neighbors

not on the cycle, then V (G) − {v1; v2; v3} is a restrained dominating set of G, which
is a contradiction. Without loss of generality, assume v1 has no neighbors except v2
and v3.
If v2 (or v3) has a neighbor not on the cycle, say u2, which is adjacent to another

vertex, say w2, not on the cycle, then V (G) − {v1; v2; u2} is a restrained dominating
set of size n− 3, which is a contradiction. Hence, any vertex on the cycle can only be
adjacent to degree one vertices not on the cycle.

Corollary 11. If G is a graph of order n; then r(G)=n if and only if G is a disjoint
union of stars and isolated vertices. Furthermore; r(G)=n−2 if and only if exactly
one of the components of G is isomorphic to a graph given in Theorems 9 or 10 and
every other component is a star or P1.

The following result is immediate.

Proposition 12. If G is a graph; then r(G) = 1 if and only if G∼=K1 +H where H is
a graph with no isolated vertices.

We close this section by providing a lower bound for the restrained domination
number of a tree.
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Theorem 13. If T is a tree of order n¿3; then r(T )¿�(T ). Furthermore;
r(T ) = �(T ) if and only if T is a wounded spider which is not a star.

Proof. Let T be a tree of order n¿3. Since T has at least �(T ) leaves and any
restrained dominating set must contain all the leaves, r(T )¿�(T ). Clearly, for any
wounded spider T which is not a star, we have r(T ) = �(T ). So suppose T is a tree
for which r(T ) = �(T ). Let v be a vertex in T of degree �(T ) and let S be r-set
of T . Clearly, S must contain all the leaves of T and hence is precisely the set of all
leaves. Suppose V is the vertex set of T . Then |V − S|¿2 and each vertex x ∈ V − S
is adjacent to at least one x′ ∈ S such that x 6= y implies x′ 6= y′. So, each vertex
in V − S − {v} is adjacent to v and exactly one vertex in S. Hence, T is a wounded
spider which is not a star.

3. A Nordhaus–Gaddum-type result

Nordhaus and Gaddum provided best possible bounds on the sum of the chromatic
numbers of a graph and its complement in [5]. A corresponding result for the domina-
tion number was presented by Jaeger and Payan [3]: if G is a graph of order n¿2, then
36(G) + (G)6n + 1. An improved upper bound is due to Joseph and Arumugam
[4]: if G is a graph of order n such that neither G nor G has isolated vertices, then
(G) + (G)6(n+ 4)=2.
We now prove best possible bounds on the sum of the restrained domination numbers

of a graph and its complement.

Theorem 14. If G is a graph of order n¿2; then 46r(G) + r(G). If G is a graph
of order n¿2 such that G 6∼= P3 and G 6∼= P3; then r(G)+ r(G)6n+2. Furthermore;
these bounds are best possible.

Proof. For the lower bound, we only need to show that if r(G) = 1, then r(G)¿3.
Suppose r(G) = 1. Then, by Proposition 12; G∼=K1 + H , where H is graph without
any isolated vertices. If r(H)=1, then, by Proposition 12; H∼=K1 +H ′, where H ′ has
no isolated vertices. This, however, implies that H has an isolated vertex, which is a
contradiction. Thus, r(H)¿2 and, therefore, r(G)¿3.
Next we prove the upper bound. The cases when n = 2 or 3 are easy. Assume,

therefore, n¿4. Since the complement of a disconnected graph is connected, we may
assume that G = (V; E) is connected. Choose uv ∈ E and let N = NG(u) ∩ NG(v); A=
V − N − {u; v} and I = {w |w is an isolated vertex in 〈A〉G}.
Case 1: |I |61 and N = ∅. If I = ∅, then {u; v} is a restrained dominating set of

G and the upper bound holds. Assume, therefore, that |I |= 1. Then there is a vertex,
say w, in (N (u)− {v})∪ (N (v)− {u}) such that deg(w)¿2. Suppose, without loss of
generality, that w is adjacent to u. It follows that V −{u; w} is a restrained dominating
set of G, while {u; v} ∪ I is a restrained dominating set of G. Thus, r(G) + r(G)6
(n− 2) + 2 + |I |6n+ 1¡n+ 2.



66 G.S. Domke et al. / Discrete Mathematics 203 (1999) 61–69

Case 2: |I |61 and N 6= ∅. Since A ∪ {u} is a restrained dominating set of G and
{u; v}∪N ∪ I is a restrained dominating set of G, we have r(G)+ r(G)6(|A|+1)+
(2 + |N |+ |I |) = (|A|+ |N |+ 2) + 1 + |I |6n+ 2.
Case 3: |I |¿2, say u′; v′ ∈ I . Note that since u′ (v′, respectively) is in I , then in

G, the vertex u′ (v′, respectively) is adjacent to every vertex in A − {u′} (A − {v′},
respectively). Choose an edge e = xy in G with x ∈ N ∪ {u; v} and y ∈ A. Choose
one vertex w in {u; v} − {x} and one vertex w′ in {u′; v′} − {y}. Then {w; w′} is a
restrained dominating set of G. Again, r(G) + r(G)62 + n.
All that remains is to show that the lower and upper bounds are best possible.
That the lower bound is best possible, may be seen as follows. For n = 2 or

3, consider the complete graph Kn. For n = 4, consider the path P4. For n¿5, let
n1 and n2 be integers such that min{n1; n2}¿2 and n1 + n2 = n − 1. Let H ∼=Kn1 ; n2
and G∼=K1 + H . Then, by Propositions 3 and 12, r(G) = 1; r(G) = 3 and
r(G) + r(G) = 4.
Since r(K1; n−1) + r(K1; n−1) = n+ 2, our upper bound is best possible.

4. Complexity issues for r

In this section several complexity results are given. A linear time algorithm is given
which computes the value for r(G) for any tree T . In the general case, however,
the decision problem for r(G) is NP-complete, even when restricted to bipartite and
chordal graphs.
For the �rst result, a dynamic programming style algorithm is constructed using the

methodology of Wimer [7].
We make use of the well-known fact that the class of (rooted) trees can be con-

structed recursively from copies of the single vertex K1, using only one rule of com-
position, which combines two trees (T1; r1) and (T2; r2) by adding an edge between r1
and r2 and calling r1 the root of the resulting larger tree. We denote this as follows:
(T; r1) = (T1; r1) ◦ (T2; r2).
In particular, if S is a restrained dominating set of T , then S splits into two sub-

sets S1 and S2 according to this decomposition. We express this as follows: (T; S) =
(T1; S1) ◦ (T2; S2).
In order to construct an algorithm to compute r(T ) for any tree T , we characterize

the classes of possible tree-subset pairs (T; S) which can occur. For this problem there
are four classes:
[1] = {(T; S)|r ∈ S; S is a restrained dominating set of T}.
[2] = {(T; S)|r 6∈ S; S is a dominating set of T , S is not a restrained dominating set

of T , but is a restrained dominating set of T − r}.
[3] = {(T; S)|r 6∈ S; S is a restrained dominating set of T}.
[4] = {(T; S)|r 6∈ S; S is not a dominating set of T but is a dominating set of T − r

and for all x 6∈ S, there exists y 6∈ S such that xy ∈ E(T )}.
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Fig. 1.

Next, we must consider the e�ect of composing a tree T1 having a set S1 which
is of class [i] with a tree T2 having a set which is of class [j] for every possible
combination of classes 16i; j64. That is, we must describe the appropriate class of
the combined set S1 ∪ S2 in the composed tree T =T1 ◦T2. This is described in Fig. 1.
An ‘X’ in the table signi�es that this composition cannot happen, that is, no set S
can ever decompose into two subsets S1 and S2 of the classes indicated.
From Fig. 1, we can now write out a system of recurrence relations, as follows:

[1] = [1] ◦ [1] ∪ [1] ◦ [3] ∪ [1] ◦ [4],
[2] = [2] ◦ [1],
[3] = [2] ◦ [2] ∪ [2] ◦ [3] ∪ [3] ◦ [1] ∪ [3] ◦ [2] ∪ [3] ◦ [3] ∪ [4] ◦ [1],
[4] = [4] ◦ [2] ∪ [4] ◦ [3].

To illustrate this, a tree-subset pair of class [1] can be read as follows: a tree-subset
pair (T; S) which is of class [1] can be obtained only by composing a pair (T1; S1) of
class [1] with a pair (T2; S2) of class [1] or by composing a pair (T1; S1) of class [1]
with a pair (T2; S2) of class [3] or by composing a pair (T1; S1) of class [1] with a
pair (T2; S2) of class [4].
To prove the correctness of this dynamic programming algorithm for computing

r(T ) for any tree T , we would have to prove a theorem asserting that each of these
recurrences are correct. Space limitations prevent us from doing this here, but it is
easy to do. It is even easier to verify the correctness of Fig. 1, which can be done by
inspection. The �nal step in specifying a r-algorithm is to de�ne the initial vector. In
this case, for trees, the only basis graph is the tree with single vertex K1. We need to
know the minimum cardinality of a set S in a class of type [1]–[4] in the graph K1,
if any exists. It is easy to see that the initial vector is [1;−;−; 0] where ‘−’ means
unde�ned.
We now have all the ingredients for a r-algorithm, where the input is the parent array

parent[1 : : : p] for the input tree and where the output is the 4-tuple corresponding to
the root (i.e. vertex 1) of T which is computed repeatedly by applying the recurrence
system to each vertex in the parent array, with the initial vector [1;−;−; 0] being
associated with every vertex in the parent array as the computation begins.
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The basic structure for the algorithm is a simple iteration.

procedure r;
for i:=1 to p do

initialize vector [i,1: : : 4] to [1,-,-,0];

for j:=p downto 2 do

begin

k:= parent[j];

vector[k,1]:= min{vector[k,1]+vector[j,1], vector[k,1]+vector[j,3],

vector[k,1]+vector[j,4]};
vector[k,2]:= vector[k,2]+vector[j,1];

vector[k,3]:= min{vector[k,2]+vector[j,2], vector[k,2]+vector[j,3],

vector[k,3]+vector[j,1], vector[k,3]+vector[j,2],

vector[k,3]+vector[j,3], vector[k,4]+vector[j,1]};
vector[k,4]:= min{vector[k,4]+vector[j,2], vector[k,4]+vector[j,3]};

end;

r(T ):= min {vector[1,1], vector[1,3]};
end;{r}.

It is clear that procedure r has linear execution time.
To show that the decision problem for arbitrary graphs is NP-complete, we need to

use a well-known NP-completeness result, called Exact Three Cover (X3C), which is
de�ned as follows.

EXACT COVER BY 3-SETS (X3C)
Instance. A �nite set X with |X | = 3q and a collection C of 3-element subsets

of X .
Question. Does C contain an exact cover for X , that is, a subcollection C′ ⊆C such

that every element of X occurs in exactly one member of C′? Note that if C′ exists,
then its cardinality is precisely q.

Theorem 15 (Garey and Johnson [2]). X3C is NP-complete.

RESTRAINED DOMINATING SET (RDS)
Instance. A graph G = (V; E) and a positive integer k6|V |.
Question. Is there a restrained dominating set of cardinality at most k?

Theorem 16. RDS is NP-complete; even for bipartite graphs.

Proof. It is clear that RDS is in NP.
To show that RDS is an NP-complete problem, we will establish a polynomial

transformation from X3C. Let X = {x1; : : : ; x3q} and C = {C1; : : : ; Cm} be an arbitrary
instance of X3C.
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We will construct a bipartite graph G and a positive integer k such that this instance
of X3C will have an exact three cover if and only if G has a restrained dominating
set of cardinality at most k.
We now describe the construction of G. Corresponding to each xi ∈ X associate the

path xi; yi; zi. Corresponding to each Cj associate a K2 with vertices cj and dj. The
construction of the bipartite graph G is completed by joining xi and cj if and only if
xi ∈ Cj. Finally, set k = m+ 4q.
Suppose C has an exact 3-cover, say C′. Then

⋃3q
i=1{zi}∪

⋃m
j=1{dj}∪{cj |Cj ∈ C′}

is a restrained dominating set of cardinality m + 4q. This construction can clearly be
accomplished in polynomial time.
Suppose, conversely, that D is a restrained dominating set of cardinality at most

m + 4q. Then the vertices in the set L, de�ned by
⋃3q
i=1{zi} ∪ ⋃m

j=1{dj}, are all end
vertices of G and have to be in D. Hence, |D| − |L|6(m + 4q) − (m + 3q) = q. Let
I={i ∈ {1; : : : ; 3q} | xi ∈ D or yi ∈ D} and let J={j ∈ {1; : : : ; m} | cj ∈ D}. Then, since
D is a dominating set of G; (

⋃
i∈I{xi; yi}∪

⋃
j∈J N [cj])∩{x1; : : : ; x3q}⊇{x1; : : : ; x3q}. We

conclude that |I |+3|J |¿3q. Also, |I |+ |J |6|D|−|L|6q. Hence, 3|I |+3|J |6|I |+3|J |,
so that I = ∅. We conclude that xi; yi 6∈ D for i = 1; : : : ; 3q. Since xi; i = 1; : : : ; 3q, is
dominated by D, we must have that |J |=q and that C′={Cj | j ∈ J} is an exact cover
for X .

Theorem 17. RDS is NP-complete; even for chordal graphs.

Proof. The proof is similar to the proof of Theorem 16, except that edges are added
so that {c1; : : : ; cm} forms a clique.
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